-
1
-
-
84894664737
-
Nonlinear causal discovery for high dimensional data:Akernelized tracemethod
-
Piscataway, NJ: IEEE
-
Chen, Z., Zhang, K., & Chan, L. (2013). Nonlinear causal discovery for high dimensional data:Akernelized tracemethod. In Proceedings of the IEEE 13th International Conference on Data Mining (pp. 1003-1008). Piscataway, NJ: IEEE.
-
(2013)
Proceedings of the IEEE 13th International Conference on Data Mining
, pp. 1003-1008
-
-
Chen, Z.1
Zhang, K.2
Chan, L.3
-
2
-
-
84902150566
-
Causal discovery via reproducing kernel Hilbert space embeddings.
-
Chen, Z., Zhang, K., Chan, L., & Schölkopf, B. (2014). Causal discovery via reproducing kernel Hilbert space embeddings. Neural Computation, 26(7), 1484-1517.
-
(2014)
Neural Computation
, vol.26
, Issue.7
, pp. 1484-1517
-
-
Chen, Z.1
Zhang, K.2
Chan, L.3
Schölkopf, B.4
-
3
-
-
29144480967
-
Kernel methods for measuring independence.
-
Gretton, A., Herbrich, R., Smola, A., Bousquet, O., & Schölkopf, B. (2005). Kernel methods for measuring independence. Journal of Machine Learning Research, 6, 2075-2129.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 2075-2129
-
-
Gretton, A.1
Herbrich, R.2
Smola, A.3
Bousquet, O.4
Schölkopf, B.5
-
5
-
-
84858789485
-
Nonlinear causal discovery with additive noise models
-
D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Cambridge, MA: MIT Press
-
Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J. R., & Schölkopf, B. (2009). Nonlinear causal discovery with additive noise models. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems, 21 (pp. 689-696). Cambridge, MA: MIT Press.
-
(2009)
Advances in neural information processing systems
, vol.21
, pp. 689-696
-
-
Hoyer, P.O.1
Janzing, D.2
Mooij, J.M.3
Peters, J.R.4
Schölkopf, B.5
-
6
-
-
84870911885
-
Learning linear cyclic causal models with latent variables.
-
Hyttinen, A., Eberhardt, F.,&Hoyer, P.O. (2012). Learning linear cyclic causal models with latent variables. Journal of Machine Learning Research, 13, 3387-3439.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 3387-3439
-
-
Hyttinen, A.1
Eberhardt, F.2
Hoyer, P.O.3
-
7
-
-
84873446677
-
Pairwise likelihood ratios for estimation of non-gaussian structural equation models.
-
Hyvärinen, A., & Smith, S. M. (2013). Pairwise likelihood ratios for estimation of non-gaussian structural equation models. Journal of Machine Learning Research, 14, 111-152.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 111-152
-
-
Hyvärinen, A.1
Smith, S.M.2
-
8
-
-
77953491241
-
Estimation of a structural vector autoregression model using non-gaussianity.
-
Hyvärinen, A., Zhang, K., Shimizu, S.,&Hoyer,P. O. (2010). Estimation of a structural vector autoregression model using non-gaussianity. Journal of Machine Learning Research, 11, 1709-1731.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 1709-1731
-
-
Hyvärinen, A.1
Zhang, K.2
Shimizu, S.3
Hoyer, P.O.4
-
9
-
-
77956505691
-
Telling cause from effect based on high-dimensional observations
-
Madison,WI: Omnipress
-
Janzing, D., Hoyer, P., & Schölkopf, B. (2010). Telling cause from effect based on high-dimensional observations. In Proceedings of the 27th International Conference on Machine Learning (pp. 479-486). Madison,WI: Omnipress.
-
(2010)
Proceedings of the 27th International Conference on Machine Learning
, pp. 479-486
-
-
Janzing, D.1
Hoyer, P.2
Schölkopf, B.3
-
10
-
-
84857129458
-
Information-geometric approach to inferring causal directions.
-
Janzing, D., Mooij, J., Zhang, K., Lemeire, J., Zscheischler, J., Daniᅭsis, P., . . . Schölkopf, B. (2012). Information-geometric approach to inferring causal directions. Artificial Intelligence, 182, 1-31.
-
(2012)
Artificial Intelligence
, vol.182
, pp. 1-31
-
-
Janzing, D.1
Mooij, J.2
Zhang, K.3
Lemeire, J.4
Zscheischler, J.5
Daniᅭsis, P.6
Schölkopf, B.7
-
11
-
-
77956667205
-
Causal inference using the algorithmic Markov condition.
-
Janzing, D., & Schölkopf, B. (2010). Causal inference using the algorithmic Markov condition. IEEE Transactions on Information Theory, 56(10), 5168-5194.
-
(2010)
IEEE Transactions on Information Theory
, vol.56
, Issue.10
, pp. 5168-5194
-
-
Janzing, D.1
Schölkopf, B.2
-
12
-
-
84877776029
-
Replacing causal faithfulness with algorithmic independence of conditionals.
-
Lemeire, J., & Janzing, D. (2013). Replacing causal faithfulness with algorithmic independence of conditionals. Minds and Machines, 23(2), 227-249.
-
(2013)
Minds and Machines
, vol.23
, Issue.2
, pp. 227-249
-
-
Lemeire, J.1
Janzing, D.2
-
13
-
-
85162312543
-
On causal discovery with cyclic additive noise models
-
J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, & K. Q. Weinberger. (Eds.), Red Hook, NY: Curran
-
Mooij, J. M., Janzing, D., Heskes, T., & Schölkopf, B. (2011). On causal discovery with cyclic additive noise models. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, & K. Q. Weinberger. (Eds.), Advances in neural information processing systems, 24 (pp. 639-647), Red Hook, NY: Curran.
-
(2011)
Advances in neural information processing systems
, vol.24
, pp. 639-647
-
-
Mooij, J.M.1
Janzing, D.2
Heskes, T.3
Schölkopf, B.4
-
16
-
-
80053158210
-
Causal inference on discrete data using additive noise models.
-
Peters, J., Janzing, D., & Scholkopf, B. (2011). Causal inference on discrete data using additive noise models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2436-2450.
-
(2011)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.33
, Issue.12
, pp. 2436-2450
-
-
Peters, J.1
Janzing, D.2
Scholkopf, B.3
-
17
-
-
84867113617
-
On causal and anticausal learning
-
Madison,WI: Omnipress
-
Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., & Mooij, J. (2012). On causal and anticausal learning. In Proceedings of the 29th International Conference on Machine Learning (pp. 1-8). Madison,WI: Omnipress.
-
(2012)
Proceedings of the 29th International Conference on Machine Learning
, pp. 1-8
-
-
Schölkopf, B.1
Janzing, D.2
Peters, J.3
Sgouritsa, E.4
Zhang, K.5
Mooij, J.6
-
18
-
-
84954328399
-
Inference of cause and effect with unsupervised inverse regression
-
JMLR
-
Sgouritsa, E., Janzing, D., Hennig, P., & Schölkopf, B. (2015). Inference of cause and effect with unsupervised inverse regression. In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (pp. 847-855). JMLR.
-
(2015)
Proceedings of the 18th International Conference on Artificial Intelligence and Statistics
, pp. 847-855
-
-
Sgouritsa, E.1
Janzing, D.2
Hennig, P.3
Schölkopf, B.4
-
19
-
-
33749326177
-
Alinear nongaussian acyclic model for causal discovery.
-
Shimizu, S.,Hoyer, P.O.,Hyvärinen, A.,&Kerminen, A. (2006). Alinear nongaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7, 2003-2030.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2003-2030
-
-
Shimizu, S.1
Hoyer, P.O.2
Hyvärinen, A.3
Kerminen, A.4
-
20
-
-
79955829373
-
Directlingam: A direct method for learning a linear non-gaussian structural equation model.
-
Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y.,Washio, . . . Bollen, K. (2011). Directlingam: A direct method for learning a linear non-gaussian structural equation model. Journal of Machine Learning Research, 12, 1225-1248.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 1225-1248
-
-
Shimizu, S.1
Inazumi, T.2
Sogawa, Y.3
Hyvärinen, A.4
Kawahara, Y.W.5
Bollen, K.6
-
21
-
-
0003614273
-
-
Cambridge, MA: MIT Press
-
Spirtes, P., Glymour, C. N., & Scheines, R. (2000). Causation, prediction, and search. Cambridge, MA: MIT Press.
-
(2000)
Causation, prediction, and search
-
-
Spirtes, P.1
Glymour, C.N.2
Scheines, R.3
-
22
-
-
50849124115
-
Measuring and testing dependence by correlation of distances.
-
Székely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and testing dependence by correlation of distances. Annals of Statistics, 35(6), 2769-2794.
-
(2007)
Annals of Statistics
, vol.35
, Issue.6
, pp. 2769-2794
-
-
Székely, G.J.1
Rizzo, M.L.2
Bakirov, N.K.3
-
25
-
-
80053141466
-
Testing whether linear equations are causal: A free probability theory approach
-
Corvallis, OR: AUAI Press
-
Zscheischler, J., Janzing, D., & Zhang, K. (2011). Testing whether linear equations are causal: A free probability theory approach. In Proceedings of the 27th International Conference on Uncertainty in Artificial Intelligence (pp. 839-847). Corvallis, OR: AUAI Press.
-
(2011)
Proceedings of the 27th International Conference on Uncertainty in Artificial Intelligence
, pp. 839-847
-
-
Zscheischler, J.1
Janzing, D.2
Zhang, K.3
|