-
2
-
-
0012315692
-
A Bayesian approach to causal discovery
-
C. Glymour, & G. Cooper, eds. Cambridge, MA: MIT Press
-
Heckerman, D., Meek, C., & Cooper, G. (1999). A Bayesian approach to causal discovery. In C. Glymour, & G. Cooper, eds., Computation, Causation, and Discovery, 141-165. Cambridge, MA: MIT Press.
-
(1999)
Computation, Causation, and Discovery
, pp. 141-165
-
-
Heckerman, D.1
Meek, C.2
Cooper, G.3
-
3
-
-
84858789485
-
Nonlinear causal discovery with additive noise models
-
D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou, eds., Vancouver, Canada: MIT Press
-
Hoyer, P., Janzing, D., Mooij, J., Peters, J., & Schölkopf, B. (2009). Nonlinear causal discovery with additive noise models. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou, eds., Proceedings of the conference Neural Information Processing Systems (NIPS) 2008, 689-696. Vancouver, Canada: MIT Press.
-
(2008)
Proceedings of the Conference Neural Information Processing Systems (NIPS)
, pp. 689-696
-
-
Hoyer, P.1
Janzing, D.2
Mooij, J.3
Peters, J.4
Schölkopf, B.5
-
5
-
-
80053150077
-
Identifying confounders using additive noise models
-
Janzing, D., Peters, J., Mooij, J., & Schölkopf, B. (2009a). Identifying confounders using additive noise models. In Proceedings of the 25th Annual Conference on Uncertainty in Artificial Intelligence (UAI-09).
-
(2009)
Proceedings of the 25th Annual Conference on Uncertainty in Artificial Intelligence (UAI-09)
-
-
Janzing, D.1
Peters, J.2
Mooij, J.3
Schölkopf, B.4
-
8
-
-
77249124516
-
Causal inference using nonnormality
-
Tokyo, Japan
-
Kano, Y., & Shimizu, S. (2003). Causal inference using nonnormality. In Proceedings of the International Symposium on Science of Modeling, the 30th Anniversary of the Information Criterion, 261-270. Tokyo, Japan.
-
(2003)
Proceedings of the International Symposium on Science of Modeling, the 30th Anniversary of the Information Criterion
, pp. 261-270
-
-
Kano, Y.1
Shimizu, S.2
-
10
-
-
71149096052
-
Regression by dependence minimization and its application to causal inference
-
L. Bottou, & M. Littman, eds., Montreal: Omnipress
-
Mooij, J., Janzing, D., Peters, J., & Schölkopf, B. (2009). Regression by dependence minimization and its application to causal inference. In L. Bottou, & M. Littman, eds., Proceedings of the 26th International Conference on Machine Learning, 745-752. Montreal: Omnipress.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning
, pp. 745-752
-
-
Mooij, J.1
Janzing, D.2
Peters, J.3
Schölkopf, B.4
-
11
-
-
0003841913
-
-
I. Blacklip Abalone (H. rubra) from the North Coast and Islands of Bass Strait. Sea Fisheries Division, Technical Report No. 48 (ISSN 1034-3288)
-
Nash, W., Sellers, T., Talbot, S., Cawthorn, A., & Ford, W. (1994). The Population Biology of Abalone (Haliotis species) in Tasmania. I. Blacklip Abalone (H. rubra) from the North Coast and Islands of Bass Strait. Sea Fisheries Division, Technical Report No. 48 (ISSN 1034-3288).
-
(1994)
The Population Biology of Abalone (Haliotis Species) in Tasmania
-
-
Nash, W.1
Sellers, T.2
Talbot, S.3
Cawthorn, A.4
Ford, W.5
-
13
-
-
71149117601
-
Detecting the direction of causal time series
-
L. Bottou, & M. Littman, eds., Montreal: Omnipress
-
Peters, J., Janzing, D., Gretton, A., & Schölkopf, B. (2009a). Detecting the direction of causal time series. In L. Bottou, & M. Littman, eds., Proceedings of the 26th International Conference on Machine Learning, 801-808. Montreal: Omnipress.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning
, pp. 801-808
-
-
Peters, J.1
Janzing, D.2
Gretton, A.3
Schölkopf, B.4
-
16
-
-
33749326177
-
A linear non-Gaussian acyclic model for causal discovery
-
Shimizu, S., Hoyer, P. O., Hyvärinen, A., & Kerminen, A. J. (2006). A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7, 2003-2030.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2003-2030
-
-
Shimizu, S.1
Hoyer, P.O.2
Hyvärinen, A.3
Kerminen, A.J.4
-
17
-
-
0003614273
-
-
New York, NY: Springer-Verlag
-
Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, prediction, and search (Lecture notes in statistics). New York, NY: Springer-Verlag.
-
(1993)
Causation, Prediction, and Search (Lecture Notes in Statistics)
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
18
-
-
84864554405
-
Causal inference by choosing graphs with most plausible Markov kernels
-
Fort Lauderdale, FL
-
Sun, X., Janzing, D., & Schölkopf, B. (2006). Causal inference by choosing graphs with most plausible Markov kernels. In Proceedings of the 9th International Symposium on Artificial Intelligence and Mathematics, 1-11. Fort Lauderdale, FL.
-
(2006)
Proceedings of the 9th International Symposium on Artificial Intelligence and Mathematics
, pp. 1-11
-
-
Sun, X.1
Janzing, D.2
Schölkopf, B.3
-
19
-
-
40649092250
-
Causal reasoning by evaluating the complexity of conditional densities with kernel methods
-
Sun, X., Janzing, D., & Schölkopf, B. (2008). Causal reasoning by evaluating the complexity of conditional densities with kernel methods. Neurocomputing, 71, 1248-1256.
-
(2008)
Neurocomputing
, vol.71
, pp. 1248-1256
-
-
Sun, X.1
Janzing, D.2
Schölkopf, B.3
|