메뉴 건너뛰기




Volumn 72, Issue , 2015, Pages 306-313

Data Mining in Healthcare - A Review

Author keywords

Data Mining; Data Mining in Healthcare; Health Informactics

Indexed keywords

HEALTH CARE; INFORMATION SYSTEMS;

EID: 84964007964     PISSN: None     EISSN: 18770509     Source Type: Conference Proceeding    
DOI: 10.1016/j.procs.2015.12.145     Document Type: Conference Paper
Times cited : (255)

References (37)
  • 1
    • 84954134641 scopus 로고
    • Active data mining
    • R. Agrawal and G. Psaila, "Active data mining," Current, pp. 3-8, 1995.
    • (1995) Current , pp. 3-8
    • Agrawal, R.1    Psaila, G.2
  • 2
    • 84861200365 scopus 로고    scopus 로고
    • Data mining techniques and applications - A decade review from 2000 to 2011
    • S. H. Liao, P.H. Chu, and P. Y. Hsiao, "Data mining techniques and applications - A decade review from 2000 to 2011," Expert Syst. Appl., vol. 39, no. 12, pp. 11303-11311, 2012.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.12 , pp. 11303-11311
    • Liao, S.H.1    Chu, P.H.2    Hsiao, P.Y.3
  • 3
    • 2342639617 scopus 로고    scopus 로고
    • The use of computer-based information systems by German managers to support decision making
    • G. E. Vlahos, T.W. Ferratt, and G. Knoepfle, "The use of computer-based information systems by German managers to support decision making," Inf. Manag., vol. 41, no. 6, pp. 763-779, 2004.
    • (2004) Inf. Manag. , vol.41 , Issue.6 , pp. 763-779
    • Vlahos, G.E.1    Ferratt, T.W.2    Knoepfle, G.3
  • 10
    • 0042591520 scopus 로고    scopus 로고
    • Fuzzy data mining for interesting generalized association rules
    • T. P. Hong, K.Y. Lin, and S. L. Wang, "Fuzzy data mining for interesting generalized association rules," Fuzzy Sets Syst., vol. 138, no. 2, pp. 255-269, 2003.
    • (2003) Fuzzy Sets Syst. , vol.138 , Issue.2 , pp. 255-269
    • Hong, T.P.1    Lin, K.Y.2    Wang, S.L.3
  • 11
    • 10044285992 scopus 로고    scopus 로고
    • Canonical Correlation Analysis: An Overview with Application to Learning Methods
    • D. R. Hardoon, S. Sandor R., and S. John R., "Canonical Correlation Analysis: An Overview with Application to Learning Methods," J. Neural Comput., vol. 16, no. 12, pp. 2639-2664, 2004.
    • (2004) J. Neural Comput. , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Sandor, R.S.2    John, R.S.3
  • 14
    • 34548105186 scopus 로고    scopus 로고
    • Large-Scale Bayesian Logistic Regression for Text Categorization
    • A. Genkin, D.D. Lewis, and D. Madigan, "Large-Scale Bayesian Logistic Regression for Text Categorization," Technometrics, vol. 49, no. 3, pp. 291-304, 2007.
    • (2007) Technometrics , vol.49 , Issue.3 , pp. 291-304
    • Genkin, A.1    Lewis, D.D.2    Madigan, D.3
  • 17
    • 0002283033 scopus 로고    scopus 로고
    • From data mining to knowledge discovery in databases
    • U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, "From data mining to knowledge discovery in databases," AI Mag., pp. 37-54, 1996.
    • (1996) AI Mag. , pp. 37-54
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 18
    • 84874192412 scopus 로고    scopus 로고
    • SVDD-based outlier detection on uncertain data
    • B. Liu, Y. Xiao, L. Cao, Z. Hao, and F. Deng, "SVDD-based outlier detection on uncertain data," Knowl. Inf. Syst., vol. 34, no. 3, pp. 597-618, 2013.
    • (2013) Knowl. Inf. Syst. , vol.34 , Issue.3 , pp. 597-618
    • Liu, B.1    Xiao, Y.2    Cao, L.3    Hao, Z.4    Deng, F.5
  • 19
    • 84954089784 scopus 로고    scopus 로고
    • A Clustering Approach for Predicting Readmissions in Intensive Medicine
    • R. Veloso, F. Portela, M.F. Santos, Á. Silva, F. Rua, A. Abelha, and J. Machado, "A Clustering Approach for Predicting Readmissions in Intensive Medicine," Procedia Technol., vol. 16, pp. 1307-1316, 2014.
    • (2014) Procedia Technol. , vol.16 , pp. 1307-1316
    • Veloso, R.1
  • 20
    • 84873030660 scopus 로고    scopus 로고
    • Data mining techniques for assisting the diagnosis of pressure ulcer development in surgical patients
    • C. T. Su, P.C. Wang, Y.C. Chen, and L. F. Chen, "Data mining techniques for assisting the diagnosis of pressure ulcer development in surgical patients," J. Med. Syst., vol. 36, no. 4, pp. 2387-2399, 2012.
    • (2012) J. Med. Syst. , vol.36 , Issue.4 , pp. 2387-2399
    • Su, C.T.1    Wang, P.C.2    Chen, Y.C.3    Chen, L.F.4
  • 21
    • 84880043209 scopus 로고    scopus 로고
    • Unveiling relevant non-motor Parkinson's disease severity symptoms using a machine learning approach
    • R. Armañanzas, C. Bielza, K.R. Chaudhuri, P. Martinez-Martin, and P. Larrañaga, "Unveiling relevant non-motor Parkinson's disease severity symptoms using a machine learning approach," Artif. Intell. Med., vol. 58, no. 3, pp. 195-202, 2013.
    • (2013) Artif. Intell. Med. , vol.58 , Issue.3 , pp. 195-202
    • Armañanzas, R.1
  • 22
    • 84862794806 scopus 로고    scopus 로고
    • Application of classification techniques on development an early-warning system for chronic illnesses
    • C.-H. Jen, C.-C. Wang, B.C. Jiang, Y.-H. Chu, and M.-S. Chen, "Application of classification techniques on development an early-warning system for chronic illnesses," Expert Syst. Appl., vol. 39, no. 10, pp. 8852-8858, 2012.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.10 , pp. 8852-8858
    • Jen, C.-H.1    Wang, C.-C.2    Jiang, B.C.3    Chu, Y.-H.4    Chen, M.-S.5
  • 23
    • 84934282510 scopus 로고    scopus 로고
    • Data mining models for predicting oral cancer survivability
    • N. Sharma and H. Om, "Data mining models for predicting oral cancer survivability," Netw. Model. Anal. Heal. Informatics Bioinforma., vol. 2, no. 4, pp. 285-295, 2013.
    • (2013) Netw. Model. Anal. Heal. Informatics Bioinforma. , vol.2 , Issue.4 , pp. 285-295
    • Sharma, N.1    Om, H.2
  • 24
    • 84887091192 scopus 로고    scopus 로고
    • An improved survivability prognosis of breast cancer by using sampling and feature selection technique to solve imbalanced patient classification data
    • K.-J. Wang, B. Makond, and K.-M. Wang, "An improved survivability prognosis of breast cancer by using sampling and feature selection technique to solve imbalanced patient classification data.," BMC Med. Inform. Decis. Mak., vol. 13, p. 124, 2013.
    • (2013) BMC Med. Inform. Decis. Mak. , vol.13 , pp. 124
    • Wang, K.-J.1    Makond, B.2    Wang, K.-M.3
  • 25
    • 84928949248 scopus 로고    scopus 로고
    • Predicting overall survivability in comorbidity of cancers: A data mining approach
    • H. M. Zolbanin, D. Delen, and A. Hassan Zadeh, "Predicting overall survivability in comorbidity of cancers: A data mining approach," Decis. Support Syst., vol. 74, pp. 150-161, 2015.
    • (2015) Decis. Support Syst. , vol.74 , pp. 150-161
    • Zolbanin, H.M.1    Delen, D.2    Hassan Zadeh, A.3
  • 26
    • 60249099439 scopus 로고    scopus 로고
    • A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method
    • W.-C. Yeh, W.-W. Chang, and Y. Y. Chung, "A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method," Expert Syst. Appl., vol. 36, no. 4, pp. 8204-8211, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.4 , pp. 8204-8211
    • Yeh, W.-C.1    Chang, W.-W.2    Chung, Y.Y.3
  • 27
    • 79956107466 scopus 로고    scopus 로고
    • Diagnostic study on arrhythmia cordis based on particle swarm optimization-based support vector machine
    • S. W. Fei, "Diagnostic study on arrhythmia cordis based on particle swarm optimization-based support vector machine," Expert Syst. Appl., vol. 37, no. 10, pp. 6748-6752, 2010.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.10 , pp. 6748-6752
    • Fei, S.W.1
  • 28
    • 84870055956 scopus 로고    scopus 로고
    • Automatic detection of erythemato-squamous diseases using PSO-SVM based on association rules
    • M. J. Abdi and D. Giveki, "Automatic detection of erythemato-squamous diseases using PSO-SVM based on association rules," Eng. Appl. Artif. Intell., vol. 26, no. 1, pp. 603-608, 2013.
    • (2013) Eng. Appl. Artif. Intell. , vol.26 , Issue.1 , pp. 603-608
    • Abdi, M.J.1    Giveki, D.2
  • 29
    • 84923379438 scopus 로고    scopus 로고
    • Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values
    • P. J. García-Laencina, P.H. Abreu, M.H. Abreu, and N. Afonoso, "Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values," Comput. Biol. Med., vol. 59, pp. 125-133, 2015.
    • (2015) Comput. Biol. Med. , vol.59 , pp. 125-133
    • García-Laencina, P.J.1
  • 31
    • 33846014233 scopus 로고    scopus 로고
    • A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis
    • S. Şahan, K. Polat, H. Kodaz, and S. Güneş, "A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis," Comput. Biol. Med., vol. 37, no. 3, pp. 415-423, 2007.
    • (2007) Comput. Biol. Med. , vol.37 , Issue.3 , pp. 415-423
    • Şahan, S.1
  • 32
    • 84924435692 scopus 로고    scopus 로고
    • Towards probabilistic decision support in public health practice: Predicting recent transmission of tuberculosis from patient attributes
    • H. Mamiya, K. Schwartzman, A. Verma, C. Jauvin, M. Behr, and D. Buckeridge, "Towards probabilistic decision support in public health practice: Predicting recent transmission of tuberculosis from patient attributes," J. Biomed. Inform., vol. 53, pp. 237-242, 2015.
    • (2015) J. Biomed. Inform. , vol.53 , pp. 237-242
    • Mamiya, H.1    Schwartzman, K.2    Verma, A.3    Jauvin, C.4    Behr, M.5    Buckeridge, D.6
  • 36
    • 84888306351 scopus 로고    scopus 로고
    • Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms
    • B. Zheng, S.W. Yoon, and S. S. Lam, "Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms," Expert Syst. Appl., vol. 41, no. 4 PART 1, pp. 1476-1482, 2014.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.4 , pp. 1476-1482
    • Zheng, B.1    Yoon, S.W.2    Lam, S.S.3
  • 37
    • 84923233733 scopus 로고    scopus 로고
    • An efficient and effective ensemble of support vector machines for anti-diabetic drug failure prediction
    • S. Kang, P. Kang, T. Ko, S. Cho, S. Rhee, and K.-S. Yu, "An efficient and effective ensemble of support vector machines for anti-diabetic drug failure prediction," Expert Syst. Appl., vol. 42, no. 9, pp. 4265-4273, 2015.
    • (2015) Expert Syst. Appl. , vol.42 , Issue.9 , pp. 4265-4273
    • Kang, S.1    Kang, P.2    Ko, T.3    Cho, S.4    Rhee, S.5    Yu, K.-S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.