메뉴 건너뛰기




Volumn 13, Issue 1, 2013, Pages

An improved survivability prognosis of breast cancer by using sampling and feature selection technique to solve imbalanced patient classification data

Author keywords

Breast cancer; Cost sensitive classifier technique; Decision tree; Imbalanced data; Logistic regression; Synthetic minority over sampling

Indexed keywords

ADULT; ARTICLE; BREAST TUMOR; CLASSIFICATION; DECISION TREE; DISEASE FREE SURVIVAL; FEMALE; HUMAN; METHODOLOGY; MORTALITY; PROGNOSIS; STATISTICAL MODEL;

EID: 84887091192     PISSN: None     EISSN: 14726947     Source Type: Journal    
DOI: 10.1186/1472-6947-13-124     Document Type: Article
Times cited : (43)

References (45)
  • 1
    • 79958056817 scopus 로고    scopus 로고
    • World Health Organization Retrieved September 22, 2010
    • World Health Organization, Quick cancer facts. Retrieved September 22, 2010 http://www.who.int/cancer/en/
    • Quick Cancer Facts
  • 4
    • 0032730109 scopus 로고    scopus 로고
    • Artificial neural networks applied to survival prediction in breast cancer
    • 10.1159/000012061 10575312
    • Artificial neural networks applied to survival prediction in breast cancer. Lundin M, Lundin J, Burke HB, Toikkanen S, Pylkkänen L, Joensuu H, Oncology 1999 57 281 286 10.1159/000012061 10575312
    • (1999) Oncology , vol.57 , pp. 281-286
    • Lundin, M.1    Lundin, J.2    Burke, H.B.3    Toikkanen, S.4    Pylkkänen, L.5    Joensuu, H.6
  • 7
    • 74949110619 scopus 로고    scopus 로고
    • Comparison of three data mining techniques with genetic algorithm in the analysis of breast cancer data
    • Comparison of three data mining techniques with genetic algorithm in the analysis of breast cancer data. Chang WP, Liou DM, J Telemed Telecare 2008 9 1 26
    • (2008) J Telemed Telecare , vol.9 , pp. 1-26
    • Chang, W.P.1    Liou, D.M.2
  • 8
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: A comparison of three data mining methods
    • DOI 10.1016/j.artmed.2004.07.002, PII S0933365704001010
    • Predicting breast cancer survivability: a comparison of three data mining methods. Delen D, Walker G, Kadam A, Artif Intell Med 2005 34 113 127 10.1016/j.artmed.2004.07.002 15894176 (Pubitemid 40719029)
    • (2005) Artificial Intelligence in Medicine , vol.34 , Issue.2 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 9
    • 84888327297 scopus 로고    scopus 로고
    • Predicting breast cancer survivability using data mining techniques
    • Predicting breast cancer survivability using data mining techniques. Bellaachia A, Guven E, Age 2006 58 10 110
    • (2006) Age , vol.58 , pp. 10-110
    • Bellaachia, A.1    Guven, E.2
  • 10
    • 79952923438 scopus 로고    scopus 로고
    • Comparison of seven algorithms to predict breast cancer survival
    • Comparison of seven algorithms to predict breast cancer survival. Endo A, Shibata T, Tanaka H, Int J Biomed Soft Comput Hum Sci 2008 13 11 16
    • (2008) Int J Biomed Soft Comput Hum Sci , vol.13 , pp. 11-16
    • Endo, A.1    Shibata, T.2    Tanaka, H.3
  • 12
    • 9444297357 scopus 로고    scopus 로고
    • Smoteboost: Improving prediction of the minority class in boosting
    • Knowledge Discovery in Databases: PKDD 2003
    • SMOTEBoost: Improving prediction of the minority class in boosting. Chawla NV, Lazarevic A, Hall LO, Bowyer KW, Proceedings of the 7th European conference on principles and practice of knowledge discovery in database Berlin: Springer 2003 107 119 (Pubitemid 37231089)
    • (2003) LEcture Notes In Computer Science , Issue.2838 , pp. 107-119
    • Chawla, N.V.1    Lazarevic, A.2    Hall, L.O.3    Bowyer, K.W.4
  • 13
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • Learning from imbalanced data. He H, Garcia E, IEEE Trans Knowl Data Eng 2009 21 9 1263 1284
    • (2009) IEEE Trans Knowl Data Eng , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.2
  • 14
    • 78650716557 scopus 로고    scopus 로고
    • Classification of imbalanced data sets by using the hybrid re-sampling algorithm based on isomap
    • 10.1007/978-3-642-04843-2-31
    • Classification of imbalanced data sets by using the hybrid re-sampling algorithm based on isomap. Gu Q, Cai Z, Ziu L, In LNCS, Adv Comput Intelligence 2009 5821 287 296 10.1007/978-3-642-04843-2-31
    • (2009) LNCS, Adv Comput Intelligence , vol.5821 , pp. 287-296
    • Gu, Q.1    Cai, Z.2    Ziu, L.3
  • 16
    • 79960872876 scopus 로고    scopus 로고
    • Predicting disease risks from highly imbalanced data using random forest
    • 10.1186/1472-6947-11-51 21801360
    • Predicting disease risks from highly imbalanced data using random forest. Khalilia M, Chakraborty S, Popescu M, BMC Med Inform Decis Mak 2011 11 51 10.1186/1472-6947-11-51 21801360
    • (2011) BMC Med Inform Decis Mak , vol.11 , pp. 51
    • Khalilia, M.1    Chakraborty, S.2    Popescu, M.3
  • 17
    • 84874398938 scopus 로고    scopus 로고
    • Improving sensitivity of machine learning methods for automated case identification from free-text electronic medical records
    • 10.1186/1472-6947-13-30 23452306
    • Improving sensitivity of machine learning methods for automated case identification from free-text electronic medical records. Afzal Z, Schuemie MJ, van Blijderveen JC, Sen EF, Sturkenboom MCJM, Kors JA, BMC Med Inform Decis Mak 2013 13 30 10.1186/1472-6947-13-30 23452306
    • (2013) BMC Med Inform Decis Mak , vol.13 , pp. 30
    • Afzal, Z.1    Schuemie, M.J.2    Van Blijderveen, J.C.3    Sen, E.F.4    Sturkenboom, M.5    Kors, J.A.6
  • 20
    • 84971339978 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
    • in press
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Lopez V, Fernández A, García S, Palade V, Herrera F, Inform Sci in press
    • Inform Sci
    • Lopez, V.1    Fernández, A.2    García, S.3    Palade, V.4    Herrera, F.5
  • 24
    • 35148838577 scopus 로고    scopus 로고
    • Applying novel resampling strategies to software defect prediction
    • DOI 10.1109/NAFIPS.2007.383813, 4271036, NAFIPS 2007: 2007 Annual Meeting of the North American Fuzzy Information Processing Society
    • Applying novel resampling strategies to software defect prediction. Pelayo L, Dick S, Proceedings of the annual meeting of the North American fuzzy information processing society San Diego: IEEE 2007 69 72 (Pubitemid 47533936)
    • (2007) Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS , pp. 69-72
    • Pelayo, L.1    Dick, S.2
  • 26
    • 77949543086 scopus 로고    scopus 로고
    • Cost-sensitive learning and the class imbalance problem
    • New York: Springer Sammut C
    • Cost-Sensitive Learning and the Class Imbalance Problem. Ling CX, Sheng VS, Encyclopedia of Machine Learning New York: Springer, Sammut C, 2008
    • (2008) Encyclopedia of Machine Learning
    • Ling, C.X.1    Sheng, V.S.2
  • 32
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • An introduction to variable and feature selection. Guyon I, Elisseeff A, J Mach Learn Res 2003 3 1157 1182
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 37
    • 75149183709 scopus 로고    scopus 로고
    • Virtual screening of bioassay data
    • 10.1186/1758-2946-1-12
    • Virtual screening of bioassay data. Schierz AC, J Cheminformatics 2009 1 12 10.1186/1758-2946-1-12
    • (2009) J Cheminformatics , vol.1 , pp. 12
    • Schierz, A.C.1
  • 39
    • 0035873821 scopus 로고    scopus 로고
    • Logistic regression when binary predictor variables are highly correlated
    • DOI 10.1002/sim.680
    • Logistic regression when binary predictor variables are highly correlated. Barker L, Brown C, Stat Med 2001 20 1431 1442 10.1002/sim.680 11343364 (Pubitemid 32433189)
    • (2001) Statistics in Medicine , vol.20 , Issue.9-10 , pp. 1431-1442
    • Barker, L.1    Brown, C.2
  • 42
    • 84856964446 scopus 로고    scopus 로고
    • Analysis of preprocessing vs cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics
    • 10.1016/j.eswa.2011.12.043
    • Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics. Lopez V, Fernández A, Moreno-Torres JG, Herrera F, Expert Syst Appl 2012 39 6585 6608 10.1016/j.eswa.2011.12.043
    • (2012) Expert Syst Appl , vol.39 , pp. 6585-6608
    • Lopez, V.1    Fernández, A.2    Moreno-Torres, J.G.3    Herrera, F.4
  • 44
    • 78649528598 scopus 로고    scopus 로고
    • Discretization of continuous valued dimensions in OLAP data cubes
    • Discretization of continuous valued dimensions in OLAP data cubes. Palaniappan S, Hong TK, Int J Comput Sci Network Secur 2008 8 116 126
    • (2008) Int J Comput Sci Network Secur , vol.8 , pp. 116-126
    • Palaniappan, S.1    Hong, T.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.