메뉴 건너뛰기




Volumn 41, Issue 4 PART 1, 2014, Pages 1476-1482

Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms

Author keywords

Cancer diagnosis; Data mining; K means; Support vector machine

Indexed keywords

BENIGN AND MALIGNANT TUMORS; BREAST CANCER DIAGNOSIS; CANCER DIAGNOSIS; FEATURE EXTRACTION AND SELECTION; K-MEANS; MACHINE LEARNING REPOSITORY; SUPPORT VECTOR MACHINE ALGORITHM; UNIVERSITY OF CALIFORNIA;

EID: 84888306351     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2013.08.044     Document Type: Article
Times cited : (499)

References (28)
  • 1
    • 56349089940 scopus 로고    scopus 로고
    • Support vector machines combined with feature selection for breast cancer diagnosis
    • M.F. Akay Support vector machines combined with feature selection for breast cancer diagnosis Expert Systems with Applications 36 2009 3240 3247
    • (2009) Expert Systems with Applications , vol.36 , pp. 3240-3247
    • Akay, M.F.1
  • 5
    • 34047138318 scopus 로고    scopus 로고
    • Combining svms with various feature selection strategies
    • Springer Berlin Heidelberg
    • Y.-W. Chen, and C.-J. Lin Combining svms with various feature selection strategies Feature extraction 2006 Springer Berlin Heidelberg 315 324
    • (2006) Feature Extraction , pp. 315-324
    • Chen, Y.-W.1    Lin, C.-J.2
  • 6
    • 0025902445 scopus 로고
    • Symbolic clustering using a new dissimilarity measure
    • DOI 10.1016/0031-3203(91)90022-W
    • K. Chidananda Gowda, and E. Diday Symbolic clustering using a new dissimilarity measure Pattern Recognition 24 1991 567 578 (Pubitemid 21650079)
    • (1991) Pattern Recognition , vol.24 , Issue.6 , pp. 567-578
    • Chidananda Gowda, K.1    Diday, E.2
  • 7
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Machine Learning 20 1995 273 297
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 8
    • 2942723846 scopus 로고    scopus 로고
    • A divisive information theoretic feature clustering algorithm for text classification
    • I.S. Dhillon, S. Mallela, and R. Kumar A divisive information theoretic feature clustering algorithm for text classification The Journal of Machine Learning Research 3 2003 1265 1287
    • (2003) The Journal of Machine Learning Research , vol.3 , pp. 1265-1287
    • Dhillon, I.S.1    Mallela, S.2    Kumar, R.3
  • 11
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • T.S. Furey, N. Cristianini, N. Duffy, D.W. Bednarski, M. Schummer, and D. Haussler Support vector machine classification and validation of cancer tissue samples using microarray expression data Bioinformatics 16 2000 906 914
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 12
    • 34248585875 scopus 로고    scopus 로고
    • Prediction model building and feature selection with support vector machines in breast cancer diagnosis
    • DOI 10.1016/j.eswa.2006.09.041, PII S0957417406003071
    • C.-L. Huang, H.-C. Liao, and M.-C. Chen Prediction model building and feature selection with support vector machines in breast cancer diagnosis Expert Systems with Applications 34 2008 578 587 (Pubitemid 46756285)
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 578-587
    • Huang, C.-L.1    Liao, H.-C.2    Chen, M.-C.3
  • 13
    • 32144443802 scopus 로고    scopus 로고
    • A support vector machine-based method for predicting the propensity of a protein to be soluble or to form inclusion body on overexpression in Escherichia coli
    • DOI 10.1093/bioinformatics/bti810
    • S. Idicula-Thomas, A.J. Kulkarni, B.D. Kulkarni, V.K. Jayaraman, and P.V. Balaji A support vector machine-based method for predicting the propensity of a protein to be soluble or to form inclusion body on overexpression in escherichia coli Bioinformatics 22 2006 278 284 (Pubitemid 43205372)
    • (2006) Bioinformatics , vol.22 , Issue.3 , pp. 278-284
    • Idicula-Thomas, S.1    Kulkarni, A.J.2    Kulkarni, B.D.3    Jayaraman, V.K.4    Balaji, P.V.5
  • 14
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation application and small sample performance
    • A. Jain, and D. Zongker Feature selection: Evaluation, application, and small sample performance IEEE Transactions on Pattern Analysis and Machine Intelligence 19 1997 153 158 (Pubitemid 127828334)
    • (1997) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1
  • 15
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 Years beyond k-means
    • A.K. Jain Data clustering: 50 Years beyond k-means Pattern Recognition Letters 31 2010 651 666
    • (2010) Pattern Recognition Letters , vol.31 , pp. 651-666
    • Jain, A.K.1
  • 17
    • 84863741507 scopus 로고    scopus 로고
    • Breast cancer diagnosis from fine-needle aspiration using supervised compact hyperspheres and establishment of confidence of malignancy
    • Lausanne, Switzerland
    • Mu, T., & Nandi, A. K. (2008). Breast cancer diagnosis from fine-needle aspiration using supervised compact hyperspheres and establishment of confidence of malignancy. The 16th European Signal Processing Conference, EUSIPCO, Lausanne, Switzerland.
    • (2008) 16th European Signal Processing Conference, EUSIPCO
    • Mu, T.1    Nandi, A.K.2
  • 19
    • 0344466786 scopus 로고    scopus 로고
    • A fuzzy-genetic approach to breast cancer diagnosis
    • DOI 10.1016/S0933-3657(99)00019-6, PII S0933365799000196
    • C.A. Pena-Reyes, and M. Sipper A fuzzy-genetic approach to breast cancer diagnosis Artificial Intelligence in Medicine 17 1999 131 155 (Pubitemid 29474991)
    • (1999) Artificial Intelligence in Medicine , vol.17 , Issue.2 , pp. 131-155
    • Pe, C.A.1    Sipper, M.2
  • 20
    • 0003120218 scopus 로고    scopus 로고
    • Sequential minimal optimization: A fast algorithm for training support vector machines
    • MIT Press Cambridge, MA, USA
    • J. Platt Sequential minimal optimization: A fast algorithm for training support vector machines Advances In Kernel Methods - Support Vector Learning 1998 MIT Press Cambridge, MA, USA 185 208
    • (1998) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 21
    • 34249317613 scopus 로고    scopus 로고
    • Breast cancer diagnosis using least square support vector machine
    • DOI 10.1016/j.dsp.2006.10.008, PII S1051200406001461
    • K. Polat, and S. Güneş Breast cancer diagnosis using least square support vector machine Digital Signal Processing 17 2007 694 701 (Pubitemid 46819053)
    • (2007) Digital Signal Processing: A Review Journal , vol.17 , Issue.4 , pp. 694-701
    • Polat, K.1    Gunes, S.2
  • 23
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection
    • W. Siedlecki, and J. Sklansky A note on genetic algorithms for large-scale feature selection Pattern Recognition Letters 10 1989 335 347
    • (1989) Pattern Recognition Letters , vol.10 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 26
    • 84863869313 scopus 로고    scopus 로고
    • A pixel-based color image segmentation using support vector machine and fuzzy c-means
    • X.-Y. Wang, X.-J. Zhang, H.-Y. Yang, and J. Bu A pixel-based color image segmentation using support vector machine and fuzzy c-means Neural Networks 33 2012 148 159
    • (2012) Neural Networks , vol.33 , pp. 148-159
    • Wang, X.-Y.1    Zhang, X.-J.2    Yang, H.-Y.3    Bu, J.4
  • 28
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • DOI 10.1109/TNN.2005.845141
    • R. Xu, and D. Wunsch Survey of clustering algorithms IEEE Transactions on Neural Networks 16 2005 645 678 (Pubitemid 40718010)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch II, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.