메뉴 건너뛰기




Volumn 36, Issue 4, 2009, Pages 8204-8211

A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method

Author keywords

Breast cancer; Classification rules; Discrete particle swarm optimization; Statistical method

Indexed keywords

COMPUTATIONAL COMPLEXITY; DATA MINING; INFORMATION MANAGEMENT; MINING; OPTIMIZATION; POPULATION STATISTICS; STATISTICAL METHODS; STATISTICS;

EID: 60249099439     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.10.004     Document Type: Article
Times cited : (116)

References (24)
  • 1
    • 27144557504 scopus 로고    scopus 로고
    • A PSO and a Tabu search heuristics for the assembly scheduling problem of the two-stage distributed database application
    • Allahverdi A., and Al-Anzi F.S. A PSO and a Tabu search heuristics for the assembly scheduling problem of the two-stage distributed database application. Computers & Operations Research 33 (2006) 1056-1080
    • (2006) Computers & Operations Research , vol.33 , pp. 1056-1080
    • Allahverdi, A.1    Al-Anzi, F.S.2
  • 4
    • 33144490480 scopus 로고    scopus 로고
    • A GAs based approach for mining breast cancer pattern
    • Chen T.-C., and Hsu T.-C. A GAs based approach for mining breast cancer pattern. Expert Systems with Applications 30 4 (2006) 674-681
    • (2006) Expert Systems with Applications , vol.30 , Issue.4 , pp. 674-681
    • Chen, T.-C.1    Hsu, T.-C.2
  • 5
    • 60249091174 scopus 로고    scopus 로고
    • Using a hybrid meta-evolutionary rule mining approach as a classification response model
    • Chen T.-C., and Tsao H.-L. Using a hybrid meta-evolutionary rule mining approach as a classification response model. Expert Systems with Applications (2007)
    • (2007) Expert Systems with Applications
    • Chen, T.-C.1    Tsao, H.-L.2
  • 7
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: A comparison of three data mining methods
    • Delen D., Walker G., and Kadam A. Predicting breast cancer survivability: A comparison of three data mining methods. Artificial Intelligence in Medicine 34 2 (2005) 113-127
    • (2005) Artificial Intelligence in Medicine , vol.34 , Issue.2 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 8
    • 0034863568 scopus 로고    scopus 로고
    • Particle swarm optimization: Developments, application and resources
    • Seoul, South Korea
    • Eberhart, R. C., & Shi, Y. (2001). Particle swarm optimization: Developments, application and resources. In Proceedings of the 2001 congress on evolutionary computation, Seoul, South Korea (Vol. 1, pp. 81-86).
    • (2001) Proceedings of the 2001 congress on evolutionary computation , vol.1 , pp. 81-86
    • Eberhart, R.C.1    Shi, Y.2
  • 9
    • 0034747732 scopus 로고    scopus 로고
    • Breast cancer: Introduction
    • Ingvarsson S. Breast cancer: Introduction. Seminars in Cancer Biology 11 5 (2001) 323-326
    • (2001) Seminars in Cancer Biology , vol.11 , Issue.5 , pp. 323-326
    • Ingvarsson, S.1
  • 10
    • 78650729392 scopus 로고    scopus 로고
    • Rule extraction from trained adaptive neural networks using artificial immune systems
    • Kahramanli H., and Allahverdi N. Rule extraction from trained adaptive neural networks using artificial immune systems. Expert Systems with Applications (2007)
    • (2007) Expert Systems with Applications
    • Kahramanli, H.1    Allahverdi, N.2
  • 11
    • 0036179296 scopus 로고    scopus 로고
    • New paradigms in the treatment of breast and colorectal cancer - an introduction
    • Kaye S. New paradigms in the treatment of breast and colorectal cancer - an introduction. European Journal of Cancer 38 2 (2002) 1-2
    • (2002) European Journal of Cancer , vol.38 , Issue.2 , pp. 1-2
    • Kaye, S.1
  • 15
    • 38349177924 scopus 로고    scopus 로고
    • Data mining with a simulated annealing based fuzzy classification system
    • Mohamadi H., Habibi J., Saniee Abadeh M., and Saadi H. Data mining with a simulated annealing based fuzzy classification system. Pattern Recognition 41 5 (2008) 1824-1833
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1824-1833
    • Mohamadi, H.1    Habibi, J.2    Saniee Abadeh, M.3    Saadi, H.4
  • 19
    • 33845415542 scopus 로고    scopus 로고
    • Cancer gene search with data-mining and genetic algorithms
    • Shah S., and Kusiak A. Cancer gene search with data-mining and genetic algorithms. Computers in Biology and Medicine 37 2 (2007) 251-261
    • (2007) Computers in Biology and Medicine , vol.37 , Issue.2 , pp. 251-261
    • Shah, S.1    Kusiak, A.2
  • 20
    • 2642563714 scopus 로고    scopus 로고
    • Particle swarm based data mining algorithms for classification tasks
    • Sousa T., Silva A., and Neves A. Particle swarm based data mining algorithms for classification tasks. Parallel Computing 30 5-6 (2004) 767-783
    • (2004) Parallel Computing , vol.30 , Issue.5-6 , pp. 767-783
    • Sousa, T.1    Silva, A.2    Neves, A.3
  • 21
    • 2642563714 scopus 로고    scopus 로고
    • Particle swarm based data mining algorithms for classification tasks
    • Sousa T.F., Silva A.P., and Silva A.F. Particle swarm based data mining algorithms for classification tasks. Parallel Computing 30 5-6 (2004) 767-783
    • (2004) Parallel Computing , vol.30 , Issue.5-6 , pp. 767-783
    • Sousa, T.F.1    Silva, A.P.2    Silva, A.F.3
  • 22
    • 0037475094 scopus 로고    scopus 로고
    • The particle swarm optimization algorithm: Convergence analysis and parameter selection
    • Trelea I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Information Processing Letter 85 (2003) 317-325
    • (2003) Information Processing Letter , vol.85 , pp. 317-325
    • Trelea, I.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.