메뉴 건너뛰기




Volumn 198, Issue 8, 2016, Pages 1186-1195

Minicells, back in fashion

Author keywords

[No Author keywords available]

Indexed keywords

CELL DIVISION; CHEMORECEPTOR; CHEMOTAXIS; CONFORMATIONAL TRANSITION; CORYNEBACTERIUM GLUTAMICUM; DNA TRANSFER; ELECTRON TOMOGRAPHY; ESCHERICHIA COLI; NONHUMAN; PRIORITY JOURNAL; PROTEIN SECRETION; PSEUDOMONAS AERUGINOSA; SALMONELLA ENTERICA; SHORT SURVEY; TYPE III SECRETION SYSTEM; CELLS; CHEMISTRY; CRYOELECTRON MICROSCOPY; LABORATORY TECHNIQUE; MACROMOLECULE; PROCEDURES; ULTRASTRUCTURE;

EID: 84963853633     PISSN: 00219193     EISSN: 10985530     Source Type: Journal    
DOI: 10.1128/JB.00901-15     Document Type: Short Survey
Times cited : (66)

References (110)
  • 1
    • 0032489015 scopus 로고    scopus 로고
    • The cell as a collection of protein machines: preparing the next generation of molecular biologists
    • Alberts B. 1998. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92:291-294. http://dx.doi.org/10.1016/S0092-8674(00)80922-8.
    • (1998) Cell , vol.92 , pp. 291-294
    • Alberts, B.1
  • 2
    • 84884239080 scopus 로고    scopus 로고
    • Cryo-electron tomography: the challenge of doing structural biology in situ
    • Lučič V, Rigort A, Baumeister W. 2013. Cryo-electron tomography: the challenge of doing structural biology in situ. J Cell Biol 202:407-419. http://dx.doi.org/10.1083/jcb.201304193.
    • (2013) J Cell Biol , vol.202 , pp. 407-419
    • Lučič, V.1    Rigort, A.2    Baumeister, W.3
  • 4
    • 84928400353 scopus 로고    scopus 로고
    • Single-particle cryo-EM at crystallographic resolution
    • Cheng Y. 2015. Single-particle cryo-EM at crystallographic resolution. Cell 161:450-457. http://dx.doi.org/10.1016/j.cell.2015.03.049.
    • (2015) Cell , vol.161 , pp. 450-457
    • Cheng, Y.1
  • 5
    • 84894276173 scopus 로고    scopus 로고
    • High-resolution cryo-electron microscopy on macromolecular complexes and cell organelles
    • Hoenger A. 2014. High-resolution cryo-electron microscopy on macromolecular complexes and cell organelles. Protoplasma 251:417-427. http://dx.doi.org/10.1007/s00709-013-0600-1.
    • (2014) Protoplasma , vol.251 , pp. 417-427
    • Hoenger, A.1
  • 6
    • 84904295262 scopus 로고    scopus 로고
    • Molecular architecture of the bacterial flagellar motor in cells
    • Zhao X, Norris SJ, Liu J. 2014. Molecular architecture of the bacterial flagellar motor in cells. Biochemistry 53:4323-4333. http://dx.doi.org/10.1021/bi500059y.
    • (2014) Biochemistry , vol.53 , pp. 4323-4333
    • Zhao, X.1    Norris, S.J.2    Liu, J.3
  • 7
    • 69249213558 scopus 로고    scopus 로고
    • Cryo-electron tomography of bacteria: progress, challenges and future prospects
    • Milne JL, Subramaniam S. 2009. Cryo-electron tomography of bacteria: progress, challenges and future prospects. Nat Rev Microbiol 7:666-675. http://dx.doi.org/10.1038/nrmicro2183.
    • (2009) Nat Rev Microbiol , vol.7 , pp. 666-675
    • Milne, J.L.1    Subramaniam, S.2
  • 8
    • 66349121016 scopus 로고    scopus 로고
    • Electron cryotomography: a new view into microbial ultrastructure
    • Li Z, Jensen GJ. 2009. Electron cryotomography: a new view into microbial ultrastructure. Curr Opin Microbiol 12:333-340. http://dx.doi.org/10.1016/j.mib.2009.03.007.
    • (2009) Curr Opin Microbiol , vol.12 , pp. 333-340
    • Li, Z.1    Jensen, G.J.2
  • 9
    • 84867870229 scopus 로고    scopus 로고
    • Advances in tomography: probing the molecular architecture of cells
    • Fridman K, Mader A, Zwerger M, Elia N, Medalia O. 2012. Advances in tomography: probing the molecular architecture of cells. Nat Rev Mol Cell Biol 13:736-742. http://dx.doi.org/10.1038/nrm3453.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 736-742
    • Fridman, K.1    Mader, A.2    Zwerger, M.3    Elia, N.4    Medalia, O.5
  • 11
    • 34247261989 scopus 로고    scopus 로고
    • Direct visualization of Escherichia coli chemotaxis receptor arrays using cryoelectron microscopy
    • Zhang P, Khursigara CM, Hartnell LM, Subramaniam S. 2007. Direct visualization of Escherichia coli chemotaxis receptor arrays using cryoelectron microscopy. Proc Natl Acad Sci U S A 104:3777-3781. http://dx.doi.org/10.1073/pnas.0610106104.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 3777-3781
    • Zhang, P.1    Khursigara, C.M.2    Hartnell, L.M.3    Subramaniam, S.4
  • 12
    • 12344274281 scopus 로고    scopus 로고
    • Cryo-electron tomography reveals the cytoskeletal structure of Spiroplasma melliferum
    • Kürner J, Frangakis AS, Baumeister W. 2005. Cryo-electron tomography reveals the cytoskeletal structure of Spiroplasma melliferum. Science 307:436-438. http://dx.doi.org/10.1126/science.1104031.
    • (2005) Science , vol.307 , pp. 436-438
    • Kürner, J.1    Frangakis, A.S.2    Baumeister, W.3
  • 13
    • 33644763960 scopus 로고    scopus 로고
    • An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria
    • Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schüler D. 2006. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110-114. http://dx.doi.org/10.1038/nature04382.
    • (2006) Nature , vol.440 , pp. 110-114
    • Scheffel, A.1    Gruska, M.2    Faivre, D.3    Linaroudis, A.4    Plitzko, J.M.5    Schüler, D.6
  • 14
    • 30844471175 scopus 로고    scopus 로고
    • Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK
    • Komeili A, Li Z, Newman DK, Jensen GJ. 2006. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242-245. http://dx.doi.org/10.1126/science.1123231.
    • (2006) Science , vol.311 , pp. 242-245
    • Komeili, A.1    Li, Z.2    Newman, D.K.3    Jensen, G.J.4
  • 15
    • 35048829921 scopus 로고    scopus 로고
    • Cell surface filaments of the gliding bacterium Flavobacterium johnsoniae revealed by cryo-electron tomography
    • Liu J, McBride MJ, Subramaniam S. 2007. Cell surface filaments of the gliding bacterium Flavobacterium johnsoniae revealed by cryo-electron tomography. J Bacteriol 189:7503-7506. http://dx.doi.org/10.1128/JB.00957-07.
    • (2007) J Bacteriol , vol.189 , pp. 7503-7506
    • Liu, J.1    McBride, M.J.2    Subramaniam, S.3
  • 16
    • 33748295677 scopus 로고    scopus 로고
    • In situ structure of the complete Treponema primitia flagellar motor
    • Murphy GE, Leadbetter JR, Jensen GJ. 2006. In situ structure of the complete Treponema primitia flagellar motor. Nature 442:1062-1064. http://dx.doi.org/10.1038/nature05015.
    • (2006) Nature , vol.442 , pp. 1062-1064
    • Murphy, G.E.1    Leadbetter, J.R.2    Jensen, G.J.3
  • 17
    • 67749093018 scopus 로고    scopus 로고
    • Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion
    • Liu J, Lin T, Botkin DJ, McCrum E, Winkler H, Norris SJ. 2009. Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. J Bacteriol 191:5026-5036. http://dx.doi.org/10.1128/JB.00340-09.
    • (2009) J Bacteriol , vol.191 , pp. 5026-5036
    • Liu, J.1    Lin, T.2    Botkin, D.J.3    McCrum, E.4    Winkler, H.5    Norris, S.J.6
  • 21
    • 84990997649 scopus 로고    scopus 로고
    • Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division
    • Szwedziak P, Wang Q, Bharat TA, Tsim M, Lowe J. 2014. Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. eLife 3:e04601. http://dx.doi.org/10.7554/eLife.04601.
    • (2014) eLife , vol.3
    • Szwedziak, P.1    Wang, Q.2    Bharat, T.A.3    Tsim, M.4    Lowe, J.5
  • 22
    • 36248938686 scopus 로고    scopus 로고
    • The structure of FtsZ filaments in vivo suggests a force-generating role in cell division
    • Li Z, Trimble MJ, Brun YV, Jensen GJ. 2007. The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26:4694-4708. http://dx.doi.org/10.1038/sj.emboj.7601895.
    • (2007) EMBO J , vol.26 , pp. 4694-4708
    • Li, Z.1    Trimble, M.J.2    Brun, Y.V.3    Jensen, G.J.4
  • 27
    • 58649114723 scopus 로고    scopus 로고
    • The flat-ribbon configuration of the periplasmic flagella of Borrelia burgdorferi and its relationship to motility and morphology
    • Charon NW, Goldstein SF, Marko M, Hsieh C, Gebhardt LL, Motaleb MA, Wolgemuth CW, Limberger RJ, Rowe N. 2009. The flat-ribbon configuration of the periplasmic flagella of Borrelia burgdorferi and its relationship to motility and morphology. J Bacteriol 191:600-607. http://dx.doi.org/10.1128/JB.01288-08.
    • (2009) J Bacteriol , vol.191 , pp. 600-607
    • Charon, N.W.1    Goldstein, S.F.2    Marko, M.3    Hsieh, C.4    Gebhardt, L.L.5    Motaleb, M.A.6    Wolgemuth, C.W.7    Limberger, R.J.8    Rowe, N.9
  • 28
    • 68449102172 scopus 로고    scopus 로고
    • Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans
    • Malmström J, Beck M, Schmidt A, Lange V, Deutsch EW, Aebersold R. 2009. Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 460:762-765. http://dx.doi.org/10.1038/nature08184.
    • (2009) Nature , vol.460 , pp. 762-765
    • Malmström, J.1    Beck, M.2    Schmidt, A.3    Lange, V.4    Deutsch, E.W.5    Aebersold, R.6
  • 30
    • 84914158725 scopus 로고    scopus 로고
    • Controlled bacterial lysis for electron tomography of native cell membranes
    • Fu X, Himes BA, Ke D, Rice WJ, Ning J, Zhang P. 2014. Controlled bacterial lysis for electron tomography of native cell membranes. Structure 22:1875-1882. http://dx.doi.org/10.1016/j.str.2014.09.017.
    • (2014) Structure , vol.22 , pp. 1875-1882
    • Fu, X.1    Himes, B.A.2    Ke, D.3    Rice, W.J.4    Ning, J.5    Zhang, P.6
  • 31
    • 4444279375 scopus 로고    scopus 로고
    • Cryo-electron microscopy of vitreous sections of native biological cells and tissues
    • Al-Amoudi A, Norlen LP, Dubochet J. 2004. Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J Struct Biol 148:131-135. http://dx.doi.org/10.1016/j.jsb.2004.03.010.
    • (2004) J Struct Biol , vol.148 , pp. 131-135
    • Al-Amoudi, A.1    Norlen, L.P.2    Dubochet, J.3
  • 33
    • 33847685630 scopus 로고    scopus 로고
    • Focusedion-beam thinning of frozen-hydrated biological specimens for cryoelectron microscopy
    • Marko M, Hsieh C, Schalek R, Frank J, Mannella C. 2007. Focusedion-beam thinning of frozen-hydrated biological specimens for cryoelectron microscopy. Nat Methods 4:215-217. http://dx.doi.org/10.1038/nmeth1014.
    • (2007) Nat Methods , vol.4 , pp. 215-217
    • Marko, M.1    Hsieh, C.2    Schalek, R.3    Frank, J.4    Mannella, C.5
  • 34
    • 84939269331 scopus 로고    scopus 로고
    • Cryo-focused-ion-beam applications in structural biology
    • Rigort A, Plitzko JM. 2015. Cryo-focused-ion-beam applications in structural biology. Arch Biochem Biophys 581:122-130. http://dx.doi.org/10.1016/j.abb.2015.02.009.
    • (2015) Arch Biochem Biophys , vol.581 , pp. 122-130
    • Rigort, A.1    Plitzko, J.M.2
  • 35
    • 84885847209 scopus 로고    scopus 로고
    • Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography
    • Villa E, Schaffer M, Plitzko JM, Baumeister W. 2013. Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Curr Opin Struct Biol 23:771-777. http://dx.doi.org/10.1016/j.sbi.2013.08.006.
    • (2013) Curr Opin Struct Biol , vol.23 , pp. 771-777
    • Villa, E.1    Schaffer, M.2    Plitzko, J.M.3    Baumeister, W.4
  • 36
    • 15444366581 scopus 로고    scopus 로고
    • Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy
    • Al-Amoudi A, Studer D, Dubochet J. 2005. Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy. J Struct Biol 150:109-121. http://dx.doi.org/10.1016/j.jsb.2005.01.003.
    • (2005) J Struct Biol , vol.150 , pp. 109-121
    • Al-Amoudi, A.1    Studer, D.2    Dubochet, J.3
  • 37
    • 0016421545 scopus 로고
    • Production, properties and utility of bacterial minicells
    • Frazer AC, Curtiss R, III. 1975. Production, properties and utility of bacterial minicells. Curr Top Microbiol Immunol 69:1-84.
    • (1975) Curr Top Microbiol Immunol , vol.69 , pp. 1-84
    • Frazer, A.C.1    Curtiss, R.2
  • 40
    • 84928106932 scopus 로고    scopus 로고
    • Generation of minicells from an endotoxin-free Gram-positive strain Corynebacterium glutamicum
    • Lee JY, Choy HE, Lee JH, Kim GJ. 2015. Generation of minicells from an endotoxin-free Gram-positive strain Corynebacterium glutamicum. J Microbiol Biotechnol 25:554-558. http://dx.doi.org/10.4014/jmb.1408.08037.
    • (2015) J Microbiol Biotechnol , vol.25 , pp. 554-558
    • Lee, J.Y.1    Choy, H.E.2    Lee, J.H.3    Kim, G.J.4
  • 41
    • 84875852406 scopus 로고    scopus 로고
    • Engineering the type III secretion system in non-replicating bacterial minicells for antigen delivery
    • Carleton HA, Lara-Tejero M, Liu X, Galán JE. 2013. Engineering the type III secretion system in non-replicating bacterial minicells for antigen delivery. Nat Commun 4:1590. http://dx.doi.org/10.1038/ncomms2594.
    • (2013) Nat Commun , vol.4 , pp. 1590
    • Carleton, H.A.1    Lara-Tejero, M.2    Liu, X.3    Galán, J.E.4
  • 42
    • 0020682080 scopus 로고
    • Characterization of virulence plasmids and plasmid-associated outer membrane proteins in Shigella flexneri, Shigella sonnei, and Escherichia coli
    • Hale TL, Sansonetti PJ, Schad PA, Austin S, Formal SB. 1983. Characterization of virulence plasmids and plasmid-associated outer membrane proteins in Shigella flexneri, Shigella sonnei, and Escherichia coli. Infect Immun 40:340-350.
    • (1983) Infect Immun , vol.40 , pp. 340-350
    • Hale, T.L.1    Sansonetti, P.J.2    Schad, P.A.3    Austin, S.4    Formal, S.B.5
  • 43
    • 0024977391 scopus 로고
    • A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli
    • de Boer PA, Crossley RE, Rothfield LI. 1989. A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56:641-649. http://dx.doi.org/10.1016/0092-8674(89)90586-2.
    • (1989) Cell , vol.56 , pp. 641-649
    • de Boer, P.A.1    Crossley, R.E.2    Rothfield, L.I.3
  • 44
    • 84879940579 scopus 로고    scopus 로고
    • The bacterial Min system
    • Rowlett VW, Margolin W. 2013. The bacterial Min system. Curr Biol 23:R553-556. http://dx.doi.org/10.1016/j.cub.2013.05.024.
    • (2013) Curr Biol , vol.23 , pp. R553-R556
    • Rowlett, V.W.1    Margolin, W.2
  • 45
    • 30544445654 scopus 로고    scopus 로고
    • Spatial control of bacterial division-site placement
    • Rothfield L, Taghbalout A, Shih YL. 2005. Spatial control of bacterial division-site placement. Nat Rev Microbiol 3:959-968. http://dx.doi.org/10.1038/nrmicro1290.
    • (2005) Nat Rev Microbiol , vol.3 , pp. 959-968
    • Rothfield, L.1    Taghbalout, A.2    Shih, Y.L.3
  • 46
    • 84931260885 scopus 로고    scopus 로고
    • The Min system and other nucleoidindependent regulators of Z ring positioning
    • Rowlett VW, Margolin W. 2015. The Min system and other nucleoidindependent regulators of Z ring positioning. Front Microbiol 6:478. http://dx.doi.org/10.3389/fmicb.2015.00478.
    • (2015) Front Microbiol , vol.6 , pp. 478
    • Rowlett, V.W.1    Margolin, W.2
  • 47
    • 84926291477 scopus 로고    scopus 로고
    • Bacterial actin and tubulin homologs in cell growth and division
    • Busiek KK, Margolin W. 2015. Bacterial actin and tubulin homologs in cell growth and division. Curr Biol 25:R243-R254. http://dx.doi.org/10.1016/j.cub.2015.01.030.
    • (2015) Curr Biol , vol.25 , pp. R243-R254
    • Busiek, K.K.1    Margolin, W.2
  • 48
    • 84867995401 scopus 로고    scopus 로고
    • Bacterial cytokinesis: from Z ring to divisome
    • Lutkenhaus J, Pichoff S, Du S. 2012. Bacterial cytokinesis: from Z ring to divisome. Cytoskeleton (Hoboken) 69:778-790. http://dx.doi.org/10.1002/cm.21054.
    • (2012) Cytoskeleton (Hoboken) , vol.69 , pp. 778-790
    • Lutkenhaus, J.1    Pichoff, S.2    Du, S.3
  • 49
    • 0032743092 scopus 로고    scopus 로고
    • MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli
    • Raskin DM, de Boer PA. 1999. MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J Bacteriol 181: 6419-6424.
    • (1999) J Bacteriol , vol.181 , pp. 6419-6424
    • Raskin, D.M.1    de Boer, P.A.2
  • 50
    • 0033592949 scopus 로고    scopus 로고
    • The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization
    • Hu Z, Mukherjee A, Pichoff S, Lutkenhaus J. 1999. The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc Natl Acad SciUSA96:14819-14824. http://dx.doi.org/10.1073/pnas.96.26.14819.
    • (1999) Proc Natl Acad SciUSA , vol.96 , pp. 14819-14824
    • Hu, Z.1    Mukherjee, A.2    Pichoff, S.3    Lutkenhaus, J.4
  • 51
    • 0035807879 scopus 로고    scopus 로고
    • Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site
    • Meinhardt H, de Boer PA. 2001. Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proc Natl Acad Sci U S A 98:14202-14207. http://dx.doi.org/10.1073/pnas.251216598.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 14202-14207
    • Meinhardt, H.1    de Boer, P.A.2
  • 52
    • 0032895234 scopus 로고    scopus 로고
    • FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization
    • Yu XC, Margolin W. 1999. FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization. Mol Microbiol 32:315-326. http://dx.doi.org/10.1046/j.1365-2958.1999.01351.x.
    • (1999) Mol Microbiol , vol.32 , pp. 315-326
    • Yu, X.C.1    Margolin, W.2
  • 53
    • 0030876575 scopus 로고    scopus 로고
    • The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division
    • Edwards DH, Errington J. 1997. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol Microbiol 24:905-915. http://dx.doi.org/10.1046/j.1365-2958.1997.3811764.x.
    • (1997) Mol Microbiol , vol.24 , pp. 905-915
    • Edwards, D.H.1    Errington, J.2
  • 54
    • 71549130716 scopus 로고    scopus 로고
    • Division site selection in rod-shaped bacteria
    • Bramkamp M, van Baarle S. 2009. Division site selection in rod-shaped bacteria. Curr Opin Microbiol 12:683-688. http://dx.doi.org/10.1016/j.mib.2009.10.002.
    • (2009) Curr Opin Microbiol , vol.12 , pp. 683-688
    • Bramkamp, M.1    van Baarle, S.2
  • 56
    • 0026768828 scopus 로고
    • Identification of Bacillus subtilis genes for septum placement and shape determination
    • Levin PA, Margolis PS, Setlow P, Losick R, Sun D. 1992. Identification of Bacillus subtilis genes for septum placement and shape determination. J Bacteriol 174:6717-6728.
    • (1992) J Bacteriol , vol.174 , pp. 6717-6728
    • Levin, P.A.1    Margolis, P.S.2    Setlow, P.3    Losick, R.4    Sun, D.5
  • 57
    • 84911981187 scopus 로고    scopus 로고
    • A function of DivIVA in Listeria monocytogenes division site selection
    • Kaval KG, Rismondo J, Halbedel S. 2014. A function of DivIVA in Listeria monocytogenes division site selection. Mol Microbiol 94:637-654. http://dx.doi.org/10.1111/mmi.12784.
    • (2014) Mol Microbiol , vol.94 , pp. 637-654
    • Kaval, K.G.1    Rismondo, J.2    Halbedel, S.3
  • 58
    • 0022137060 scopus 로고
    • Overproduction of FtsZ induces minicell formation in E. coli
    • Ward JE, Jr, Lutkenhaus J. 1985. Overproduction of FtsZ induces minicell formation in E. coli. Cell 42:941-949. http://dx.doi.org/10.1016/0092-8674(85)90290-9.
    • (1985) Cell , vol.42 , pp. 941-949
    • Ward, J.E.1    Lutkenhaus, J.2
  • 59
    • 84872377408 scopus 로고    scopus 로고
    • Identifying how bacterial cells find their middle: a new perspective
    • Monahan LG, Harry EJ. 2013. Identifying how bacterial cells find their middle: a new perspective. Mol Microbiol 87:231-234. http://dx.doi.org/10.1111/mmi.12114.
    • (2013) Mol Microbiol , vol.87 , pp. 231-234
    • Monahan, L.G.1    Harry, E.J.2
  • 61
    • 80051941010 scopus 로고    scopus 로고
    • Visualization of bacteriophage P1 infection by cryo-electron tomography of tiny Escherichia coli
    • Liu J, Chen CY, Shiomi D, Niki H, Margolin W. 2011. Visualization of bacteriophage P1 infection by cryo-electron tomography of tiny Escherichia coli. Virology 417:304-311. http://dx.doi.org/10.1016/j.virol.2011.06.005.
    • (2011) Virology , vol.417 , pp. 304-311
    • Liu, J.1    Chen, C.Y.2    Shiomi, D.3    Niki, H.4    Margolin, W.5
  • 62
    • 0035089132 scopus 로고    scopus 로고
    • Cytoplasmic RNA polymerase in Escherichia coli
    • Shepherd N, Dennis P, Bremer H. 2001. Cytoplasmic RNA polymerase in Escherichia coli. J Bacteriol 183:2527-2534. http://dx.doi.org/10.1128/JB.183.8.2527-2534.2001.
    • (2001) J Bacteriol , vol.183 , pp. 2527-2534
    • Shepherd, N.1    Dennis, P.2    Bremer, H.3
  • 63
    • 84937635648 scopus 로고    scopus 로고
    • Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update
    • Parkinson JS, Hazelbauer GL, Falke JJ. 2015. Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol 23:257-266. http://dx.doi.org/10.1016/j.tim.2015.03.003.
    • (2015) Trends Microbiol , vol.23 , pp. 257-266
    • Parkinson, J.S.1    Hazelbauer, G.L.2    Falke, J.J.3
  • 64
    • 84937629952 scopus 로고    scopus 로고
    • Positioning of bacterial chemoreceptors
    • Jones CW, Armitage JP. 2015. Positioning of bacterial chemoreceptors. Trends Microbiol 23:247-256. http://dx.doi.org/10.1016/j.tim.2015.03.004.
    • (2015) Trends Microbiol , vol.23 , pp. 247-256
    • Jones, C.W.1    Armitage, J.P.2
  • 65
    • 84863229607 scopus 로고    scopus 로고
    • Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins
    • Briegel A, Li X, Bilwes AM, Hughes KT, Jensen GJ, Crane BR. 2012. Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proc Natl Acad Sci U S A 109:3766-3771. http://dx.doi.org/10.1073/pnas.1115719109.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 3766-3771
    • Briegel, A.1    Li, X.2    Bilwes, A.M.3    Hughes, K.T.4    Jensen, G.J.5    Crane, B.R.6
  • 66
    • 84861889025 scopus 로고    scopus 로고
    • Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells
    • Liu J, Hu B, Morado DR, Jani S, Manson MD, Margolin W. 2012. Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc Natl Acad Sci U S A 109: E1481-1488. http://dx.doi.org/10.1073/pnas.1200781109.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. E1481-E1488
    • Liu, J.1    Hu, B.2    Morado, D.R.3    Jani, S.4    Manson, M.D.5    Margolin, W.6
  • 67
    • 84941670513 scopus 로고    scopus 로고
    • Type III secretion systems: the bacterial flagellum and the injectisome
    • Diepold A, Armitage JP. 2015. Type III secretion systems: the bacterial flagellum and the injectisome. Philos Trans R Soc Lond B Biol Sci 370: 20150020. http://dx.doi.org/10.1098/rstb.2015.0020.
    • (2015) Philos Trans R Soc Lond B Biol Sci , vol.370
    • Diepold, A.1    Armitage, J.P.2
  • 69
    • 84907563228 scopus 로고    scopus 로고
    • Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells
    • Galán JE, Lara-Tejero M, Marlovits TC, Wagner S. 2014. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 68:415-438. http://dx.doi.org/10.1146/annurev-micro-092412-155725.
    • (2014) Annu Rev Microbiol , vol.68 , pp. 415-438
    • Galán, J.E.1    Lara-Tejero, M.2    Marlovits, T.C.3    Wagner, S.4
  • 70
    • 43849098574 scopus 로고    scopus 로고
    • Coordinating assembly of a bacterial macromolecular machine
    • Chevance FFV, Hughes KT. 2008. Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6:455-465. http://dx.doi.org/10.1038/nrmicro1887.
    • (2008) Nat Rev Microbiol , vol.6 , pp. 455-465
    • Chevance, F.F.V.1    Hughes, K.T.2
  • 71
    • 0041673353 scopus 로고    scopus 로고
    • The rotary motor of bacterial flagella
    • Berg HC. 2003. The rotary motor of bacterial flagella. Annu Rev Biochem 72:19-54. http://dx.doi.org/10.1146/annurev.biochem.72.121801.161737.
    • (2003) Annu Rev Biochem , vol.72 , pp. 19-54
    • Berg, H.C.1
  • 72
    • 0242693166 scopus 로고    scopus 로고
    • How bacteria assemble flagella
    • Macnab RM. 2003. How bacteria assemble flagella. Annu Rev Microbiol 57:77-100. http://dx.doi.org/10.1146/annurev.micro.57.030502.090832.
    • (2003) Annu Rev Microbiol , vol.57 , pp. 77-100
    • Macnab, R.M.1
  • 73
    • 79952262440 scopus 로고    scopus 로고
    • Three-dimensional model of Salmonella's needle complex at subnanometer resolution
    • Schraidt O, Marlovits TC. 2011. Three-dimensional model of Salmonella's needle complex at subnanometer resolution. Science 331:1192-1195. http://dx.doi.org/10.1126/science.1199358.
    • (2011) Science , vol.331 , pp. 1192-1195
    • Schraidt, O.1    Marlovits, T.C.2
  • 74
    • 33749608423 scopus 로고    scopus 로고
    • The threedimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium
    • Thomas DR, Francis NR, Xu C, DeRosier DJ. 2006. The threedimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J Bacteriol 188:7039-7048. http://dx.doi.org/10.1128/JB.00552-06.
    • (2006) J Bacteriol , vol.188 , pp. 7039-7048
    • Thomas, D.R.1    Francis, N.R.2    Xu, C.3    DeRosier, D.J.4
  • 76
    • 0025837193 scopus 로고
    • A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica
    • Kaniga K, Delor I, Cornelis GR. 1991. A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene 109:137-141. http://dx.doi.org/10.1016/0378-1119(91)90599-7.
    • (1991) Gene , vol.109 , pp. 137-141
    • Kaniga, K.1    Delor, I.2    Cornelis, G.R.3
  • 79
    • 79952280754 scopus 로고    scopus 로고
    • A sorting platform determines the order of protein secretion in bacterial type III systems
    • Lara-Tejero M, Kato J, Wagner S, Liu X, Galán JE. 2011. A sorting platform determines the order of protein secretion in bacterial type III systems. Science 331:1188-1191. http://dx.doi.org/10.1126/science.1201476.
    • (2011) Science , vol.331 , pp. 1188-1191
    • Lara-Tejero, M.1    Kato, J.2    Wagner, S.3    Liu, X.4    Galán, J.E.5
  • 80
    • 34147123766 scopus 로고    scopus 로고
    • DNA packaging and delivery machines in tailed bacteriophages
    • Johnson JE, Chiu W. 2007. DNA packaging and delivery machines in tailed bacteriophages. Curr Opin Struct Biol 17:237-243. http://dx.doi.org/10.1016/j.sbi.2007.03.011.
    • (2007) Curr Opin Struct Biol , vol.17 , pp. 237-243
    • Johnson, J.E.1    Chiu, W.2
  • 82
    • 0014095550 scopus 로고
    • The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. I. Attachment and penetration
    • Simon LD, Anderson TF. 1967. The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. I. Attachment and penetration. Virology 32:279-297.
    • (1967) Virology , vol.32 , pp. 279-297
    • Simon, L.D.1    Anderson, T.F.2
  • 83
    • 0014098795 scopus 로고
    • The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. II. Structure and function of the baseplate
    • Simon LD, Anderson TF. 1967. The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. II. Structure and function of the baseplate. Virology 32:298-305.
    • (1967) Virology , vol.32 , pp. 298-305
    • Simon, L.D.1    Anderson, T.F.2
  • 85
    • 77956892290 scopus 로고    scopus 로고
    • Visualizing the structural changes of bacteriophage Epsilon15 and its Salmonella host during infection
    • Chang JT, Schmid MF, Haase-Pettingell C, Weigele PR, King JA, Chiu W. 2010. Visualizing the structural changes of bacteriophage Epsilon15 and its Salmonella host during infection. J Mol Biol 402:731-740. http://dx.doi.org/10.1016/j.jmb.2010.07.058.
    • (2010) J Mol Biol , vol.402 , pp. 731-740
    • Chang, J.T.1    Schmid, M.F.2    Haase-Pettingell, C.3    Weigele, P.R.4    King, J.A.5    Chiu, W.6
  • 86
    • 0001399793 scopus 로고
    • Bacteriophage P1
    • Calendar R (ed), 2nd ed. Plenum Press, New York, NY
    • Yarmolinsky MS N. 1988. Bacteriophage P1. In Calendar R (ed), The bacteriophages, vol 1, 2nd ed. Plenum Press, New York, NY.
    • (1988) The bacteriophages , vol.1
    • Yarmolinsky, M.S.N.1
  • 87
    • 84858166155 scopus 로고    scopus 로고
    • Short noncontractile tail machines: adsorption and DNA delivery by podoviruses
    • Casjens SR, Molineux IJ. 2012. Short noncontractile tail machines: adsorption and DNA delivery by podoviruses. Adv Exp Med Biol 726: 143-179. http://dx.doi.org/10.1007/978-1-4614-0980-9_7.
    • (2012) Adv Exp Med Biol , vol.726 , pp. 143-179
    • Casjens, S.R.1    Molineux, I.J.2
  • 88
    • 84873097195 scopus 로고    scopus 로고
    • The bacteriophage T7 virion undergoes extensive structural remodeling during infection
    • Hu B, Margolin W, Molineux IJ, Liu J. 2013. The bacteriophage T7 virion undergoes extensive structural remodeling during infection. Science 339:576-579. http://dx.doi.org/10.1126/science.1231887.
    • (2013) Science , vol.339 , pp. 576-579
    • Hu, B.1    Margolin, W.2    Molineux, I.J.3    Liu, J.4
  • 89
    • 27744572947 scopus 로고    scopus 로고
    • Maturation of phage T7 involves structural modification of both shell and inner core components
    • Agirrezabala X, Martin-Benito J, Caston JR, Miranda R, Valpuesta JM, Carrascosa JL. 2005. Maturation of phage T7 involves structural modification of both shell and inner core components. EMBO J 24:3820-3829. http://dx.doi.org/10.1038/sj.emboj.7600840.
    • (2005) EMBO J , vol.24 , pp. 3820-3829
    • Agirrezabala, X.1    Martin-Benito, J.2    Caston, J.R.3    Miranda, R.4    Valpuesta, J.M.5    Carrascosa, J.L.6
  • 91
    • 0016529552 scopus 로고
    • The gene H spike protein of bacteriophages phiX174 and S13. I. Functions in phagereceptor recognition and in transfection
    • Jazwinski SM, Lindberg AA, Kornberg A. 1975. The gene H spike protein of bacteriophages phiX174 and S13. I. Functions in phagereceptor recognition and in transfection. Virology 66:283-293.
    • (1975) Virology , vol.66 , pp. 283-293
    • Jazwinski, S.M.1    Lindberg, A.A.2    Kornberg, A.3
  • 92
    • 84941011872 scopus 로고    scopus 로고
    • Structural remodeling of bacteriophage T4 and host membranes during infection initiation
    • Hu B, Margolin W, Molineux IJ, Liu J. 2015. Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc Natl Acad Sci U S A 112:E4919-E4928. http://dx.doi.org/10.1073/pnas.1501064112.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , pp. E4919-E4928
    • Hu, B.1    Margolin, W.2    Molineux, I.J.3    Liu, J.4
  • 93
    • 0000346055 scopus 로고
    • Recognition, attachment, and injection
    • Karam JD, Kreuzer KN, Hall DH (ed). ASM Press, Washington, DC
    • Goldberg E, Grinius L, Letellier L. 1994. Recognition, attachment, and injection. In Karam JD, Kreuzer KN, Hall DH (ed), Molecular biology of bacteriophage T4. ASM Press, Washington, DC.
    • (1994) Molecular biology of bacteriophage T4
    • Goldberg, E.1    Grinius, L.2    Letellier, L.3
  • 94
    • 70849086538 scopus 로고    scopus 로고
    • Why and how bacteria localize proteins
    • Shapiro L, McAdams HH, Losick R. 2009. Why and how bacteria localize proteins. Science 326:1225-1228. http://dx.doi.org/10.1126/science.1175685.
    • (2009) Science , vol.326 , pp. 1225-1228
    • Shapiro, L.1    McAdams, H.H.2    Losick, R.3
  • 95
    • 84891509603 scopus 로고    scopus 로고
    • How do bacteria localize proteins to the cell pole?
    • Laloux G, Jacobs-Wagner C. 2014. How do bacteria localize proteins to the cell pole? J Cell Sci 127:11-19. http://dx.doi.org/10.1242/jcs.138628.
    • (2014) J Cell Sci , vol.127 , pp. 11-19
    • Laloux, G.1    Jacobs-Wagner, C.2
  • 96
    • 84936989979 scopus 로고    scopus 로고
    • The membrane: transertion as an organizing principle in membrane heterogeneity
    • Matsumoto K, Hara H, Fishov I, Mileykovskaya E, Norris V. 2015. The membrane: transertion as an organizing principle in membrane heterogeneity. Front Microbiol 6:572. http://dx.doi.org/10.3389/fmicb.2015.00572.
    • (2015) Front Microbiol , vol.6 , pp. 572
    • Matsumoto, K.1    Hara, H.2    Fishov, I.3    Mileykovskaya, E.4    Norris, V.5
  • 98
    • 84862815508 scopus 로고    scopus 로고
    • Isolation and identification of new inner membrane-associated proteins that localize to cell poles in Escherichia coli
    • Li G, Young KD. 2012. Isolation and identification of new inner membrane-associated proteins that localize to cell poles in Escherichia coli. Mol Microbiol 84:276-295. http://dx.doi.org/10.1111/j.1365-2958.2012.08021.x.
    • (2012) Mol Microbiol , vol.84 , pp. 276-295
    • Li, G.1    Young, K.D.2
  • 99
    • 79955025448 scopus 로고    scopus 로고
    • Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes
    • Renner LD, Weibel DB. 2011. Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci U S A 108:6264-6269. http://dx.doi.org/10.1073/pnas.1015757108.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 6264-6269
    • Renner, L.D.1    Weibel, D.B.2
  • 101
    • 0015091032 scopus 로고
    • Synthesis of ribonucleic acid and protein in plasmid-containing minicells of Escherichia coli K-12
    • Roozen KJ, Fenwick RG, Jr, Curtiss R, III. 1971. Synthesis of ribonucleic acid and protein in plasmid-containing minicells of Escherichia coli K-12. J Bacteriol 107:21-33.
    • (1971) J Bacteriol , vol.107 , pp. 21-33
    • Roozen, K.J.1    Fenwick, R.G.2    Curtiss, R.3
  • 102
    • 0017651860 scopus 로고
    • Bacteriophage infection of minicells: a general method for identification of "in vivo" bacteriophage directed polypeptide biosynthesis
    • Reeve JN. 1977. Bacteriophage infection of minicells: a general method for identification of "in vivo" bacteriophage directed polypeptide biosynthesis. Mol Gen Genet 158:73-79. http://dx.doi.org/10.1007/BF00455121.
    • (1977) Mol Gen Genet , vol.158 , pp. 73-79
    • Reeve, J.N.1
  • 104
    • 84860389302 scopus 로고    scopus 로고
    • The next generation of bacteriophage therapy
    • Lu TK, Koeris MS. 2011. The next generation of bacteriophage therapy. Curr Opin Microbiol 14:524-531. http://dx.doi.org/10.1016/j.mib.2011.07.028.
    • (2011) Curr Opin Microbiol , vol.14 , pp. 524-531
    • Lu, T.K.1    Koeris, M.S.2
  • 106
    • 0027513320 scopus 로고
    • Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring
    • Bi E, Lutkenhaus J. 1993. Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J Bacteriol 175:1118-1125.
    • (1993) J Bacteriol , vol.175 , pp. 1118-1125
    • Bi, E.1    Lutkenhaus, J.2
  • 107
    • 3142781659 scopus 로고    scopus 로고
    • Proteomic screening and identification of differentially distributed membrane proteins in Escherichia coli
    • Lai EM, Nair U, Phadke ND, Maddock JR. 2004. Proteomic screening and identification of differentially distributed membrane proteins in Escherichia coli. Mol Microbiol 52:1029-1044. http://dx.doi.org/10.1111/j.1365-2958.2004.04040.x.
    • (2004) Mol Microbiol , vol.52 , pp. 1029-1044
    • Lai, E.M.1    Nair, U.2    Phadke, N.D.3    Maddock, J.R.4
  • 108
    • 0016164419 scopus 로고
    • Minicells of Bacillus subtilis. A unique system for transport studies
    • Reeve JN, Mendelson NH. 1974. Minicells of Bacillus subtilis. A unique system for transport studies. Biochim Biophys Acta 352:298-306. http://dx.doi.org/10.1016/0005-2736(74)90221-1.
    • (1974) Biochim Biophys Acta , vol.352 , pp. 298-306
    • Reeve, J.N.1    Mendelson, N.H.2
  • 109
    • 0018556565 scopus 로고
    • Use of minicells for bacteriophage-directed polypeptide synthesis
    • Reeve J. 1979. Use of minicells for bacteriophage-directed polypeptide synthesis. Methods Enzymol 68:493-503. http://dx.doi.org/10.1016/0076-6879(79)68038-2.
    • (1979) Methods Enzymol , vol.68 , pp. 493-503
    • Reeve, J.1
  • 110
    • 0015863579 scopus 로고
    • Relationship between prophage induction and transformation in Haemophilus influenzae
    • Setlow JK, Boling ME, Allison DP, Beattie KL. 1973. Relationship between prophage induction and transformation in Haemophilus influenzae. J Bacteriol 115:153-161.
    • (1973) J Bacteriol , vol.115 , pp. 153-161
    • Setlow, J.K.1    Boling, M.E.2    Allison, D.P.3    Beattie, K.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.