메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1067-1074

A machine learning approach for non-blind image deconvolution

Author keywords

deblurring; deconvolution; learning; neural networks

Indexed keywords

DEBLURRING; ILL POSED PROBLEM; IMAGE DE CONVOLUTIONS; IMAGE INFORMATION; LEARNING; MACHINE LEARNING APPROACHES; TWO-STEP APPROACH; TWO-STEP PROCEDURE;

EID: 84887391162     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.142     Document Type: Conference Paper
Times cited : (335)

References (31)
  • 1
    • 84887349131 scopus 로고    scopus 로고
    • digital slrs.
    • Noise, dynamic range and bit depth in digital slrs. http://theory. uchicago. edu/ejm/pix/20d/ tests/noise/. By Emil Martinec, updated May 2008. 5
    • Noise, Dynamic Range and Bit Depth
  • 6
    • 77749243157 scopus 로고    scopus 로고
    • Fast motion deblurring
    • ACM. 2
    • S. Cho and S. Lee. Fast motion deblurring. In ACM Trans. Graphics, volume 28, page 145. ACM, 2009. 2
    • (2009) ACM Trans. Graphics , vol.28 , pp. 145
    • Cho, S.1    Lee, S.2
  • 8
    • 78649669320 scopus 로고    scopus 로고
    • Deep, big, simple neural nets for handwritten digit recognition
    • 3
    • D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber. Deep, big, simple neural nets for handwritten digit recognition. Neural Computation, 22(12):3207-3220, 2010. 3
    • (2010) Neural Computation , vol.22 , Issue.12 , pp. 3207-3220
    • Ciresan, D.C.1    Meier, U.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 9
    • 34547760736 scopus 로고    scopus 로고
    • Image denoising by sparse 3-D transform-domain collaborative filtering
    • 2, 5
    • K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process., 16(8):2080-2095, 2007. 2, 5
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.8 , pp. 2080-2095
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 10
  • 11
    • 84859024326 scopus 로고    scopus 로고
    • Bm3d frames and variational image deblurring
    • 2, 3, 4, 5, 6
    • A. Danielyan, V. Katkovnik, and K. Egiazarian. Bm3d frames and variational image deblurring. IEEE Trans. Image Process., 21(4):1715-1728, 2012. 2, 3, 4, 5, 6
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.4 , pp. 1715-1728
    • Danielyan, A.1    Katkovnik, V.2    Egiazarian, K.3
  • 12
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • 2, 7
    • M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. on Image Process., 15(12):3736-3745, 2006. 2, 7
    • (2006) IEEE Trans. on Image Process. , vol.15 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 14
    • 39149133381 scopus 로고    scopus 로고
    • Image restoration using space-variant gaussian scale mixtures in overcomplete pyramids
    • 2, 3
    • J. Guerrero-Colón, L. Mancera, and J. Portilla. Image restoration using space-variant gaussian scale mixtures in overcomplete pyramids. IEEE Trans. Image Process., 17(1):27-41, 2008. 2, 3
    • (2008) IEEE Trans. Image Process , vol.17 , Issue.1 , pp. 27-41
    • Guerrero-Colón, J.1    Mancera, L.2    Portilla, J.3
  • 16
    • 78149296699 scopus 로고    scopus 로고
    • Natural image denoising with convolutional networks
    • 2
    • V. Jain and H. Seung. Natural image denoising with convolutional networks. Advances Neural Inform. Process. Syst., 21:769-776, 2008. 2
    • (2008) Advances Neural Inform. Process. Syst. , vol.21 , pp. 769-776
    • Jain, V.1    Seung, H.2
  • 17
    • 84887327782 scopus 로고    scopus 로고
    • Loss-specific training of non-parametric image restoration models: A new state of the art
    • 8
    • J. Jancsary, S. Nowozin, and C. Rother. Loss-specific training of non-parametric image restoration models: A new state of the art. In Europ. Conf. Comput. Vision. IEEE, 2012. 8
    • (2012) Europ. Conf. Comput. Vision. IEEE
    • Jancsary, J.1    Nowozin, S.2    Rother, C.3
  • 19
    • 0032203257 scopus 로고    scopus 로고
    • Gradientbased learning applied to document recognition
    • 2, 3
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proc. IEEE, 86(11):2278-2324, 1998. 2, 3
    • (1998) Proc IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 22
    • 79551510865 scopus 로고    scopus 로고
    • Optimal inversion of the anscombe transformation in low-count poisson image denoising
    • 5
    • M. Mäkitalo and A. Foi. Optimal inversion of the anscombe transformation in low-count poisson image denoising. IEEE Trans. Image Process., 20(1):99-109, 2011. 5
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.1 , pp. 99-109
    • Mäkitalo, M.1    Foi, A.2
  • 23
    • 0242636409 scopus 로고    scopus 로고
    • Image denoising using scale mixtures of Gaussians in the wavelet domain
    • 2
    • J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process., 12(11):1338-1351, 2003. 2
    • (2003) IEEE Trans. Image Process. , vol.12 , Issue.11 , pp. 1338-1351
    • Portilla, J.1    Strela, V.2    Wainwright, M.3    Simoncelli, E.4
  • 24
    • 60449120149 scopus 로고    scopus 로고
    • Fields of experts
    • 2
    • S. Roth and M. Black. Fields of experts. Int. J. Comput. Vision, 82(2):205-229, 2009. 2
    • (2009) Int. J. Comput. Vision , vol.82 , Issue.2 , pp. 205-229
    • Roth, S.1    Black, M.2
  • 25
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • 3
    • D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-propagating errors. Nature, 323(6088):533-536, 1986. 3
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 27
    • 80054736963 scopus 로고    scopus 로고
    • Traffic sign recognition with multi-scale convolutional networks
    • IEEE. 3
    • P. Sermanet and Y. LeCun. Traffic sign recognition with multi-scale convolutional networks. In IEEE Int. Joint Conf. Neural Networks, pages 2809-2813. IEEE, 2011. 3
    • (2011) IEEE Int. Joint Conf. Neural Networks , pp. 2809-2813
    • Sermanet, P.1    Lecun, Y.2
  • 28
    • 0030402111 scopus 로고    scopus 로고
    • Noise removal via bayesian wavelet coring
    • IEEE. 2
    • E. Simoncelli and E. Adelson. Noise removal via bayesian wavelet coring. In IEEE Int. Conf. Image Process., volume 1, pages 379-382. IEEE, 1996. 2
    • (1996) IEEE Int. Conf. Image Process. , vol.1 , pp. 379-382
    • Simoncelli, E.1    Adelson, E.2
  • 29
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • 2, 7
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learning Research, 11:3371-3408, 2010. 2, 7
    • (2010) J. Mach. Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.5
  • 30
    • 84903178624 scopus 로고    scopus 로고
    • Image denoising and inpainting with deep neural networks
    • 2
    • J. Xie, L. Xu, and E. Chen. Image denoising and inpainting with deep neural networks. Advances Neural Inform. Process. Syst., 26:1-8, 2012. 2
    • (2012) Advances Neural Inform. Process. Syst. , vol.26 , pp. 1-8
    • Xie, J.1    Xu, L.2    Chen, E.3
  • 31
    • 84856650948 scopus 로고    scopus 로고
    • From learning models of natural image patches to whole image restoration
    • IEEE. 2, 5, 6
    • D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration. In IEEE Int. Conf. Comput. Vision, pages 479-486. IEEE, 2011. 2, 5, 6
    • (2011) IEEE Int. Conf. Comput. Vision , pp. 479-486
    • Zoran, D.1    Weiss, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.