-
1
-
-
84887349131
-
-
digital slrs.
-
Noise, dynamic range and bit depth in digital slrs. http://theory. uchicago. edu/ejm/pix/20d/ tests/noise/. By Emil Martinec, updated May 2008. 5
-
Noise, Dynamic Range and Bit Depth
-
-
-
3
-
-
84866679588
-
Image denoising: Can plain neural networks compete with bm3d?
-
2, 3, 4
-
H. C. Burger, C. J. Schuler, and S. Harmeling. Image denoising: Can plain neural networks compete with bm3d? IEEE Conf. Comput. Vision and Pattern Recognition, pages 2392-2399, 2012. 2, 3, 4
-
(2012)
IEEE Conf. Comput. Vision and Pattern Recognition
, pp. 2392-2399
-
-
Burger, H.C.1
Schuler, C.J.2
Harmeling, S.3
-
6
-
-
77749243157
-
Fast motion deblurring
-
ACM. 2
-
S. Cho and S. Lee. Fast motion deblurring. In ACM Trans. Graphics, volume 28, page 145. ACM, 2009. 2
-
(2009)
ACM Trans. Graphics
, vol.28
, pp. 145
-
-
Cho, S.1
Lee, S.2
-
8
-
-
78649669320
-
Deep, big, simple neural nets for handwritten digit recognition
-
3
-
D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber. Deep, big, simple neural nets for handwritten digit recognition. Neural Computation, 22(12):3207-3220, 2010. 3
-
(2010)
Neural Computation
, vol.22
, Issue.12
, pp. 3207-3220
-
-
Ciresan, D.C.1
Meier, U.2
Gambardella, L.M.3
Schmidhuber, J.4
-
9
-
-
34547760736
-
Image denoising by sparse 3-D transform-domain collaborative filtering
-
2, 5
-
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process., 16(8):2080-2095, 2007. 2, 5
-
(2007)
IEEE Trans. Image Process.
, vol.16
, Issue.8
, pp. 2080-2095
-
-
Dabov, K.1
Foi, A.2
Katkovnik, V.3
Egiazarian, K.4
-
10
-
-
43249105786
-
Image restoration by sparse 3d transform-domain collaborative filtering
-
1, 2, 3, 4, 5, 6
-
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image restoration by sparse 3d transform-domain collaborative filtering. In Soc. Photo-Optical Instrumentation Engineers, volume 6812, page 6, 2008. 1, 2, 3, 4, 5, 6
-
(2008)
Soc. Photo-Optical Instrumentation Engineers
, vol.6812
, pp. 6
-
-
Dabov, K.1
Foi, A.2
Katkovnik, V.3
Egiazarian, K.4
-
11
-
-
84859024326
-
Bm3d frames and variational image deblurring
-
2, 3, 4, 5, 6
-
A. Danielyan, V. Katkovnik, and K. Egiazarian. Bm3d frames and variational image deblurring. IEEE Trans. Image Process., 21(4):1715-1728, 2012. 2, 3, 4, 5, 6
-
(2012)
IEEE Trans. Image Process.
, vol.21
, Issue.4
, pp. 1715-1728
-
-
Danielyan, A.1
Katkovnik, V.2
Egiazarian, K.3
-
12
-
-
33751379736
-
Image denoising via sparse and redundant representations over learned dictionaries
-
2, 7
-
M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. on Image Process., 15(12):3736-3745, 2006. 2, 7
-
(2006)
IEEE Trans. on Image Process.
, vol.15
, Issue.12
, pp. 3736-3745
-
-
Elad, M.1
Aharon, M.2
-
13
-
-
84887374529
-
-
deep architectures. Technical report 1355, Université de Montréal/DIRO., 2010. 6, 7
-
D. Erhan, A. Courville, and Y. Bengio. Understanding representations learned in deep architectures. Technical report, 1355, Université de Montréal/DIRO., 2010. 6, 7
-
Understanding Representations Learned
-
-
Erhan, D.1
Courville, A.2
Bengio, Y.3
-
14
-
-
39149133381
-
Image restoration using space-variant gaussian scale mixtures in overcomplete pyramids
-
2, 3
-
J. Guerrero-Colón, L. Mancera, and J. Portilla. Image restoration using space-variant gaussian scale mixtures in overcomplete pyramids. IEEE Trans. Image Process., 17(1):27-41, 2008. 2, 3
-
(2008)
IEEE Trans. Image Process
, vol.17
, Issue.1
, pp. 27-41
-
-
Guerrero-Colón, J.1
Mancera, L.2
Portilla, J.3
-
15
-
-
84856660189
-
Fast removal of non-uniform camera shake
-
IEEE. 3
-
M. Hirsch, C. Schuler, S. Harmeling, and B. Scholkopf. Fast removal of non-uniform camera shake. In IEEE Int. Conf. Comput. Vision, pages 463-470. IEEE, 2011. 3
-
(2011)
IEEE Int. Conf. Comput. Vision
, pp. 463-470
-
-
Hirsch, M.1
Schuler, C.2
Harmeling, S.3
Scholkopf, B.4
-
16
-
-
78149296699
-
Natural image denoising with convolutional networks
-
2
-
V. Jain and H. Seung. Natural image denoising with convolutional networks. Advances Neural Inform. Process. Syst., 21:769-776, 2008. 2
-
(2008)
Advances Neural Inform. Process. Syst.
, vol.21
, pp. 769-776
-
-
Jain, V.1
Seung, H.2
-
17
-
-
84887327782
-
Loss-specific training of non-parametric image restoration models: A new state of the art
-
8
-
J. Jancsary, S. Nowozin, and C. Rother. Loss-specific training of non-parametric image restoration models: A new state of the art. In Europ. Conf. Comput. Vision. IEEE, 2012. 8
-
(2012)
Europ. Conf. Comput. Vision. IEEE
-
-
Jancsary, J.1
Nowozin, S.2
Rother, C.3
-
19
-
-
0032203257
-
Gradientbased learning applied to document recognition
-
2, 3
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proc. IEEE, 86(11):2278-2324, 1998. 2, 3
-
(1998)
Proc IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
20
-
-
84887373825
-
-
2, 5, 6
-
A. Levin, R. Fergus, F. Durand, and W. Freeman. Deconvolution using natural image priors. 26(3), 2007. 2, 5, 6
-
(2007)
Deconvolution Using Natural Image Priors
, vol.26
, Issue.3
-
-
Levin, A.1
Fergus, R.2
Durand, F.3
Freeman, W.4
-
21
-
-
70450174344
-
Understanding and evaluating blind deconvolution algorithms
-
IEEE. 4
-
A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understanding and evaluating blind deconvolution algorithms. In IEEE Conf. Comput. Vision and Pattern Recognition, pages 1964-1971. IEEE, 2009. 4
-
(2009)
IEEE Conf. Comput. Vision and Pattern Recognition
, pp. 1964-1971
-
-
Levin, A.1
Weiss, Y.2
Durand, F.3
Freeman, W.T.4
-
22
-
-
79551510865
-
Optimal inversion of the anscombe transformation in low-count poisson image denoising
-
5
-
M. Mäkitalo and A. Foi. Optimal inversion of the anscombe transformation in low-count poisson image denoising. IEEE Trans. Image Process., 20(1):99-109, 2011. 5
-
(2011)
IEEE Trans. Image Process.
, vol.20
, Issue.1
, pp. 99-109
-
-
Mäkitalo, M.1
Foi, A.2
-
23
-
-
0242636409
-
Image denoising using scale mixtures of Gaussians in the wavelet domain
-
2
-
J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process., 12(11):1338-1351, 2003. 2
-
(2003)
IEEE Trans. Image Process.
, vol.12
, Issue.11
, pp. 1338-1351
-
-
Portilla, J.1
Strela, V.2
Wainwright, M.3
Simoncelli, E.4
-
25
-
-
0022471098
-
Learning representations by back-propagating errors
-
3
-
D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-propagating errors. Nature, 323(6088):533-536, 1986. 3
-
(1986)
Nature
, vol.323
, Issue.6088
, pp. 533-536
-
-
Rumelhart, D.1
Hinton, G.2
Williams, R.3
-
26
-
-
80052912678
-
Bayesian deblurring with integrated noise estimation
-
IEEE 2, 5
-
U. Schmidt, K. Schelten, and S. Roth. Bayesian deblurring with integrated noise estimation. In IEEE Conf. Comput. Vision and Pattern Recognition, pages 2625-2632. IEEE, 2011. 2, 5
-
(2011)
IEEE Conf. Comput. Vision and Pattern Recognition
, pp. 2625-2632
-
-
Schmidt, U.1
Schelten, K.2
Roth, S.3
-
27
-
-
80054736963
-
Traffic sign recognition with multi-scale convolutional networks
-
IEEE. 3
-
P. Sermanet and Y. LeCun. Traffic sign recognition with multi-scale convolutional networks. In IEEE Int. Joint Conf. Neural Networks, pages 2809-2813. IEEE, 2011. 3
-
(2011)
IEEE Int. Joint Conf. Neural Networks
, pp. 2809-2813
-
-
Sermanet, P.1
Lecun, Y.2
-
28
-
-
0030402111
-
Noise removal via bayesian wavelet coring
-
IEEE. 2
-
E. Simoncelli and E. Adelson. Noise removal via bayesian wavelet coring. In IEEE Int. Conf. Image Process., volume 1, pages 379-382. IEEE, 1996. 2
-
(1996)
IEEE Int. Conf. Image Process.
, vol.1
, pp. 379-382
-
-
Simoncelli, E.1
Adelson, E.2
-
29
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
2, 7
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learning Research, 11:3371-3408, 2010. 2, 7
-
(2010)
J. Mach. Learning Research
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.5
-
31
-
-
84856650948
-
From learning models of natural image patches to whole image restoration
-
IEEE. 2, 5, 6
-
D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration. In IEEE Int. Conf. Comput. Vision, pages 479-486. IEEE, 2011. 2, 5, 6
-
(2011)
IEEE Int. Conf. Comput. Vision
, pp. 479-486
-
-
Zoran, D.1
Weiss, Y.2
|