-
1
-
-
84856477009
-
Data streams: an overview and scientific applications. Springer, Berlin, pp 377–397
-
Aggarwal CC (2009) Data streams: an overview and scientific applications. Springer, Berlin, pp 377–397. doi:10.1007/978-3-642-02788-8_14
-
(2009)
doi:10.1007/978-3-642-02788-8_14
-
-
Aggarwal, C.C.1
-
2
-
-
85012236181
-
A framework for clustering evolving data streams
-
Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Proceedings of the 29th international conference on very large data bases, VLDB Endowment, 29:81–92
-
(2003)
Proceedings of the 29th international conference on very large data bases, VLDB Endowment
, vol.29
, pp. 81-92
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
3
-
-
0000710299
-
Queries and concept learning
-
Angluin D (1988) Queries and concept learning. Mach Learn 2(4):319–342
-
(1988)
Mach Learn
, vol.2
, Issue.4
, pp. 319-342
-
-
Angluin, D.1
-
4
-
-
10644244988
-
Sampling from a moving window over streaming data. In: Proceedings of the thirteenth annual ACM-SIAM symposium on discrete algorithms, Society for Industrial and Applied Mathematics
-
Babcock B, Datar M, Motwani R (2002) Sampling from a moving window over streaming data. In: Proceedings of the thirteenth annual ACM-SIAM symposium on discrete algorithms, Society for Industrial and Applied Mathematics, pp 633–634
-
(2002)
pp 633–634
-
-
Babcock, B.1
Datar, M.2
Motwani, R.3
-
5
-
-
84975869089
-
Morales-Bueno R
-
In: Fourth international workshop on knowledge discovery from data streams
-
Baena-Garcıa M, del Campo-Ávila J, Fidalgo R, Bifet A, Gavalda R, Morales-Bueno R (2006) Early drift detection method. In: Fourth international workshop on knowledge discovery from data streams, 6:77–86
-
(2006)
Early drift detection method
, vol.77-86
, pp. 6
-
-
Baena-Garcıa, M.1
del Campo-Ávila, J.2
Fidalgo, R.3
Bifet, A.4
Gavalda, R.5
-
6
-
-
0034320912
-
Learning changing concepts by exploiting the structure of change
-
Bartlett PL, Ben-David S, Kulkarni SR (2000) Learning changing concepts by exploiting the structure of change. Mach Learn 41(2):153–174
-
(2000)
Mach Learn
, vol.41
, Issue.2
, pp. 153-174
-
-
Bartlett, P.L.1
Ben-David, S.2
Kulkarni, S.R.3
-
7
-
-
84899447842
-
Handling concept drift: importance, challenges and solutions
-
Shenzhen, China
-
Bifet A, Gama J, Pechenizkiy M, Zliobaite I (2011) Handling concept drift: importance, challenges and solutions. PAKDD-2011 Tutorial, Shenzhen, China
-
(2011)
PAKDD-2011 Tutorial
-
-
Bifet, A.1
Gama, J.2
Pechenizkiy, M.3
Zliobaite, I.4
-
8
-
-
70349871603
-
Adaptive learning from evolving data streams. In: Advances in intelligent data analysis VIII, Springer
-
Bifet A, Gavaldà R (2009) Adaptive learning from evolving data streams. In: Advances in intelligent data analysis VIII, Springer, 249–260
-
(2009)
249–260
-
-
Bifet, A.1
Gavaldà, R.2
-
10
-
-
78049329476
-
Leveraging bagging for evolving data streams. In: Machine learning and knowledge discovery in databases, Springer
-
Bifet A, Holmes G, Pfahringer B (2010b) Leveraging bagging for evolving data streams. In: Machine learning and knowledge discovery in databases, Springer, pp 135–150
-
(2010)
pp 135–150
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, B.3
-
11
-
-
79960288084
-
Handling concept drift in process mining. In: Haralambos M, Colette R (eds) Advanced information systems engineering., Lecture notes in computer science, Springer, Berlin, pp 391–405
-
Bose RJC, van der Aalst WMP, Zliobaite I, Pechenizkiy M (2011) Handling concept drift in process mining. In: Haralambos M, Colette R (eds) Advanced information systems engineering., Lecture notes in computer science, Springer, Berlin, pp 391–405. doi:10.1007/978-3-642-21640-4_30
-
(2011)
doi:10.1007/978-3-642-21640-4_30
-
-
Bose, R.J.C.1
van der Aalst, W.M.P.2
Zliobaite, I.3
Pechenizkiy, M.4
-
12
-
-
84891166135
-
Reacting to different types of concept drift: the accuracy updated ensemble algorithm
-
Brzezinski D (2014a) Reacting to different types of concept drift: the accuracy updated ensemble algorithm. Neural Netw Learn Syst IEEE Trans 25(1):81–94. doi:10.1109/TNNLS.2013.2251352
-
(2014)
Neural Netw Learn Syst IEEE Trans
, vol.25
, Issue.1
, pp. 81-94
-
-
Brzezinski, D.1
-
14
-
-
84891166135
-
Reacting to different types of concept drift: the accuracy updated ensemble algorithm
-
Brzezinski D, Stefanowski J (2014b) Reacting to different types of concept drift: the accuracy updated ensemble algorithm. Neural Netw Learn Syst IEEE Trans 25(1):81–94
-
(2014)
Neural Netw Learn Syst IEEE Trans
, vol.25
, Issue.1
, pp. 81-94
-
-
Brzezinski, D.1
Stefanowski, J.2
-
15
-
-
84975892673
-
Prequential AUC for classifier evaluation and drift detection in evolving data streams. In: Proceedings of the 3rd international workshop on new frontiers in mining complex patterns
-
Brzezinski D, Stefanowski J (2014c) Prequential AUC for classifier evaluation and drift detection in evolving data streams. In: Proceedings of the 3rd international workshop on new frontiers in mining complex patterns, Nancy
-
(2014)
Nancy
-
-
Brzezinski, D.1
Stefanowski, J.2
-
16
-
-
58549104329
-
A framework for monitoring classifiers performance: when and why failure occurs?
-
Cieslak DA, Chawla NV (2009) A framework for monitoring classifiers performance: when and why failure occurs? Knowl Inform Syst 18(1):83–108 ISSN 0219-1377
-
(2009)
Knowl Inform Syst
, vol.18
, Issue.1
, pp. 83-108
-
-
Cieslak, D.A.1
Chawla, N.V.2
-
17
-
-
84899118237
-
A review on real time data stream classification and adapting to various concept drift scenarios. In: Advance computing conference (IACC), 2014 IEEE international, pp 533–537
-
Dongre PB, Malik LG (2014) A review on real time data stream classification and adapting to various concept drift scenarios. In: Advance computing conference (IACC), 2014 IEEE international, pp 533–537, doi:10.1109/IAdCC.2014.6779381
-
(2014)
doi:10.1109/IAdCC.2014.6779381
-
-
Dongre, P.B.1
Malik, L.G.2
-
18
-
-
77950233357
-
Adaptive concept drift detection
-
Dries Anton, Rückert Ulrich (2009) Adaptive concept drift detection. Stat Anal Data Min 2(5–6):311–327
-
(2009)
Stat Anal Data Min
, vol.2
, Issue.5-6
, pp. 311-327
-
-
Dries, A.1
Rückert, U.2
-
20
-
-
84901228061
-
A survey on concept drift adaptation
-
Gama J, Zliobaite I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A survey on concept drift adaptation. ACM Comput Surv 46(4):44:1–44:37. doi:10.1145/2523813 ISSN 0360–0300
-
(2014)
ACM Comput Surv
, vol.46
, Issue.4
, pp. 1-37
-
-
Gama, J.1
Zliobaite, I.2
Bifet, A.3
Pechenizkiy, M.4
Bouchachia, A.5
-
22
-
-
33750725544
-
-
Gama J, Medas P, Castillo G, Rodrigues P In Ana LC, Bazzan, Sofiane L (ed), Advances in artificial intelligence SBIA
-
Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with drift detection. In Ana LC, Bazzan, Sofiane L (ed), Advances in artificial intelligence SBIA
-
(2004)
Learning with drift detection.
-
-
-
23
-
-
33749618778
-
Learning with drift detection
-
Springer, New York
-
Gama J, Medas P, G Castillo, Rodrigues P (2004) Learning with drift detection. Advances in artificial intelligence—SBIA 2004. Springer, New York, pp 286–295
-
(2004)
Advances in artificial intelligence—SBIA 2004
, pp. 286-295
-
-
Gama, J.1
Medas, P.2
Castillo, G.3
Rodrigues, P.4
-
24
-
-
79959292611
-
Sousa PAC (2011) Learning recurring concepts from data streams with a context-aware ensemble
-
ACM, New York
-
Gomes JB, Menasalvas E, Sousa PAC (2011) Learning recurring concepts from data streams with a context-aware ensemble. In: Proceedings of the 2011 ACM symposium on applied computing, SAC ’11, ACM, New York, pp 994–999. doi:10.1145/1982185.1982403
-
Proceedings of the 2011 ACM symposium on applied computing, SAC ’11
, pp. 994-999
-
-
Gomes, J.B.1
Menasalvas, E.2
-
25
-
-
84857174050
-
Heuristic updatable weighted random subspaces for non-stationary environments. In Diane JC, Jian P, Wei W, Osmar RZ, Xindong W (ed), IEEE international conference on data mining, ICDM-11
-
Hoens TR, Chawla NV, Polikar R (2011) Heuristic updatable weighted random subspaces for non-stationary environments. In Diane JC, Jian P, Wei W, Osmar RZ, Xindong W (ed), IEEE international conference on data mining, ICDM-11, IEEE, pp 241–250
-
(2011)
IEEE
, pp. 241-250
-
-
Hoens, T.R.1
Chawla, N.V.2
Polikar, R.3
-
26
-
-
85011285088
-
Learning from streaming data with concept drift and imbalance: an overview
-
Hoens TR, Polikar R, Chawla NV (2012) Learning from streaming data with concept drift and imbalance: an overview. Prog Artif Intell 1(1):89–101. doi:10.1007/s13748-011-0008-0
-
(2012)
Prog Artif Intell
, vol.1
, Issue.1
, pp. 89-101
-
-
Hoens, T.R.1
Polikar, R.2
Chawla, N.V.3
-
27
-
-
84893029358
-
Tracking drift types in changing data streams. In: Hiroshi M, Wu Z, Cao L, Zaiane O, Min Y, Wei W (eds) Advanced data mining and applications. Lecture notes in computer science. Springer, Berlin, pp 72–83
-
Huang DTJ, Koh YS, Gillian D, Pears R (2013) Tracking drift types in changing data streams. In: Hiroshi M, Wu Z, Cao L, Zaiane O, Min Y, Wei W (eds) Advanced data mining and applications. Lecture notes in computer science. Springer, Berlin, pp 72–83. doi:10.1007/978-3-642-53914-5_7
-
(2013)
doi:10.1007/978-3-642-53914-5_7
-
-
Huang, D.T.J.1
Koh, Y.S.2
Gillian, D.3
Pears, R.4
-
28
-
-
0035789299
-
Mining time-changing data streams. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, KDD-01, ACM
-
Hulten G, Spencer L, Domingos P (2001) Mining time-changing data streams. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, KDD-01, ACM, pp 97–106
-
(2001)
pp 97–106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
29
-
-
33644920942
-
Research issues in data stream association rule mining
-
Jiang N, Gruenwald L (2006) Research issues in data stream association rule mining. ACM SIGMOD Rec 35(1):14–19
-
(2006)
ACM SIGMOD Rec
, vol.35
, Issue.1
, pp. 14-19
-
-
Jiang, N.1
Gruenwald, L.2
-
30
-
-
0000833531
-
Adams NM (1999) The impact of changing populations on classifier performance
-
New York: ACM
-
Kelly MG, Hand DJ, Adams NM (1999) The impact of changing populations on classifier performance. In: Proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining, KDD-99, New York, ACM, pp 367–371. doi:10.1145/312129.312285
-
Proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining, KDD-99
, pp. 367-371
-
-
Kelly, M.G.1
Hand, D.J.2
-
31
-
-
77956031241
-
Drift severity metric. European Conference on Artificial Intelligence
-
Kosina Petr, Gama João, Sebastião Raquel (2010) Drift severity metric. European Conference on Artificial Intelligence, ECAI 2010:1119–1120
-
(2010)
ECAI
, vol.2010
, pp. 1119-1120
-
-
Petr, K.1
João, G.2
Raquel, S.3
-
32
-
-
84925528057
-
Open challenges for data stream mining research
-
Krempl G, Zliobaite I, Brzezinski D, Hullermeier E, Last M, Lemaire V, Noack T, Shaker A, Sievi S, Spiliopoulou M, Stefanowski J (2014) Open challenges for data stream mining research. In: ACM SIGKDD explorations newsletter, vol 16–1, pp 1–10
-
(2014)
ACM SIGKDD explorations newsletter
, vol.16-1
, pp. 1-10
-
-
Krempl, G.1
Zliobaite, I.2
Brzezinski, D.3
Hullermeier, E.4
Last, M.5
Lemaire, V.6
Noack, T.7
Shaker, A.8
Sievi, S.9
Spiliopoulou, M.10
Stefanowski, J.11
-
33
-
-
84975857380
-
Learning time-varying concepts. In: Advances in neural information processing systems
-
Kuh A, Petsche T, Rivest RL (1991) Learning time-varying concepts. In: Advances in neural information processing systems, pp 183–189
-
(1991)
pp 183–189
-
-
Kuh, A.1
Petsche, T.2
Rivest, R.L.3
-
34
-
-
0001927585
-
On information and sufficiency
-
Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86
-
(1951)
Ann Math Stat
, vol.22
, Issue.1
, pp. 79-86
-
-
Kullback, S.1
Leibler, R.A.2
-
35
-
-
35048891979
-
Classifier ensembles for changing environments. In: Multiple Classifier Systems. Springer
-
Kuncheva LI (2004) Classifier ensembles for changing environments. In: Multiple Classifier Systems. Springer, pp 1–15
-
(2004)
pp 1–15
-
-
Kuncheva, L.I.1
-
36
-
-
79955500697
-
Classification and novel class detection in concept-drifting data streams under time constraints
-
Masud MM, Gao J, Khan L, Han J, Thuraisingham B (2011) Classification and novel class detection in concept-drifting data streams under time constraints. IEEE Trans Knowl Data Eng 23(6):859–874
-
(2011)
IEEE Trans Knowl Data Eng
, vol.23
, Issue.6
, pp. 859-874
-
-
Masud, M.M.1
Gao, J.2
Khan, L.3
Han, J.4
Thuraisingham, B.5
-
38
-
-
70449339206
-
Using diversity to handle concept drift in on-line learning. In: International joint conference on neural networks, IJCNN-09, IEEE
-
Minku FL, Yao X (2009) Using diversity to handle concept drift in on-line learning. In: International joint conference on neural networks, IJCNN-09, IEEE, pp 2125–2132
-
(2009)
pp 2125–2132
-
-
Minku, F.L.1
Yao, X.2
-
39
-
-
77949913486
-
The impact of diversity on online ensemble learning in the presence of concept drift
-
Minku LL, White AP, Xin Y (2010) The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Trans Knowl Data Eng 22(5):730–742. doi:10.1109/TKDE.2009.156 ISSN 1041–4347
-
(2010)
IEEE Trans Knowl Data Eng
, vol.22
, Issue.5
, pp. 730-742
-
-
Minku, L.L.1
White, A.P.2
Xin, Y.3
-
40
-
-
80052714543
-
A unifying view on dataset shift in classification
-
Moreno-Torres Jose G, Raeder Troy, Alaiz-Rodrguez Rocio, Chawla Nitesh V, Herrera Francisco (2012) A unifying view on dataset shift in classification. Pattern Recognit 45(1):521–530 ISSN 0031-3203
-
(2012)
Pattern Recognit
, vol.45
, Issue.1
, pp. 521-530
-
-
Moreno-Torres, J.G.1
Raeder, T.2
Alaiz-Rodrguez, R.3
Chawla, N.V.4
Herrera, F.5
-
42
-
-
84861438848
-
Heterogeneous ensemble for feature drifts in data streams. In: Advances in knowledge discovery and data mining. Springer
-
Nguyen H-L, Woon Y-K, Ng W-K, Wan L (2012) Heterogeneous ensemble for feature drifts in data streams. In: Advances in knowledge discovery and data mining. Springer, pp 1–12
-
(2012)
pp 1–12
-
-
Nguyen, H.-L.1
Woon, Y.-K.2
Ng, W.-K.3
Wan, L.4
-
43
-
-
84949507903
-
A survey on data stream clustering and classification
-
Nguyen H-L, Woon Y-K, Ng W-K (2014) A survey on data stream clustering and classification. Knowl Inf Syst pp 1–35
-
(2014)
Knowl Inf Syst
, pp. 1-35
-
-
Nguyen, H.-L.1
Woon, Y.-K.2
Ng, W.-K.3
-
44
-
-
38149140915
-
Detecting concept drift using statistical testing. In: Discovery Science, Springer
-
Nishida Kyosuke, Yamauchi K (2007) Detecting concept drift using statistical testing. In: Discovery Science, Springer, pp 264–269
-
(2007)
pp 264–269
-
-
Kyosuke, N.1
Yamauchi, K.2
-
45
-
-
84975867948
-
Online bagging and boosting. In: Artificial Intelligence and Statistics 2001
-
Oza NC, Russell S (2001) Online bagging and boosting. In: Artificial Intelligence and Statistics 2001, Morgan Kaufmann pp 105–112
-
(2001)
Morgan Kaufmann pp 105–112
-
-
Oza, N.C.1
Russell, S.2
-
46
-
-
38349133427
-
New options for Hoeffding trees. In: Mehmet O, John T (eds) AI 2007: advances in artificial intelligence, 4830th edn., Lecture notes in computer scienceSpringer, New York, pp 90–99
-
Pfahringer B, Holmes G, Kirkby R (2007) New options for Hoeffding trees. In: Mehmet O, John T (eds) AI 2007: advances in artificial intelligence, 4830th edn., Lecture notes in computer scienceSpringer, New York, pp 90–99. doi:10.1007/978-3-540-76928-6_11
-
(2007)
doi:10.1007/978-3-540-76928-6_11
-
-
Pfahringer, B.1
Holmes, G.2
Kirkby, R.3
-
48
-
-
84912077917
-
Recovery analysis for adaptive learning from non-stationary data streams. In: Neurocomputing, ScienceDirect
-
Shaker A, Hullermeier E (2015) Recovery analysis for adaptive learning from non-stationary data streams. In: Neurocomputing, ScienceDirect, pp 250–264
-
(2015)
pp 250–264
-
-
Shaker, A.1
Hullermeier, E.2
-
49
-
-
35248830261
-
Online outlier detection in sensor data using non-parametric models. In: Proceedings of the 32nd international conference on very large data bases, VLDB Endowment
-
Subramaniam S, Palpanas T, Papadopoulos D, Kalogeraki V, Gunopulos D (2006) Online outlier detection in sensor data using non-parametric models. In: Proceedings of the 32nd international conference on very large data bases, VLDB Endowment, pp 187–198
-
(2006)
pp 187–198
-
-
Subramaniam, S.1
Palpanas, T.2
Papadopoulos, D.3
Kalogeraki, V.4
Gunopulos, D.5
-
50
-
-
26444562687
-
The problem of concept drift: definitions and related work. Technical Report TCD-CS-2004-15, The University of Dublin
-
Department of Computer Science, Dublin
-
Tsymbal A (2004) The problem of concept drift: definitions and related work. Technical Report TCD-CS-2004-15, The University of Dublin, Trinity College, Department of Computer Science, Dublin
-
(2004)
Trinity College
-
-
Tsymbal, A.1
-
52
-
-
77952415079
-
Han J (2003) Mining concept-drifting data streams using ensemble classifiers
-
New York: ACM
-
Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, KDD-03, New York, ACM, pp 226–235. doi:10.1145/956750.956778
-
Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, KDD-03
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
-
53
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, KDD-03, ACM
-
Wang H, Fan W, Yu PS, Han J (2003b) Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, KDD-03, ACM, pp 226–235
-
(2003)
pp 226–235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
54
-
-
84893630352
-
Concept drift detection for online class imbalance learning. In: The 2013 international joint conference on neural Network, IJCNN-13, IEEE
-
Wang S, Minku LL, Ghezzi D, Caltabiano D, Tino P, Yao X (2013) Concept drift detection for online class imbalance learning. In: The 2013 international joint conference on neural Network, IJCNN-13, IEEE, pp 1–10
-
(2013)
pp 1–10
-
-
Wang, S.1
Minku, L.L.2
Ghezzi, D.3
Caltabiano, D.4
Tino, P.5
Yao, X.6
-
55
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn 23(1):69–101. doi:10.1007/BF00116900 ISSN 0885–6125
-
(1996)
Mach Learn
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
-
56
-
-
65449158881
-
Categorizing and mining concept drifting data streams. In: Proceeding of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, KDD-08, ACM, pp 812–820
-
Zhang P, Zhu X, Shi Y (2008) Categorizing and mining concept drifting data streams. In: Proceeding of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, KDD-08, ACM, pp 812–820. doi:10.1145/1401890.1401987
-
(2008)
doi:10.1145/1401890.1401987
-
-
Zhang, P.1
Zhu, X.2
Shi, Y.3
-
57
-
-
79951756430
-
Learning under concept drift: an overview
-
Zliobaite I (2010) Learning under concept drift: an overview. Technical report
-
(2010)
Technical report
-
-
Zliobaite, I.1
-
58
-
-
84900491048
-
Controlled permutation for testing adaptive learning models
-
39, Springer, London
-
Zliobaite I (2014) Controlled permutation for testing adaptive learning models. Knowledge and information systems, vol 39. Springer, London, pp 565–578
-
(2014)
Knowledge and information systems
, pp. 565-578
-
-
Zliobaite, I.1
|