메뉴 건너뛰기




Volumn 30, Issue 4, 2016, Pages 964-994

Characterizing concept drift

Author keywords

Concept drift; Learning from non stationary distributions; Stream learning; Stream mining

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 84963757730     PISSN: 13845810     EISSN: 1573756X     Source Type: Journal    
DOI: 10.1007/s10618-015-0448-4     Document Type: Article
Times cited : (429)

References (58)
  • 1
    • 84856477009 scopus 로고    scopus 로고
    • Data streams: an overview and scientific applications. Springer, Berlin, pp 377–397
    • Aggarwal CC (2009) Data streams: an overview and scientific applications. Springer, Berlin, pp 377–397. doi:10.1007/978-3-642-02788-8_14
    • (2009) doi:10.1007/978-3-642-02788-8_14
    • Aggarwal, C.C.1
  • 3
    • 0000710299 scopus 로고
    • Queries and concept learning
    • Angluin D (1988) Queries and concept learning. Mach Learn 2(4):319–342
    • (1988) Mach Learn , vol.2 , Issue.4 , pp. 319-342
    • Angluin, D.1
  • 4
    • 10644244988 scopus 로고    scopus 로고
    • Sampling from a moving window over streaming data. In: Proceedings of the thirteenth annual ACM-SIAM symposium on discrete algorithms, Society for Industrial and Applied Mathematics
    • Babcock B, Datar M, Motwani R (2002) Sampling from a moving window over streaming data. In: Proceedings of the thirteenth annual ACM-SIAM symposium on discrete algorithms, Society for Industrial and Applied Mathematics, pp 633–634
    • (2002) pp 633–634
    • Babcock, B.1    Datar, M.2    Motwani, R.3
  • 6
    • 0034320912 scopus 로고    scopus 로고
    • Learning changing concepts by exploiting the structure of change
    • Bartlett PL, Ben-David S, Kulkarni SR (2000) Learning changing concepts by exploiting the structure of change. Mach Learn 41(2):153–174
    • (2000) Mach Learn , vol.41 , Issue.2 , pp. 153-174
    • Bartlett, P.L.1    Ben-David, S.2    Kulkarni, S.R.3
  • 8
    • 70349871603 scopus 로고    scopus 로고
    • Adaptive learning from evolving data streams. In: Advances in intelligent data analysis VIII, Springer
    • Bifet A, Gavaldà R (2009) Adaptive learning from evolving data streams. In: Advances in intelligent data analysis VIII, Springer, 249–260
    • (2009) 249–260
    • Bifet, A.1    Gavaldà, R.2
  • 10
    • 78049329476 scopus 로고    scopus 로고
    • Leveraging bagging for evolving data streams. In: Machine learning and knowledge discovery in databases, Springer
    • Bifet A, Holmes G, Pfahringer B (2010b) Leveraging bagging for evolving data streams. In: Machine learning and knowledge discovery in databases, Springer, pp 135–150
    • (2010) pp 135–150
    • Bifet, A.1    Holmes, G.2    Pfahringer, B.3
  • 11
    • 79960288084 scopus 로고    scopus 로고
    • Handling concept drift in process mining. In: Haralambos M, Colette R (eds) Advanced information systems engineering., Lecture notes in computer science, Springer, Berlin, pp 391–405
    • Bose RJC, van der Aalst WMP, Zliobaite I, Pechenizkiy M (2011) Handling concept drift in process mining. In: Haralambos M, Colette R (eds) Advanced information systems engineering., Lecture notes in computer science, Springer, Berlin, pp 391–405. doi:10.1007/978-3-642-21640-4_30
    • (2011) doi:10.1007/978-3-642-21640-4_30
    • Bose, R.J.C.1    van der Aalst, W.M.P.2    Zliobaite, I.3    Pechenizkiy, M.4
  • 12
    • 84891166135 scopus 로고    scopus 로고
    • Reacting to different types of concept drift: the accuracy updated ensemble algorithm
    • Brzezinski D (2014a) Reacting to different types of concept drift: the accuracy updated ensemble algorithm. Neural Netw Learn Syst IEEE Trans 25(1):81–94. doi:10.1109/TNNLS.2013.2251352
    • (2014) Neural Netw Learn Syst IEEE Trans , vol.25 , Issue.1 , pp. 81-94
    • Brzezinski, D.1
  • 14
    • 84891166135 scopus 로고    scopus 로고
    • Reacting to different types of concept drift: the accuracy updated ensemble algorithm
    • Brzezinski D, Stefanowski J (2014b) Reacting to different types of concept drift: the accuracy updated ensemble algorithm. Neural Netw Learn Syst IEEE Trans 25(1):81–94
    • (2014) Neural Netw Learn Syst IEEE Trans , vol.25 , Issue.1 , pp. 81-94
    • Brzezinski, D.1    Stefanowski, J.2
  • 15
    • 84975892673 scopus 로고    scopus 로고
    • Prequential AUC for classifier evaluation and drift detection in evolving data streams. In: Proceedings of the 3rd international workshop on new frontiers in mining complex patterns
    • Brzezinski D, Stefanowski J (2014c) Prequential AUC for classifier evaluation and drift detection in evolving data streams. In: Proceedings of the 3rd international workshop on new frontiers in mining complex patterns, Nancy
    • (2014) Nancy
    • Brzezinski, D.1    Stefanowski, J.2
  • 16
    • 58549104329 scopus 로고    scopus 로고
    • A framework for monitoring classifiers performance: when and why failure occurs?
    • Cieslak DA, Chawla NV (2009) A framework for monitoring classifiers performance: when and why failure occurs? Knowl Inform Syst 18(1):83–108 ISSN 0219-1377
    • (2009) Knowl Inform Syst , vol.18 , Issue.1 , pp. 83-108
    • Cieslak, D.A.1    Chawla, N.V.2
  • 17
    • 84899118237 scopus 로고    scopus 로고
    • A review on real time data stream classification and adapting to various concept drift scenarios. In: Advance computing conference (IACC), 2014 IEEE international, pp 533–537
    • Dongre PB, Malik LG (2014) A review on real time data stream classification and adapting to various concept drift scenarios. In: Advance computing conference (IACC), 2014 IEEE international, pp 533–537, doi:10.1109/IAdCC.2014.6779381
    • (2014) doi:10.1109/IAdCC.2014.6779381
    • Dongre, P.B.1    Malik, L.G.2
  • 18
    • 77950233357 scopus 로고    scopus 로고
    • Adaptive concept drift detection
    • Dries Anton, Rückert Ulrich (2009) Adaptive concept drift detection. Stat Anal Data Min 2(5–6):311–327
    • (2009) Stat Anal Data Min , vol.2 , Issue.5-6 , pp. 311-327
    • Dries, A.1    Rückert, U.2
  • 22
    • 33750725544 scopus 로고    scopus 로고
    • Gama J, Medas P, Castillo G, Rodrigues P In Ana LC, Bazzan, Sofiane L (ed), Advances in artificial intelligence SBIA
    • Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with drift detection. In Ana LC, Bazzan, Sofiane L (ed), Advances in artificial intelligence SBIA
    • (2004) Learning with drift detection.
  • 24
    • 79959292611 scopus 로고    scopus 로고
    • Sousa PAC (2011) Learning recurring concepts from data streams with a context-aware ensemble
    • ACM, New York
    • Gomes JB, Menasalvas E, Sousa PAC (2011) Learning recurring concepts from data streams with a context-aware ensemble. In: Proceedings of the 2011 ACM symposium on applied computing, SAC ’11, ACM, New York, pp 994–999. doi:10.1145/1982185.1982403
    • Proceedings of the 2011 ACM symposium on applied computing, SAC ’11 , pp. 994-999
    • Gomes, J.B.1    Menasalvas, E.2
  • 25
    • 84857174050 scopus 로고    scopus 로고
    • Heuristic updatable weighted random subspaces for non-stationary environments. In Diane JC, Jian P, Wei W, Osmar RZ, Xindong W (ed), IEEE international conference on data mining, ICDM-11
    • Hoens TR, Chawla NV, Polikar R (2011) Heuristic updatable weighted random subspaces for non-stationary environments. In Diane JC, Jian P, Wei W, Osmar RZ, Xindong W (ed), IEEE international conference on data mining, ICDM-11, IEEE, pp 241–250
    • (2011) IEEE , pp. 241-250
    • Hoens, T.R.1    Chawla, N.V.2    Polikar, R.3
  • 26
    • 85011285088 scopus 로고    scopus 로고
    • Learning from streaming data with concept drift and imbalance: an overview
    • Hoens TR, Polikar R, Chawla NV (2012) Learning from streaming data with concept drift and imbalance: an overview. Prog Artif Intell 1(1):89–101. doi:10.1007/s13748-011-0008-0
    • (2012) Prog Artif Intell , vol.1 , Issue.1 , pp. 89-101
    • Hoens, T.R.1    Polikar, R.2    Chawla, N.V.3
  • 27
    • 84893029358 scopus 로고    scopus 로고
    • Tracking drift types in changing data streams. In: Hiroshi M, Wu Z, Cao L, Zaiane O, Min Y, Wei W (eds) Advanced data mining and applications. Lecture notes in computer science. Springer, Berlin, pp 72–83
    • Huang DTJ, Koh YS, Gillian D, Pears R (2013) Tracking drift types in changing data streams. In: Hiroshi M, Wu Z, Cao L, Zaiane O, Min Y, Wei W (eds) Advanced data mining and applications. Lecture notes in computer science. Springer, Berlin, pp 72–83. doi:10.1007/978-3-642-53914-5_7
    • (2013) doi:10.1007/978-3-642-53914-5_7
    • Huang, D.T.J.1    Koh, Y.S.2    Gillian, D.3    Pears, R.4
  • 28
    • 0035789299 scopus 로고    scopus 로고
    • Mining time-changing data streams. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, KDD-01, ACM
    • Hulten G, Spencer L, Domingos P (2001) Mining time-changing data streams. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, KDD-01, ACM, pp 97–106
    • (2001) pp 97–106
    • Hulten, G.1    Spencer, L.2    Domingos, P.3
  • 29
    • 33644920942 scopus 로고    scopus 로고
    • Research issues in data stream association rule mining
    • Jiang N, Gruenwald L (2006) Research issues in data stream association rule mining. ACM SIGMOD Rec 35(1):14–19
    • (2006) ACM SIGMOD Rec , vol.35 , Issue.1 , pp. 14-19
    • Jiang, N.1    Gruenwald, L.2
  • 31
    • 77956031241 scopus 로고    scopus 로고
    • Drift severity metric. European Conference on Artificial Intelligence
    • Kosina Petr, Gama João, Sebastião Raquel (2010) Drift severity metric. European Conference on Artificial Intelligence, ECAI 2010:1119–1120
    • (2010) ECAI , vol.2010 , pp. 1119-1120
    • Petr, K.1    João, G.2    Raquel, S.3
  • 33
    • 84975857380 scopus 로고
    • Learning time-varying concepts. In: Advances in neural information processing systems
    • Kuh A, Petsche T, Rivest RL (1991) Learning time-varying concepts. In: Advances in neural information processing systems, pp 183–189
    • (1991) pp 183–189
    • Kuh, A.1    Petsche, T.2    Rivest, R.L.3
  • 34
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86
    • (1951) Ann Math Stat , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 35
    • 35048891979 scopus 로고    scopus 로고
    • Classifier ensembles for changing environments. In: Multiple Classifier Systems. Springer
    • Kuncheva LI (2004) Classifier ensembles for changing environments. In: Multiple Classifier Systems. Springer, pp 1–15
    • (2004) pp 1–15
    • Kuncheva, L.I.1
  • 36
    • 79955500697 scopus 로고    scopus 로고
    • Classification and novel class detection in concept-drifting data streams under time constraints
    • Masud MM, Gao J, Khan L, Han J, Thuraisingham B (2011) Classification and novel class detection in concept-drifting data streams under time constraints. IEEE Trans Knowl Data Eng 23(6):859–874
    • (2011) IEEE Trans Knowl Data Eng , vol.23 , Issue.6 , pp. 859-874
    • Masud, M.M.1    Gao, J.2    Khan, L.3    Han, J.4    Thuraisingham, B.5
  • 38
    • 70449339206 scopus 로고    scopus 로고
    • Using diversity to handle concept drift in on-line learning. In: International joint conference on neural networks, IJCNN-09, IEEE
    • Minku FL, Yao X (2009) Using diversity to handle concept drift in on-line learning. In: International joint conference on neural networks, IJCNN-09, IEEE, pp 2125–2132
    • (2009) pp 2125–2132
    • Minku, F.L.1    Yao, X.2
  • 39
    • 77949913486 scopus 로고    scopus 로고
    • The impact of diversity on online ensemble learning in the presence of concept drift
    • Minku LL, White AP, Xin Y (2010) The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Trans Knowl Data Eng 22(5):730–742. doi:10.1109/TKDE.2009.156 ISSN 1041–4347
    • (2010) IEEE Trans Knowl Data Eng , vol.22 , Issue.5 , pp. 730-742
    • Minku, L.L.1    White, A.P.2    Xin, Y.3
  • 42
    • 84861438848 scopus 로고    scopus 로고
    • Heterogeneous ensemble for feature drifts in data streams. In: Advances in knowledge discovery and data mining. Springer
    • Nguyen H-L, Woon Y-K, Ng W-K, Wan L (2012) Heterogeneous ensemble for feature drifts in data streams. In: Advances in knowledge discovery and data mining. Springer, pp 1–12
    • (2012) pp 1–12
    • Nguyen, H.-L.1    Woon, Y.-K.2    Ng, W.-K.3    Wan, L.4
  • 43
    • 84949507903 scopus 로고    scopus 로고
    • A survey on data stream clustering and classification
    • Nguyen H-L, Woon Y-K, Ng W-K (2014) A survey on data stream clustering and classification. Knowl Inf Syst pp 1–35
    • (2014) Knowl Inf Syst , pp. 1-35
    • Nguyen, H.-L.1    Woon, Y.-K.2    Ng, W.-K.3
  • 44
    • 38149140915 scopus 로고    scopus 로고
    • Detecting concept drift using statistical testing. In: Discovery Science, Springer
    • Nishida Kyosuke, Yamauchi K (2007) Detecting concept drift using statistical testing. In: Discovery Science, Springer, pp 264–269
    • (2007) pp 264–269
    • Kyosuke, N.1    Yamauchi, K.2
  • 45
    • 84975867948 scopus 로고    scopus 로고
    • Online bagging and boosting. In: Artificial Intelligence and Statistics 2001
    • Oza NC, Russell S (2001) Online bagging and boosting. In: Artificial Intelligence and Statistics 2001, Morgan Kaufmann pp 105–112
    • (2001) Morgan Kaufmann pp 105–112
    • Oza, N.C.1    Russell, S.2
  • 46
    • 38349133427 scopus 로고    scopus 로고
    • New options for Hoeffding trees. In: Mehmet O, John T (eds) AI 2007: advances in artificial intelligence, 4830th edn., Lecture notes in computer scienceSpringer, New York, pp 90–99
    • Pfahringer B, Holmes G, Kirkby R (2007) New options for Hoeffding trees. In: Mehmet O, John T (eds) AI 2007: advances in artificial intelligence, 4830th edn., Lecture notes in computer scienceSpringer, New York, pp 90–99. doi:10.1007/978-3-540-76928-6_11
    • (2007) doi:10.1007/978-3-540-76928-6_11
    • Pfahringer, B.1    Holmes, G.2    Kirkby, R.3
  • 48
    • 84912077917 scopus 로고    scopus 로고
    • Recovery analysis for adaptive learning from non-stationary data streams. In: Neurocomputing, ScienceDirect
    • Shaker A, Hullermeier E (2015) Recovery analysis for adaptive learning from non-stationary data streams. In: Neurocomputing, ScienceDirect, pp 250–264
    • (2015) pp 250–264
    • Shaker, A.1    Hullermeier, E.2
  • 49
    • 35248830261 scopus 로고    scopus 로고
    • Online outlier detection in sensor data using non-parametric models. In: Proceedings of the 32nd international conference on very large data bases, VLDB Endowment
    • Subramaniam S, Palpanas T, Papadopoulos D, Kalogeraki V, Gunopulos D (2006) Online outlier detection in sensor data using non-parametric models. In: Proceedings of the 32nd international conference on very large data bases, VLDB Endowment, pp 187–198
    • (2006) pp 187–198
    • Subramaniam, S.1    Palpanas, T.2    Papadopoulos, D.3    Kalogeraki, V.4    Gunopulos, D.5
  • 50
    • 26444562687 scopus 로고    scopus 로고
    • The problem of concept drift: definitions and related work. Technical Report TCD-CS-2004-15, The University of Dublin
    • Department of Computer Science, Dublin
    • Tsymbal A (2004) The problem of concept drift: definitions and related work. Technical Report TCD-CS-2004-15, The University of Dublin, Trinity College, Department of Computer Science, Dublin
    • (2004) Trinity College
    • Tsymbal, A.1
  • 53
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, KDD-03, ACM
    • Wang H, Fan W, Yu PS, Han J (2003b) Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, KDD-03, ACM, pp 226–235
    • (2003) pp 226–235
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 54
    • 84893630352 scopus 로고    scopus 로고
    • Concept drift detection for online class imbalance learning. In: The 2013 international joint conference on neural Network, IJCNN-13, IEEE
    • Wang S, Minku LL, Ghezzi D, Caltabiano D, Tino P, Yao X (2013) Concept drift detection for online class imbalance learning. In: The 2013 international joint conference on neural Network, IJCNN-13, IEEE, pp 1–10
    • (2013) pp 1–10
    • Wang, S.1    Minku, L.L.2    Ghezzi, D.3    Caltabiano, D.4    Tino, P.5    Yao, X.6
  • 55
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn 23(1):69–101. doi:10.1007/BF00116900 ISSN 0885–6125
    • (1996) Mach Learn , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 56
    • 65449158881 scopus 로고    scopus 로고
    • Categorizing and mining concept drifting data streams. In: Proceeding of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, KDD-08, ACM, pp 812–820
    • Zhang P, Zhu X, Shi Y (2008) Categorizing and mining concept drifting data streams. In: Proceeding of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, KDD-08, ACM, pp 812–820. doi:10.1145/1401890.1401987
    • (2008) doi:10.1145/1401890.1401987
    • Zhang, P.1    Zhu, X.2    Shi, Y.3
  • 57
    • 79951756430 scopus 로고    scopus 로고
    • Learning under concept drift: an overview
    • Zliobaite I (2010) Learning under concept drift: an overview. Technical report
    • (2010) Technical report
    • Zliobaite, I.1
  • 58
    • 84900491048 scopus 로고    scopus 로고
    • Controlled permutation for testing adaptive learning models
    • 39, Springer, London
    • Zliobaite I (2014) Controlled permutation for testing adaptive learning models. Knowledge and information systems, vol 39. Springer, London, pp 565–578
    • (2014) Knowledge and information systems , pp. 565-578
    • Zliobaite, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.