-
1
-
-
0038225914
-
Contextual knowledge sharing and cooperation in intelligent assistant systems
-
R. Brezillon and J. Pomerol. Contextual knowledge sharing and cooperation in intelligent assistant systems. TRAVAIL HUMAIN, 62:223-246, 1999.
-
(1999)
TRAVAIL HUMAIN
, vol.62
, pp. 223-246
-
-
Brezillon, R.1
Pomerol, J.2
-
2
-
-
84900830868
-
Understanding and using context
-
A. Dey. Understanding and using context. Personal and ubiquitous computing, 5(1):4-7, 2001.
-
(2001)
Personal and Ubiquitous Computing
, vol.5
, Issue.1
, pp. 4-7
-
-
Dey, A.1
-
3
-
-
85020715458
-
-
series: chapman & hall/crc data mining and knowledge discovery series
-
J. Gama. Knowledge discovery from data streams (series: chapman & hall/crc data mining and knowledge discovery series). 2010.
-
(2010)
Knowledge Discovery from Data Streams
-
-
Gama, J.1
-
4
-
-
71049181507
-
Tracking Recurring Concepts with Meta-learners
-
Springer
-
J. Gama and P. Kosina. Tracking Recurring Concepts with Meta-learners. In Progress in Artificial Intelligence: 14th Portuguese Conference on Artificial Intelligence, Epia 2009, Aveiro, Portugal, October 12-15, 2009, Proceedings, page 423. Springer, 2009.
-
(2009)
Progress in Artificial Intelligence: 14th Portuguese Conference on Artificial Intelligence, Epia 2009, Aveiro, Portugal, October 12-15, 2009, Proceedings
, pp. 423
-
-
Gama, J.1
Kosina, P.2
-
5
-
-
33749618778
-
Learning with drift detection
-
J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with drift detection. Lecture Notes in Computer Science, pages 286-295, 2004.
-
(2004)
Lecture Notes in Computer Science
, pp. 286-295
-
-
Gama, J.1
Medas, P.2
Castillo, G.3
Rodrigues, P.4
-
6
-
-
0032139819
-
Extracting hidden context
-
DOI 10.1023/A:1007420529897
-
M. Harries, C. Sammut, and K. Horn. Extracting hidden context. Machine Learning, 32(2):101-126, 1998. (Pubitemid 40626077)
-
(1998)
Machine Learning
, vol.32
, Issue.2
, pp. 101-126
-
-
Harries, M.B.1
Sammut, C.2
Horn, K.3
-
8
-
-
77956234457
-
Tracking recurring contexts using ensemble classifiers: An application to email filtering
-
I. Katakis, G. Tsoumakas, and I. Vlahavas. Tracking recurring contexts using ensemble classifiers: an application to email filtering. Knowledge and Information Systems, pages 1-21.
-
Knowledge and Information Systems
, pp. 1-21
-
-
Katakis, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
9
-
-
37749050180
-
Dynamic weighted majority: An ensemble method for drifting concepts
-
J. Kolter and M. Maloof. Dynamic weighted majority: An ensemble method for drifting concepts. The Journal of Machine Learning Research, 8:2755-2790, 2007.
-
(2007)
The Journal of Machine Learning Research
, vol.8
, pp. 2755-2790
-
-
Kolter, J.1
Maloof, M.2
-
10
-
-
2942562388
-
Towards a theory of context spaces
-
A. Padovitz, S. Loke, and A. Zaslavsky. Towards a theory of context spaces. In Pervasive Computing and Communications Workshops, 2004. Proceedings of the Second IEEE Annual Conference on, pages 38-42, 2004.
-
(2004)
Pervasive Computing and Communications Workshops, 2004. Proceedings of the Second IEEE Annual Conference on
, pp. 38-42
-
-
Padovitz, A.1
Loke, S.2
Zaslavsky, A.3
-
12
-
-
0035788947
-
A streaming ensemble algorithm (SEA) for large-scale classification
-
ACM New York, NY, USA
-
W. Street and Y. Kim. A streaming ensemble algorithm (SEA) for large-scale classification. In Proceedings of the seventh ACM SIGKDD, pages 377-382. ACM New York, NY, USA, 2001.
-
(2001)
Proceedings of the Seventh ACM SIGKDD
, pp. 377-382
-
-
Street, W.1
Kim, Y.2
-
15
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
ACM New York, NY, USA
-
H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 226-235. ACM New York, NY, USA, 2003.
-
(2003)
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.3
Han, J.4
-
16
-
-
0031164523
-
Tracking Context Changes through Meta-Learning
-
G. Widmer. Tracking context changes through meta-learning. Machine Learning, 27(3):259-286, 1997. (Pubitemid 127510031)
-
(1997)
Machine Learning
, vol.27
, Issue.3
, pp. 259-286
-
-
Widmer, G.1
-
17
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine learning, 23(1):69-101, 1996. (Pubitemid 126737384)
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
-
18
-
-
33749017306
-
Mining in anticipation for concept change: Proactive-reactive prediction in data streams
-
DOI 10.1007/s10618-006-0050-x
-
Y. Yang, X. Wu, and X. Zhu. Mining in anticipation for concept change: Proactive-reactive prediction in data streams. Data mining and knowledge discovery, 13(3):261-289, 2006. (Pubitemid 44455021)
-
(2006)
Data Mining and Knowledge Discovery
, vol.13
, Issue.3
, pp. 261-289
-
-
Yang, Y.1
Wu, X.2
Zhu, X.3
|