메뉴 건너뛰기




Volumn 95, Issue , 2016, Pages 333-348

Increasing extracellular H2O2 produces a bi-phasic response in intracellular H2O2, with peroxiredoxin hyperoxidation only triggered once the cellular H2O2-buffering capacity is overwhelmed

Author keywords

Computational model; Hydrogenperoxide; Oxidation; Peroxiredoxin; Signaling; Thiol; Thioredoxin

Indexed keywords

CYSTEINE; HYDROGEN PEROXIDE; PEROXIREDOXIN; PROTEOME; REACTIVE OXYGEN METABOLITE; THIOL PROTEOME; THIOREDOXIN PEROXIDASE; UNCLASSIFIED DRUG; THIOREDOXIN;

EID: 84963731147     PISSN: 08915849     EISSN: 18734596     Source Type: Journal    
DOI: 10.1016/j.freeradbiomed.2016.02.035     Document Type: Article
Times cited : (40)

References (57)
  • 1
    • 84901316606 scopus 로고    scopus 로고
    • Cellular mechanisms and physiological consequences of redox-dependent signalling
    • K.M. Holmstrom, and T. Finkel Cellular mechanisms and physiological consequences of redox-dependent signalling Nat. Rev. Mol. Cell Biol. 15 6 2014 411 421
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , Issue.6 , pp. 411-421
    • Holmstrom, K.M.1    Finkel, T.2
  • 2
    • 79951643450 scopus 로고    scopus 로고
    • Multiple functions of peroxiredoxins: Peroxidases, sensors and regulators of the intracellular messenger HO, and protein chaperones
    • S.G. Rhee, and H.A. Woo Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger HO, and protein chaperones Antioxid. Redox Signal. 15 3 2011 781 794
    • (2011) Antioxid. Redox Signal. , vol.15 , Issue.3 , pp. 781-794
    • Rhee, S.G.1    Woo, H.A.2
  • 3
    • 84866490309 scopus 로고    scopus 로고
    • Peroxiredoxins, gerontogenes linking aging to genome instability and cancer
    • T. Nystrom, J. Yang, and M. Molin Peroxiredoxins, gerontogenes linking aging to genome instability and cancer Genes Dev. 26 18 2012 2001 2008
    • (2012) Genes Dev. , vol.26 , Issue.18 , pp. 2001-2008
    • Nystrom, T.1    Yang, J.2    Molin, M.3
  • 4
    • 0037064080 scopus 로고    scopus 로고
    • Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid
    • K.S. Yang, and et al. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid J. Biol. Chem. 277 41 2002 38029 38036
    • (2002) J. Biol. Chem. , vol.277 , Issue.41 , pp. 38029-38036
    • Yang, K.S.1
  • 5
    • 0242668686 scopus 로고    scopus 로고
    • Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
    • Z.A. Wood, L.B. Poole, and P.A. Karplus Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling Science 300 5619 2003 650 653
    • (2003) Science , vol.300 , Issue.5619 , pp. 650-653
    • Wood, Z.A.1    Poole, L.B.2    Karplus, P.A.3
  • 6
    • 76749102420 scopus 로고    scopus 로고
    • Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling
    • H.A. Woo, and et al. Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling Cell 140 4 2010 517 528
    • (2010) Cell , vol.140 , Issue.4 , pp. 517-528
    • Woo, H.A.1
  • 7
    • 84884170817 scopus 로고    scopus 로고
    • Regulation of circadian clocks by redox homeostasis
    • A. Stangherlin, and A.B. Reddy Regulation of circadian clocks by redox homeostasis J. Biol. Chem. 2013 26505 26511
    • (2013) J. Biol. Chem. , pp. 26505-26511
    • Stangherlin, A.1    Reddy, A.B.2
  • 8
    • 84861964383 scopus 로고    scopus 로고
    • 2-dependent, reversible inactivation of peroxiredoxin III in mitochondria
    • 2-dependent, reversible inactivation of peroxiredoxin III in mitochondria Mol. Cell 46 5 2012 584 594
    • (2012) Mol. Cell , vol.46 , Issue.5 , pp. 584-594
    • Kil, I.S.1
  • 9
    • 20744438779 scopus 로고    scopus 로고
    • Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide
    • S.M. Bozonet, and et al. Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide J. Biol. Chem. 280 24 2005 23319 23327
    • (2005) J. Biol. Chem. , vol.280 , Issue.24 , pp. 23319-23327
    • Bozonet, S.M.1
  • 10
    • 21144440053 scopus 로고    scopus 로고
    • 2-sensing by the antioxidant Pap1 pathway
    • 2-sensing by the antioxidant Pap1 pathway Proc. Natl. Acad. Sci. USA 102 25 2005 8875 8880
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , Issue.25 , pp. 8875-8880
    • Vivancos, A.P.1
  • 11
    • 84890171973 scopus 로고    scopus 로고
    • 2 signaling and oxidative stress resistance by oxidizing a thioredoxin family protein
    • 2 signaling and oxidative stress resistance by oxidizing a thioredoxin family protein Cell Rep. 5 5 2013 1425 1435
    • (2013) Cell Rep. , vol.5 , Issue.5 , pp. 1425-1435
    • Brown, J.D.1
  • 12
    • 84862777700 scopus 로고    scopus 로고
    • Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival
    • A.M. Day, and et al. Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival Mol. Cell 45 3 2012 398 408
    • (2012) Mol. Cell , vol.45 , Issue.3 , pp. 398-408
    • Day, A.M.1
  • 13
    • 58149395029 scopus 로고    scopus 로고
    • A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance
    • M. Olahova, and et al. A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance Proc. Natl. Acad. Sci. USA 105 50 2008 19839 19844
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , Issue.50 , pp. 19839-19844
    • Olahova, M.1
  • 14
    • 2542464938 scopus 로고    scopus 로고
    • Two enzymes in one; Two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function
    • H.H. Jang, and et al. Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function Cell 117 5 2004 625 635
    • (2004) Cell , vol.117 , Issue.5 , pp. 625-635
    • Jang, H.H.1
  • 15
    • 67650050608 scopus 로고    scopus 로고
    • Mitochondrial peroxiredoxin 3 is more resilient to hyperoxidation than cytoplasmic peroxiredoxins
    • A.G. Cox, and et al. Mitochondrial peroxiredoxin 3 is more resilient to hyperoxidation than cytoplasmic peroxiredoxins Biochem. J. 421 1 2009 51 58
    • (2009) Biochem. J. , vol.421 , Issue.1 , pp. 51-58
    • Cox, A.G.1
  • 16
    • 84877886960 scopus 로고    scopus 로고
    • Hyperoxidation of peroxiredoxins 2 and 3: Rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine
    • A.V. Peskin, and et al. Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine J. Biol. Chem. 288 20 2013 14170 14177
    • (2013) J. Biol. Chem. , vol.288 , Issue.20 , pp. 14170-14177
    • Peskin, A.V.1
  • 17
    • 84885672872 scopus 로고    scopus 로고
    • Molecular basis for the resistance of human mitochondrial 2-Cys peroxiredoxin 3 to hyperoxidation
    • A.C. Haynes, J. Qian, J.A. Reisz, C.M. Furdui, and W.T. Lowther Molecular basis for the resistance of human mitochondrial 2-Cys peroxiredoxin 3 to hyperoxidation J. Biol. Chem. 288 41 2013 29714 29723
    • (2013) J. Biol. Chem. , vol.288 , Issue.41 , pp. 29714-29723
    • Haynes, A.C.1    Qian, J.2    Reisz, J.A.3    Furdui, C.M.4    Lowther, W.T.5
  • 18
    • 84896842840 scopus 로고    scopus 로고
    • Lack of an efficient endoplasmic reticulum-localized recycling system protects peroxiredoxin IV from hyperoxidation
    • Z. Cao, S. Subramaniam, and N.J. Bulleid Lack of an efficient endoplasmic reticulum-localized recycling system protects peroxiredoxin IV from hyperoxidation J. Biol. Chem. 289 9 2014 5490 5498
    • (2014) J. Biol. Chem. , vol.289 , Issue.9 , pp. 5490-5498
    • Cao, Z.1    Subramaniam, S.2    Bulleid, N.J.3
  • 19
    • 34250342997 scopus 로고    scopus 로고
    • 2 scavenger during aerobic growth in fission yeast
    • 2 scavenger during aerobic growth in fission yeast Mol. Biol. Cell 18 6 2007 2288 2295
    • (2007) Mol. Biol. Cell , vol.18 , Issue.6 , pp. 2288-2295
    • Jara, M.1
  • 20
    • 12244267727 scopus 로고    scopus 로고
    • Global transcriptional responses of fission yeast to environmental stress
    • D. Chen, and et al. Global transcriptional responses of fission yeast to environmental stress Mol. Biol. Cell 14 1 2003 214 229
    • (2003) Mol. Biol. Cell , vol.14 , Issue.1 , pp. 214-229
    • Chen, D.1
  • 21
    • 38749120261 scopus 로고    scopus 로고
    • Multiple pathways differentially regulate global oxidative stress responses in fission yeast
    • D. Chen, and et al. Multiple pathways differentially regulate global oxidative stress responses in fission yeast Mol. Biol. Cell 19 1 2008 308 317
    • (2008) Mol. Biol. Cell , vol.19 , Issue.1 , pp. 308-317
    • Chen, D.1
  • 22
    • 84859793036 scopus 로고    scopus 로고
    • Regulation of transcriptome, translation, and proteome in response to environmental stress in fission yeast
    • D.H. Lackner, M.W. Schmidt, S. Wu, D.A. Wolf, and J. Bahler Regulation of transcriptome, translation, and proteome in response to environmental stress in fission yeast Genome Biol. 13 4 2012 R25
    • (2012) Genome Biol. , vol.13 , Issue.4 , pp. R25
    • Lackner, D.H.1    Schmidt, M.W.2    Wu, S.3    Wolf, D.A.4    Bahler, J.5
  • 23
    • 0001445231 scopus 로고    scopus 로고
    • Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin
    • H.Z. Chae, H.J. Kim, S.W. Kang, and S.G. Rhee Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin Diabetes Res. Clin. Pract. 45 2-3 1999 101 112
    • (1999) Diabetes Res. Clin. Pract. , vol.45 , Issue.2-3 , pp. 101-112
    • Chae, H.Z.1    Kim, H.J.2    Kang, S.W.3    Rhee, S.G.4
  • 24
    • 64749114296 scopus 로고    scopus 로고
    • The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2
    • B. Manta, and et al. The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2 Arch. Biochem. Biophys. 484 2 2009 146 154
    • (2009) Arch. Biochem. Biophys. , vol.484 , Issue.2 , pp. 146-154
    • Manta, B.1
  • 25
    • 77952556210 scopus 로고    scopus 로고
    • A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells
    • B.C. Dickinson, C. Huynh, and C.J. Chang A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells J. Am. Chem. Soc. 132 16 2010 5906 5915
    • (2010) J. Am. Chem. Soc. , vol.132 , Issue.16 , pp. 5906-5915
    • Dickinson, B.C.1    Huynh, C.2    Chang, C.J.3
  • 26
    • 0346850874 scopus 로고    scopus 로고
    • Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence
    • H.A. Woo, and et al. Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence J. Biol. Chem. 278 48 2003 47361 47364
    • (2003) J. Biol. Chem. , vol.278 , Issue.48 , pp. 47361-47364
    • Woo, H.A.1
  • 27
    • 0037082137 scopus 로고    scopus 로고
    • Regulation of thioredoxin peroxidase activity by C-terminal truncation
    • K.H. Koo, and et al. Regulation of thioredoxin peroxidase activity by C-terminal truncation Arch. Biochem. Biophys. 397 2 2002 312 318
    • (2002) Arch. Biochem. Biophys. , vol.397 , Issue.2 , pp. 312-318
    • Koo, K.H.1
  • 28
    • 43049159553 scopus 로고    scopus 로고
    • Kinetics of hydrogen peroxide elimination by astrocytes and C6 glioma cells analysis based on a mathematical model
    • N. Makino, T. Mise, and J. Sagara Kinetics of hydrogen peroxide elimination by astrocytes and C6 glioma cells analysis based on a mathematical model Biochim. Biophys. Acta 1780 6 2008 927 936
    • (2008) Biochim. Biophys. Acta , vol.1780 , Issue.6 , pp. 927-936
    • Makino, N.1    Mise, T.2    Sagara, J.3
  • 29
    • 84875718256 scopus 로고    scopus 로고
    • Is oxidized thioredoxin a major trigger for cysteine oxidation? Clues from a redox proteomics approach
    • S. Garcia-Santamarina, and et al. Is oxidized thioredoxin a major trigger for cysteine oxidation? Clues from a redox proteomics approach Antioxid. Redox Signal. 18 13 2013 1549 1556
    • (2013) Antioxid. Redox Signal. , vol.18 , Issue.13 , pp. 1549-1556
    • Garcia-Santamarina, S.1
  • 30
    • 84888348082 scopus 로고    scopus 로고
    • Methionine sulphoxide reductases revisited: Free methionine as a primary target of H(2)O(2)stress in auxotrophic fission yeast
    • S. Garcia-Santamarina, S. Boronat, J. Ayte, and E. Hidalgo Methionine sulphoxide reductases revisited: free methionine as a primary target of H(2)O(2)stress in auxotrophic fission yeast Mol. Microbiol. 90 2013 1113 1124
    • (2013) Mol. Microbiol. , vol.90 , pp. 1113-1124
    • Garcia-Santamarina, S.1    Boronat, S.2    Ayte, J.3    Hidalgo, E.4
  • 31
    • 77954935933 scopus 로고    scopus 로고
    • A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses
    • N.J. Adimora, D.P. Jones, and M.L. Kemp A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses Antioxid. Redox Signal. 13 6 2010 731 743
    • (2010) Antioxid. Redox Signal. , vol.13 , Issue.6 , pp. 731-743
    • Adimora, N.J.1    Jones, D.P.2    Kemp, M.L.3
  • 32
    • 58849148335 scopus 로고    scopus 로고
    • Quantifying the global cellular thiol-disulfide status
    • R.E. Hansen, D. Roth, and J.R. Winther Quantifying the global cellular thiol-disulfide status Proc. Natl. Acad. Sci. USA 106 2 2009 422 427
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , Issue.2 , pp. 422-427
    • Hansen, R.E.1    Roth, D.2    Winther, J.R.3
  • 33
    • 42249088093 scopus 로고    scopus 로고
    • Reconciling the chemistry and biology of reactive oxygen species
    • C.C. Winterbourn Reconciling the chemistry and biology of reactive oxygen species Nat. Chem. Biol. 4 5 2008 278 286
    • (2008) Nat. Chem. Biol. , vol.4 , Issue.5 , pp. 278-286
    • Winterbourn, C.C.1
  • 34
    • 58249083279 scopus 로고    scopus 로고
    • Enzymes or redox couples? the kinetics of thioredoxin and glutaredoxin reactions in a systems biology context
    • C.S. Pillay, J.H. Hofmeyr, B.G. Olivier, J.L. Snoep, and J.M. Rohwer Enzymes or redox couples? The kinetics of thioredoxin and glutaredoxin reactions in a systems biology context Biochem. J. 417 2009 269 275
    • (2009) Biochem. J. , vol.417 , pp. 269-275
    • Pillay, C.S.1    Hofmeyr, J.H.2    Olivier, B.G.3    Snoep, J.L.4    Rohwer, J.M.5
  • 35
    • 78951478981 scopus 로고    scopus 로고
    • The logic of kinetic regulation in the thioredoxin system
    • C.S. Pillay, J.H. Hofmeyr, and J.M. Rohwer The logic of kinetic regulation in the thioredoxin system BMC Syst. Biol. 5 2011 15
    • (2011) BMC Syst. Biol. , vol.5 , pp. 15
    • Pillay, C.S.1    Hofmeyr, J.H.2    Rohwer, J.M.3
  • 36
    • 77957652745 scopus 로고    scopus 로고
    • Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling
    • E.W. Miller, B.C. Dickinson, and C.J. Chang Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling Proc. Natl. Acad. Sci. USA 107 36 2010 15681 15686
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , Issue.36 , pp. 15681-15686
    • Miller, E.W.1    Dickinson, B.C.2    Chang, C.J.3
  • 37
    • 79958242400 scopus 로고    scopus 로고
    • Assessment of redox changes to hydrogen peroxide-sensitive proteins during EGF signaling
    • S.L. Cuddihy, C.C. Winterbourn, and M.B. Hampton Assessment of redox changes to hydrogen peroxide-sensitive proteins during EGF signaling Antioxid. Redox Signal. 15 1 2011 167 174
    • (2011) Antioxid. Redox Signal. , vol.15 , Issue.1 , pp. 167-174
    • Cuddihy, S.L.1    Winterbourn, C.C.2    Hampton, M.B.3
  • 38
    • 0037197672 scopus 로고    scopus 로고
    • Dimers to doughnuts: Redox-sensitive oligomerization of 2-cysteine peroxiredoxins
    • Z.A. Wood, L.B. Poole, R.R. Hantgan, and P.A. Karplus Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins Biochemistry 41 17 2002 5493 5504
    • (2002) Biochemistry , vol.41 , Issue.17 , pp. 5493-5504
    • Wood, Z.A.1    Poole, L.B.2    Hantgan, R.R.3    Karplus, P.A.4
  • 39
    • 23244466487 scopus 로고    scopus 로고
    • Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin
    • D. Parsonage, and et al. Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin Biochemistry 44 31 2005 10583 10592
    • (2005) Biochemistry , vol.44 , Issue.31 , pp. 10583-10592
    • Parsonage, D.1
  • 40
    • 84897962325 scopus 로고    scopus 로고
    • 2 scavenging in fission yeast - Distinct roles of peroxiredoxin and catalase
    • 2 scavenging in fission yeast - distinct roles of peroxiredoxin and catalase Mol. Microbiol. 92 2 2014 246 257
    • (2014) Mol. Microbiol. , vol.92 , Issue.2 , pp. 246-257
    • Paulo, E.1
  • 41
    • 84904329372 scopus 로고    scopus 로고
    • Hydrogen peroxide metabolism and sensing in human erythrocytes: A validated kinetic model and reappraisal of the role of peroxiredoxin II
    • R. Benfeitas, G. Selvaggio, F. Antunes, P.M. Coelho, and A. Salvador Hydrogen peroxide metabolism and sensing in human erythrocytes: a validated kinetic model and reappraisal of the role of peroxiredoxin II Free Radic. Biol. Med. 74 2014 35 49
    • (2014) Free Radic. Biol. Med. , vol.74 , pp. 35-49
    • Benfeitas, R.1    Selvaggio, G.2    Antunes, F.3    Coelho, P.M.4    Salvador, A.5
  • 42
    • 84861452257 scopus 로고    scopus 로고
    • Peroxiredoxins are conserved markers of circadian rhythms
    • R.S. Edgar, and et al. Peroxiredoxins are conserved markers of circadian rhythms Nature 485 7399 2012 459 464
    • (2012) Nature , vol.485 , Issue.7399 , pp. 459-464
    • Edgar, R.S.1
  • 43
    • 79251539603 scopus 로고    scopus 로고
    • Circadian rhythms persist without transcription in a eukaryote
    • J.S. O'Neill, and et al. Circadian rhythms persist without transcription in a eukaryote Nature 469 7331 2011 554 558
    • (2011) Nature , vol.469 , Issue.7331 , pp. 554-558
    • O'Neill, J.S.1
  • 44
    • 79251566511 scopus 로고    scopus 로고
    • Circadian clocks in human red blood cells
    • J.S. O'Neill, and A.B. Reddy Circadian clocks in human red blood cells Nature 469 7331 2011 498 503
    • (2011) Nature , vol.469 , Issue.7331 , pp. 498-503
    • O'Neill, J.S.1    Reddy, A.B.2
  • 45
    • 84896339411 scopus 로고    scopus 로고
    • The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis
    • V. Pekovic-Vaughan, and et al. The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis Genes Dev. 28 6 2014 548 560
    • (2014) Genes Dev. , vol.28 , Issue.6 , pp. 548-560
    • Pekovic-Vaughan, V.1
  • 46
    • 84906322941 scopus 로고    scopus 로고
    • Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells
    • C.S. Cho, H.J. Yoon, J.Y. Kim, H.A. Woo, and S.G. Rhee Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells Proc. Natl. Acad. Sci. USA 111 33 2014 12043 12048
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , Issue.33 , pp. 12043-12048
    • Cho, C.S.1    Yoon, H.J.2    Kim, J.Y.3    Woo, H.A.4    Rhee, S.G.5
  • 47
    • 33845303974 scopus 로고    scopus 로고
    • Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery
    • T.J. Phalen, and et al. Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery J. Cell Biol. 175 5 2006 779 789
    • (2006) J. Cell Biol. , vol.175 , Issue.5 , pp. 779-789
    • Phalen, T.J.1
  • 48
    • 84887489831 scopus 로고    scopus 로고
    • Role for Prdx1 as a specific sensor in redox-regulated senescence in breast cancer
    • B. Turner-Ivey, and et al. Role for Prdx1 as a specific sensor in redox-regulated senescence in breast cancer Oncogene 32 45 2013 5302 5314
    • (2013) Oncogene , vol.32 , Issue.45 , pp. 5302-5314
    • Turner-Ivey, B.1
  • 49
    • 0034597012 scopus 로고    scopus 로고
    • 2 sensing through oxidation of the Yap1 transcription factor
    • 2 sensing through oxidation of the Yap1 transcription factor EMBO J. 19 19 2000 5157 5166
    • (2000) EMBO J. , vol.19 , Issue.19 , pp. 5157-5166
    • Delaunay, A.1    Isnard, A.D.2    Toledano, M.B.3
  • 50
    • 0015727259 scopus 로고
    • Symbolic description of factorial models for analysis of variance
    • G. Wilkinson, and C.E. Rogers Symbolic description of factorial models for analysis of variance J. R. Stat. Soc. C - Appl. 22 3 1973 392 399
    • (1973) J. R. Stat. Soc. C - Appl. , vol.22 , Issue.3 , pp. 392-399
    • Wilkinson, G.1    Rogers, C.E.2
  • 52
    • 84868028972 scopus 로고    scopus 로고
    • Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells
    • S. Marguerat, and et al. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells Cell 151 3 2012 671 683
    • (2012) Cell , vol.151 , Issue.3 , pp. 671-683
    • Marguerat, S.1
  • 53
    • 77950946009 scopus 로고    scopus 로고
    • Insights into the specificity of thioredoxin reductase-thioredoxin interactions. A structural and functional investigation of the yeast thioredoxin system
    • M.A. Oliveira, and et al. Insights into the specificity of thioredoxin reductase-thioredoxin interactions. A structural and functional investigation of the yeast thioredoxin system Biochemistry 49 15 2010 3317 3326
    • (2010) Biochemistry , vol.49 , Issue.15 , pp. 3317-3326
    • Oliveira, M.A.1
  • 54
    • 33845368513 scopus 로고    scopus 로고
    • COPASI - A COmplex PAthway SImulator
    • S. Hoops, and et al. COPASI - a COmplex PAthway SImulator Bioinformatics 22 24 2006 3067 3074
    • (2006) Bioinformatics , vol.22 , Issue.24 , pp. 3067-3074
    • Hoops, S.1
  • 55
    • 33646698671 scopus 로고    scopus 로고
    • Hydrogen peroxide: A signaling messenger
    • J.R. Stone, and S. Yang Hydrogen peroxide: a signaling messenger Antioxid. Redox Signal. 8 3-4 2006 243 270
    • (2006) Antioxid. Redox Signal. , vol.8 , Issue.3-4 , pp. 243-270
    • Stone, J.R.1    Yang, S.2
  • 56
    • 0000169232 scopus 로고
    • An algorithm for least squares estimation of nonlinear parameters
    • D.W. Marquadt An algorithm for least squares estimation of nonlinear parameters SIAM J. Algebra Discr. 11 1963 431 441
    • (1963) SIAM J. Algebra Discr. , vol.11 , pp. 431-441
    • Marquadt, D.W.1
  • 57
    • 85027948582 scopus 로고    scopus 로고
    • Easy parameter identifiability analysis with COPASI
    • J. Schaber Easy parameter identifiability analysis with COPASI Biosystems 110 3 2012 183 185
    • (2012) Biosystems , vol.110 , Issue.3 , pp. 183-185
    • Schaber, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.