메뉴 건너뛰기




Volumn 60, Issue , 2016, Pages 114-119

Generating a robust statistical causal structure over 13 cardiovascular disease risk factors using genomics data

Author keywords

Cardiovascular disease risk factors; Causal network; Conditional independency; Data integration; Granularity DAG; Partial correlation

Indexed keywords

CARDIOLOGY; DATA INTEGRATION; DIRECTED GRAPHS; DISEASES; GENES; GRAPH THEORY; RISK ASSESSMENT;

EID: 84962866775     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2016.01.012     Document Type: Article
Times cited : (39)

References (42)
  • 1
    • 25144441907 scopus 로고    scopus 로고
    • Mining genetic epidemiology data with Bayesian networks I: Bayesian networks and example application (plasma APOE levels)
    • Rodin S., Boerwinkle E. Mining genetic epidemiology data with Bayesian networks I: Bayesian networks and example application (plasma APOE levels). Bioinformatics 2005, 21(15):3273-3278.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3273-3278
    • Rodin, S.1    Boerwinkle, E.2
  • 2
    • 84864845456 scopus 로고    scopus 로고
    • Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomization study
    • Voight B.F., Peloso G.M., Orho-Melander M., et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomization study. Lancet 2012, 380(9841):572-580.
    • (2012) Lancet , vol.380 , Issue.9841 , pp. 572-580
    • Voight, B.F.1    Peloso, G.M.2    Orho-Melander, M.3
  • 3
    • 1942507436 scopus 로고    scopus 로고
    • Commentary: the concept of 'Mendelian randomization'
    • Thomas D.C., Conti D.V. Commentary: the concept of 'Mendelian randomization'. Int. J. Epidemiol. 2004, 33:21-25.
    • (2004) Int. J. Epidemiol. , vol.33 , pp. 21-25
    • Thomas, D.C.1    Conti, D.V.2
  • 4
    • 0035922669 scopus 로고    scopus 로고
    • Epidemiological methods for studying genes and environmental factors in complex diseases
    • Clayton D., McKeigue P.M. Epidemiological methods for studying genes and environmental factors in complex diseases. Lancet 2001, 358:1356-1360.
    • (2001) Lancet , vol.358 , pp. 1356-1360
    • Clayton, D.1    McKeigue, P.M.2
  • 5
    • 33745483785 scopus 로고    scopus 로고
    • Causal inference of regulator-target paris by gene mapping of expression phenotypes
    • Kulp D.C., Jagalur M. Causal inference of regulator-target paris by gene mapping of expression phenotypes. BMC Genom. 2006, 7:125.
    • (2006) BMC Genom. , vol.7 , pp. 125
    • Kulp, D.C.1    Jagalur, M.2
  • 6
    • 21844466219 scopus 로고    scopus 로고
    • Metaanalysis of genetic studies using Mendelian randomization - a multivariate approach
    • Thompson J.R., Minelli C., Abrams K.R., Tobin M.D., Riley R.D. Metaanalysis of genetic studies using Mendelian randomization - a multivariate approach. Stat. Med. 2005, 24:2241-2254.
    • (2005) Stat. Med. , vol.24 , pp. 2241-2254
    • Thompson, J.R.1    Minelli, C.2    Abrams, K.R.3    Tobin, M.D.4    Riley, R.D.5
  • 8
    • 45149106353 scopus 로고    scopus 로고
    • Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
    • Zhu J., Zhang B., Smith E.N., Drees B., Brem R.B., Kruglyak L., et al. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat. Genet. 2008, 40(7):854-861.
    • (2008) Nat. Genet. , vol.40 , Issue.7 , pp. 854-861
    • Zhu, J.1    Zhang, B.2    Smith, E.N.3    Drees, B.4    Brem, R.B.5    Kruglyak, L.6
  • 9
    • 44149084690 scopus 로고    scopus 로고
    • Using genetic markers to orient the edges in quantitative trait networks: the NEO software
    • Aten J.E., Fuller T.F., Lusis A.J., Horvath S. Using genetic markers to orient the edges in quantitative trait networks: the NEO software. BMC Syst. Biol. 2008, 2:34.
    • (2008) BMC Syst. Biol. , vol.2 , pp. 34
    • Aten, J.E.1    Fuller, T.F.2    Lusis, A.J.3    Horvath, S.4
  • 10
    • 84870284276 scopus 로고    scopus 로고
    • Causal graphical models in systems genetics: a unified framework for joint inference of causal network and genetic architecture for correlated phenotypes
    • Neto E.C., Keller M.P., Attie A.D., Yandell B.S. Causal graphical models in systems genetics: a unified framework for joint inference of causal network and genetic architecture for correlated phenotypes. Ann. Appl. Stat. 2010, 4(1):320.
    • (2010) Ann. Appl. Stat. , vol.4 , Issue.1 , pp. 320
    • Neto, E.C.1    Keller, M.P.2    Attie, A.D.3    Yandell, B.S.4
  • 11
    • 79961177302 scopus 로고    scopus 로고
    • Avoiding bias from weak instruments in Mendelian randomization studies
    • Burgess S., Thompson S. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 2011, 40(3):755-764.
    • (2011) Int. J. Epidemiol. , vol.40 , Issue.3 , pp. 755-764
    • Burgess, S.1    Thompson, S.2
  • 13
    • 84870273403 scopus 로고    scopus 로고
    • Fundamentals of statistical causality.
    • Research Report 279, Department of Statistical Science, University College London
    • A.P. Dawid, Fundamentals of statistical causality. Research Report 279, Department of Statistical Science, University College London, 2007.
    • (2007)
    • Dawid, A.P.1
  • 15
    • 85012647231 scopus 로고
    • Causal Networks: Semantics and Expressiveness
    • North-Holland, Amsterdam, R.D. Shachter, T.S. Levitt, L.N. Kanal, J.F. Lemmer (Eds.)
    • Verma T., Pearl J. Causal Networks: Semantics and Expressiveness. Uncertainty in Artificial Intelligence 4 1990, 69-76. North-Holland, Amsterdam. R.D. Shachter, T.S. Levitt, L.N. Kanal, J.F. Lemmer (Eds.).
    • (1990) Uncertainty in Artificial Intelligence 4 , pp. 69-76
    • Verma, T.1    Pearl, J.2
  • 18
    • 0001775899 scopus 로고
    • An algorithm for deciding if a set of observational independencies has a causal explanation
    • in: D. Dubois, M.P. Wellman, B. D'Ambrosio, P. Smets (Eds.), Morgan Kaufmann
    • T. Verma, J. Pearl. An algorithm for deciding if a set of observational independencies has a causal explanation, in: D. Dubois, M.P. Wellman, B. D'Ambrosio, P. Smets (Eds.), Proceedings of the Eight Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, 1992, pp. 323-330.
    • (1992) Proceedings of the Eight Conference on Uncertainty in Artificial Intelligence , pp. 323-330
    • Verma, T.1    Pearl, J.2
  • 20
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the lasso
    • Meinshausen N., Buhlmann P. High dimensional graphs and variable selection with the lasso. Ann. Stat. 2006, 34:1436-1462.
    • (2006) Ann. Stat. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 21
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman Jerome, Hastie Trevor, Tibshirani Robert Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008, 9(3):432-441.
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 22
    • 85162490550 scopus 로고    scopus 로고
    • Sparse inverse covariance matrix estimation using quadratic approximation
    • Hsieh Cho-Jui, et al. Sparse inverse covariance matrix estimation using quadratic approximation. Adv Neural Inform Process Syst 2011.
    • (2011) Adv Neural Inform Process Syst
    • Hsieh, C.-J.1
  • 23
    • 77953107844 scopus 로고    scopus 로고
    • Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs
    • Shojaie Ali, Michailidis George Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs. Biometrika 2010, 97(3):519-538.
    • (2010) Biometrika , vol.97 , Issue.3 , pp. 519-538
    • Shojaie, A.1    Michailidis, G.2
  • 24
    • 40449141013 scopus 로고    scopus 로고
    • What is principal component analysis?
    • Ringnér M. What is principal component analysis?. Nat. Biotechnol. 2008, 26(3):303-304.
    • (2008) Nat. Biotechnol. , vol.26 , Issue.3 , pp. 303-304
    • Ringnér, M.1
  • 25
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • Alter O., Brown P., Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. 2000, 97:10101-10106.
    • (2000) Proc. Natl. Acad. Sci. , vol.97 , pp. 10101-10106
    • Alter, O.1    Brown, P.2    Botstein, D.3
  • 26
    • 33746512512 scopus 로고    scopus 로고
    • Principal components analysis corrects for stratification in genome-wide association studies
    • Price Alkes L., et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38(8):904-909.
    • (2006) Nat. Genet. , vol.38 , Issue.8 , pp. 904-909
    • Price, A.L.1
  • 28
    • 60849102445 scopus 로고    scopus 로고
    • Partial correlation analysis indicates causal relationships between GC-content, exon density and recombination rate in the human genome
    • Freudenberg Jan, et al. Partial correlation analysis indicates causal relationships between GC-content, exon density and recombination rate in the human genome. BMC Bioinformatics 2009, 10(Suppl. 1):S66.
    • (2009) BMC Bioinformatics , vol.10 , pp. S66
    • Freudenberg, J.1
  • 29
    • 11844293410 scopus 로고    scopus 로고
    • Partial correlation and conditional correlation as measures of conditional independence
    • Baba Kunihiro, Shibata Ritei, Sibuya Masaaki Partial correlation and conditional correlation as measures of conditional independence. Aust. NZ J. Stat. 2004, 46(4):657-664.
    • (2004) Aust. NZ J. Stat. , vol.46 , Issue.4 , pp. 657-664
    • Baba, K.1    Shibata, R.2    Sibuya, M.3
  • 30
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • Kalisch M., Bühlmann P. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 2007, 8:613-636.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 613-636
    • Kalisch, M.1    Bühlmann, P.2
  • 34
    • 34249938725 scopus 로고    scopus 로고
    • Bayesian network learning algorithms using structural restrictions
    • de Campos L.M., Castellano J.G. Bayesian network learning algorithms using structural restrictions. Int. J. Approximate Reasoning 2007, 45(2):233-254.
    • (2007) Int. J. Approximate Reasoning , vol.45 , Issue.2 , pp. 233-254
    • de Campos, L.M.1    Castellano, J.G.2
  • 35
    • 0024591825 scopus 로고
    • The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators
    • The ARIC Investigators The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. Am. J. Epidemiol. 1989, 129(4):687-702.
    • (1989) Am. J. Epidemiol. , vol.129 , Issue.4 , pp. 687-702
  • 36
    • 84962901366 scopus 로고    scopus 로고
    • http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000287.v3.p1.
  • 37
    • 84962892376 scopus 로고    scopus 로고
    • http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000401.v9.p10.
  • 38
    • 84962792935 scopus 로고    scopus 로고
    • http://www.ncbi.nlm.nih.gov/gap.
  • 39
    • 84950290044 scopus 로고    scopus 로고
    • A hybrid Bayesian approach for genome-wide association studies on related individuals
    • btv496
    • Yazdani A., Dunson D.B. A hybrid Bayesian approach for genome-wide association studies on related individuals. Bioinformatics 2015, btv496.
    • (2015) Bioinformatics
    • Yazdani, A.1    Dunson, D.B.2
  • 40
    • 0034969359 scopus 로고    scopus 로고
    • Platelet-fibrinogen interactions
    • Bennett, Joel S. Platelet-fibrinogen interactions. Ann. N. Y. Acad. Sci. 2001, 936(1):340-354.
    • (2001) Ann. N. Y. Acad. Sci. , vol.936 , Issue.1 , pp. 340-354
    • Bennett, J.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.