메뉴 건너뛰기




Volumn 7, Issue , 2006, Pages

Causal inference of regulator-target pairs by gene mapping of expression phenotypes

Author keywords

[No Author keywords available]

Indexed keywords

CIS ACTING ELEMENT; TRANS ACTING FACTOR; TRANSCRIPTION FACTOR;

EID: 33745483785     PISSN: 14712164     EISSN: 14712164     Source Type: Journal    
DOI: 10.1186/1471-2164-7-125     Document Type: Article
Times cited : (65)

References (37)
  • 4
    • 0037177625 scopus 로고    scopus 로고
    • Genetic dissection of transcriptional regulation in budding yeast
    • Brem R, Yvert G, Clinton R, Kruglyak L: Genetic dissection of transcriptional regulation in budding yeast. Science 2002, 296(5568):752-5.
    • (2002) Science , vol.296 , Issue.5568 , pp. 752-755
    • Brem, R.1    Yvert, G.2    Clinton, R.3    Kruglyak, L.4
  • 5
    • 13444306165 scopus 로고    scopus 로고
    • The landscape of geneticcom plexity across 5,700 gene expression traits in yeast
    • Brem R, Kruglyak L: The landscape of geneticcom plexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci USA 2005, 102(5):1572-7.
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.5 , pp. 1572-1577
    • Brem, R.1    Kruglyak, L.2
  • 7
    • 0024508964 scopus 로고
    • Mapping mendelian factors underlying quantitative traits using RFLP linkage maps
    • Lander E, Botstein D: Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989, 121:185-99.
    • (1989) Genetics , vol.121 , pp. 185-199
    • Lander, E.1    Botstein, D.2
  • 8
  • 9
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman P, Sherlock G, Zhang M, Iyer V, Anders K, Eisen M, Brown P, Botstein D, Putcher B: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998, 9(12):3273-97.
    • (1998) Mol Biol Cell , vol.9 , Issue.12 , pp. 3273-3297
    • Spellman, P.1    Sherlock, G.2    Zhang, M.3    Iyer, V.4    Anders, K.5    Eisen, M.6    Brown, P.7    Botstein, D.8    Putcher, B.9
  • 12
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, Pe'er D: Using Bayesian networks to analyze expression data. J Comput Biol 2000, 7(34):601-20.
    • (2000) J Comput Biol , vol.7 , Issue.34 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 14
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • Pe'er D, Regev A, Elidan G, Friedman N: Inferring subnetworks from perturbed expression profiles. Bioinformatics 2001, 17(Suppl 1):S215-24.
    • (2001) Bioinformatics , vol.17 , Issue.SUPPL. 1
    • Pe'er, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 15
    • 0036366689 scopus 로고    scopus 로고
    • Combining location and expression data for principled discovery of genetic regulatory network models
    • Hartemink A, Gifford D, Jaakkola T, Young R: Combining location and expression data for principled discovery of genetic regulatory network models. Pac Symp Biocomput 2002:437-49.
    • (2002) Pac Symp Biocomput , pp. 437-449
    • Hartemink, A.1    Gifford, D.2    Jaakkola, T.3    Young, R.4
  • 16
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 2003, 34(2):166-76.
    • (2003) Nat Genet , vol.34 , Issue.2 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 17
    • 0000854197 scopus 로고    scopus 로고
    • Learning the structure of dynamic probabilistic networks
    • Friedman N, Murphy K. Russell S: Learning the structure of dynamic probabilistic networks. UAI 1998.
    • (1998) UAI
    • Friedman, N.1    Murphy, K.2    Russell, S.3
  • 21
    • 22144454660 scopus 로고    scopus 로고
    • Genetical genomics analysis of a yeast segregant population for transcription network inference
    • Bing N, Hoeschele I: Genetical genomics analysis of a yeast segregant population for transcription network inference. Genetics 2005, 170(2):533-42.
    • (2005) Genetics , vol.170 , Issue.2 , pp. 533-542
    • Bing, N.1    Hoeschele, I.2
  • 22
    • 0034817026 scopus 로고    scopus 로고
    • A statistical framework for quantitative trait mapping
    • Sen S, Churchill G: A statistical framework for quantitative trait mapping. Genetics 2001, 159:371-87.
    • (2001) Genetics , vol.159 , pp. 371-387
    • Sen, S.1    Churchill, G.2
  • 23
    • 23644434473 scopus 로고    scopus 로고
    • Multiple Locus Linkage Analysis of Genomewide Expression in Yeast
    • Storey J, Akey J, Kruglyak L: Multiple Locus Linkage Analysis of Genomewide Expression in Yeast. PLoS Biology 2005, 3(8):.
    • (2005) PLoS Biology , vol.3 , Issue.8
    • Storey, J.1    Akey, J.2    Kruglyak, L.3
  • 25
    • 0037218838 scopus 로고    scopus 로고
    • Autoregulation in the biosynthesis of ribosomes
    • Zhao Y, Sohn J, Warner J: Autoregulation in the biosynthesis of ribosomes. Mol Cell Biol 2003, 23(2):699-707.
    • (2003) Mol Cell Biol , vol.23 , Issue.2 , pp. 699-707
    • Zhao, Y.1    Sohn, J.2    Warner, J.3
  • 27
    • 0029951770 scopus 로고    scopus 로고
    • Functional analysis of YCL09C: Evidence for a role as the regulatory subunit of acetolactate synthase
    • Cullin C, Baudin-Baillieu A, Guillemet E, Ozier-Kalogeropoulos O: Functional analysis of YCL09C: evidence for a role as the regulatory subunit of acetolactate synthase. Yeast 1996, 12(15):1511-8.
    • (1996) Yeast , vol.12 , Issue.15 , pp. 1511-1518
    • Cullin, C.1    Baudin-Baillieu, A.2    Guillemet, E.3    Ozier-Kalogeropoulos, O.4
  • 28
    • 27544503451 scopus 로고    scopus 로고
    • Growing Bayesian network models of gene networks from seed genes
    • Pena J, Bjorkegren J, Tegner J: Growing Bayesian network models of gene networks from seed genes. Bioinformatics 2005, 21(Suppl 2):ii224-ii229.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 2
    • Pena, J.1    Bjorkegren, J.2    Tegner, J.3
  • 31
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G, Herskovits E: A Bayesian method for the induction of probabilistic networks from data. Machine Learning 1992, 9(4):309-347.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 32
    • 0003873122 scopus 로고    scopus 로고
    • Sunderland, Mass.: Sinauer; [97017666 Michael Lynch, Bruce Walsh. Includes bibliographical references and indexes.]
    • Lynch M, Walsh B: Genetics and analysis of quantita tive traits Sunderland, Mass.: Sinauer; 1998. [97017666 Michael Lynch, Bruce Walsh. Includes bibliographical references (p. 891-[948]) and indexes.].
    • (1998) Genetics and Analysis of Quantitative Traits , pp. 891-948
    • Lynch, M.1    Walsh, B.2
  • 33
    • 0029022716 scopus 로고
    • Multiple trait analysis of genetic mapping for quantitative trait loci
    • Jiang C, Zeng Z: Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 1995, 144)(3):1111-27.
    • (1995) Genetics , vol.144 , Issue.3 , pp. 1111-1127
    • Jiang, C.1    Zeng, Z.2
  • 35
    • 0141920354 scopus 로고    scopus 로고
    • Comparing protein abundance and mRNA expression levels on a genomic scale
    • Greenbaum D, Colangelo C, Williams K, Gerstein M: Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 2003, 4(9)-117.
    • (2003) Genome Biol , vol.4 , Issue.9 , pp. 117
    • Greenbaum, D.1    Colangelo, C.2    Williams, K.3    Gerstein, M.4
  • 36
    • 14844307159 scopus 로고    scopus 로고
    • Inferring quantitative models of regulatory networks from expression data
    • Nachman I, Regev A, Friedman N: Inferring quantitative models of regulatory networks from expression data. Bioinformatics 2004, 20(Suppl 1):1248-1256.
    • (2004) Bioinformatics , vol.20 , Issue.SUPPL. 1 , pp. 1248-1256
    • Nachman, I.1    Regev, A.2    Friedman, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.