메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Sparse inverse covariance matrix estimation using quadratic approximation

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ALGORITHMS; COVARIANCE MATRIX; INVERSE PROBLEMS; MAXIMUM LIKELIHOOD ESTIMATION;

EID: 85162490550     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (243)

References (21)
  • 1
    • 85162018878 scopus 로고    scopus 로고
    • Convergence rates of gradient methods for high-dimensional statistical recovery
    • A. Agarwal, S. Negahban, and M. Wainwright. Convergence rates of gradient methods for high-dimensional statistical recovery. In NIPS, 2010.
    • (2010) NIPS
    • Agarwal, A.1    Negahban, S.2    Wainwright, M.3
  • 2
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • O. Banerjee, L. E. Ghaoui, and A. d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. The Journal of Machine Learning Research, 9, 6 2008.
    • (2008) The Journal of Machine Learning Research , vol.9 , pp. 6
    • Banerjee, O.1    Ghaoui, L.E.2    D'aspremont, A.3
  • 5
    • 80053264034 scopus 로고    scopus 로고
    • Projected subgradient methods for learning sparse Gaussians
    • J. Duchi, S. Gould, and D. Koller. Projected subgradient methods for learning sparse Gaussians. UAI, 2008.
    • (2008) UAI
    • Duchi, J.1    Gould, S.2    Koller, D.3
  • 6
    • 33645494808 scopus 로고
    • Newton's method and the Goldstein step-length rule for constrained minimization problems
    • J. Dunn. Newton's method and the Goldstein step-length rule for constrained minimization problems. SIAM J. Control and Optimization, 18(6):659-674, 1980.
    • (1980) SIAM J. Control and Optimization , vol.18 , Issue.6 , pp. 659-674
    • Dunn, J.1
  • 8
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimationwith the graphical lasso
    • July
    • J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimationwith the graphical lasso. Biostatistics, 9(3):432-441, July 2008.
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 9
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010.
    • (2010) Journal of Statistical Software , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 11
    • 84860633052 scopus 로고    scopus 로고
    • An inexact interior point method for l1-reguarlized sparse covariance selection
    • L. Li and K.-C. Toh. An inexact interior point method for l1-reguarlized sparse covariance selection. Mathematical Programming Computation, 2:291-315, 2010.
    • (2010) Mathematical Programming Computation , vol.2 , pp. 291-315
    • Li, L.1    Toh, K.-C.2
  • 13
    • 0004267646 scopus 로고
    • PrincetonUniversity Press, Princeton,NJ
    • R. T. Rockafellar. Convex Analysis. PrincetonUniversity Press, Princeton,NJ, 1970.
    • (1970) Convex Analysis
    • Rockafellar, R.T.1
  • 14
    • 85162024247 scopus 로고    scopus 로고
    • Sparse inverse covariance selection via alternating linearization methods
    • K. Scheinberg, S. Ma, and D. Glodfarb. Sparse inverse covariance selection via alternating linearization methods. NIPS, 2010.
    • (2010) NIPS
    • Scheinberg, K.1    Ma, S.2    Glodfarb, D.3
  • 15
    • 77958041597 scopus 로고    scopus 로고
    • Learning sparse Gaussian Markov networks using a greedy coordinate ascent approach
    • J. Balczar, F. Bonchi, A. Gionis, and M. Sebag, editors, volume 6323 of Lecture Notes in Computer Science, SpringerBerlin / Heidelberg
    • K. Scheinberg and I. Rish. Learning sparse Gaussian Markov networks using a greedy coordinate ascent approach. In J. Balczar, F. Bonchi, A. Gionis, and M. Sebag, editors, Machine Learning and Knowledge Discovery in Databases, volume 6323 of Lecture Notes in Computer Science, pages 196-212. SpringerBerlin / Heidelberg, 2010.
    • (2010) Machine Learning and Knowledge Discovery in Databases , pp. 196-212
    • Scheinberg, K.1    Rish, I.2
  • 17
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable minimization. Mathematical Programming, 117:387-423, 2007.
    • (2007) Mathematical Programming , vol.117 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 18
    • 84863879353 scopus 로고    scopus 로고
    • Coordinate descent algorithms for lasso penalized regression
    • T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression. The Annals of Applied Statistics, 2(1):224-244,2008.
    • (2008) The Annals of Applied Statistics , vol.2 , Issue.1 , pp. 224-244
    • Wu, T.T.1    Lange, K.2
  • 19
    • 79551500651 scopus 로고    scopus 로고
    • A comparison of optimization methods and software for large-scale l1-regularized linear classification
    • G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. A comparison of optimization methods and software for large-scale l1-regularized linear classification. Journal of Machine Learning Research, 11:3183-3234, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3183-3234
    • Yuan, G.-X.1    Chang, K.-W.2    Hsieh, C.-J.3    Lin, C.-J.4
  • 20
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • M. Yuan and Y. Lin. Model selection and estimation in the gaussian graphical model. Biometrika, 94:19-35, 2007.
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 21
    • 79955559521 scopus 로고    scopus 로고
    • A coordinate gradient descent method for l1-regularized convex minimization
    • S. Yun and K.-C. Toh. A coordinate gradient descent method for l1-regularized convex minimization. Computational Optimizations and Applications, 48(2):273-307, 2011.
    • (2011) Computational Optimizations and Applications , vol.48 , Issue.2 , pp. 273-307
    • Yun, S.1    Toh, K.-C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.