-
1
-
-
85162018878
-
Convergence rates of gradient methods for high-dimensional statistical recovery
-
A. Agarwal, S. Negahban, and M. Wainwright. Convergence rates of gradient methods for high-dimensional statistical recovery. In NIPS, 2010.
-
(2010)
NIPS
-
-
Agarwal, A.1
Negahban, S.2
Wainwright, M.3
-
2
-
-
41549101939
-
Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
-
O. Banerjee, L. E. Ghaoui, and A. d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. The Journal of Machine Learning Research, 9, 6 2008.
-
(2008)
The Journal of Machine Learning Research
, vol.9
, pp. 6
-
-
Banerjee, O.1
Ghaoui, L.E.2
D'aspremont, A.3
-
5
-
-
80053264034
-
Projected subgradient methods for learning sparse Gaussians
-
J. Duchi, S. Gould, and D. Koller. Projected subgradient methods for learning sparse Gaussians. UAI, 2008.
-
(2008)
UAI
-
-
Duchi, J.1
Gould, S.2
Koller, D.3
-
6
-
-
33645494808
-
Newton's method and the Goldstein step-length rule for constrained minimization problems
-
J. Dunn. Newton's method and the Goldstein step-length rule for constrained minimization problems. SIAM J. Control and Optimization, 18(6):659-674, 1980.
-
(1980)
SIAM J. Control and Optimization
, vol.18
, Issue.6
, pp. 659-674
-
-
Dunn, J.1
-
7
-
-
45849107328
-
Pathwise coordinate optimization
-
J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization. Annals of Applied Statistics, 1(2):302-332,2007.
-
(2007)
Annals of Applied Statistics
, vol.1
, Issue.2
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Höfling, H.3
Tibshirani, R.4
-
8
-
-
45849134070
-
Sparse inverse covariance estimationwith the graphical lasso
-
July
-
J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimationwith the graphical lasso. Biostatistics, 9(3):432-441, July 2008.
-
(2008)
Biostatistics
, vol.9
, Issue.3
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
9
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010.
-
(2010)
Journal of Statistical Software
, vol.33
, Issue.1
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
11
-
-
84860633052
-
An inexact interior point method for l1-reguarlized sparse covariance selection
-
L. Li and K.-C. Toh. An inexact interior point method for l1-reguarlized sparse covariance selection. Mathematical Programming Computation, 2:291-315, 2010.
-
(2010)
Mathematical Programming Computation
, vol.2
, pp. 291-315
-
-
Li, L.1
Toh, K.-C.2
-
12
-
-
37849035696
-
The group lasso for logistic regression
-
L. Meier, S. Van de Geer, and P. Bühlmann. The group lasso for logistic regression. Journal of the Royal Statistical Society, Series B, 70:53-71, 2008.
-
(2008)
Journal of the Royal Statistical Society, Series B
, vol.70
, pp. 53-71
-
-
Meier, L.1
Van De Geer, S.2
Bühlmann, P.3
-
13
-
-
0004267646
-
-
PrincetonUniversity Press, Princeton,NJ
-
R. T. Rockafellar. Convex Analysis. PrincetonUniversity Press, Princeton,NJ, 1970.
-
(1970)
Convex Analysis
-
-
Rockafellar, R.T.1
-
14
-
-
85162024247
-
Sparse inverse covariance selection via alternating linearization methods
-
K. Scheinberg, S. Ma, and D. Glodfarb. Sparse inverse covariance selection via alternating linearization methods. NIPS, 2010.
-
(2010)
NIPS
-
-
Scheinberg, K.1
Ma, S.2
Glodfarb, D.3
-
15
-
-
77958041597
-
Learning sparse Gaussian Markov networks using a greedy coordinate ascent approach
-
J. Balczar, F. Bonchi, A. Gionis, and M. Sebag, editors, volume 6323 of Lecture Notes in Computer Science, SpringerBerlin / Heidelberg
-
K. Scheinberg and I. Rish. Learning sparse Gaussian Markov networks using a greedy coordinate ascent approach. In J. Balczar, F. Bonchi, A. Gionis, and M. Sebag, editors, Machine Learning and Knowledge Discovery in Databases, volume 6323 of Lecture Notes in Computer Science, pages 196-212. SpringerBerlin / Heidelberg, 2010.
-
(2010)
Machine Learning and Knowledge Discovery in Databases
, pp. 196-212
-
-
Scheinberg, K.1
Rish, I.2
-
17
-
-
46749146509
-
A coordinate gradient descent method for nonsmooth separable minimization
-
P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable minimization. Mathematical Programming, 117:387-423, 2007.
-
(2007)
Mathematical Programming
, vol.117
, pp. 387-423
-
-
Tseng, P.1
Yun, S.2
-
18
-
-
84863879353
-
Coordinate descent algorithms for lasso penalized regression
-
T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression. The Annals of Applied Statistics, 2(1):224-244,2008.
-
(2008)
The Annals of Applied Statistics
, vol.2
, Issue.1
, pp. 224-244
-
-
Wu, T.T.1
Lange, K.2
-
19
-
-
79551500651
-
A comparison of optimization methods and software for large-scale l1-regularized linear classification
-
G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. A comparison of optimization methods and software for large-scale l1-regularized linear classification. Journal of Machine Learning Research, 11:3183-3234, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 3183-3234
-
-
Yuan, G.-X.1
Chang, K.-W.2
Hsieh, C.-J.3
Lin, C.-J.4
-
20
-
-
33947115409
-
Model selection and estimation in the Gaussian graphical model
-
M. Yuan and Y. Lin. Model selection and estimation in the gaussian graphical model. Biometrika, 94:19-35, 2007.
-
(2007)
Biometrika
, vol.94
, pp. 19-35
-
-
Yuan, M.1
Lin, Y.2
-
21
-
-
79955559521
-
A coordinate gradient descent method for l1-regularized convex minimization
-
S. Yun and K.-C. Toh. A coordinate gradient descent method for l1-regularized convex minimization. Computational Optimizations and Applications, 48(2):273-307, 2011.
-
(2011)
Computational Optimizations and Applications
, vol.48
, Issue.2
, pp. 273-307
-
-
Yun, S.1
Toh, K.-C.2
|