메뉴 건너뛰기




Volumn , Issue , 2015, Pages 35-44

Weakly-Shared deep transfer networks for heterogeneous-domain knowledge propagation

Author keywords

Cross domain label transfer; Deep transfer network; Heterogeneous domain knowledge propagation; Image classification

Indexed keywords

COMPLEX NETWORKS; IMAGE CLASSIFICATION;

EID: 84962844543     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2733373.2806216     Document Type: Conference Paper
Times cited : (209)

References (37)
  • 2
    • 84904548965 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • Y. Bengio. Deep learning of representations for unsupervised and transfer learning. In ICML, pages 17-36, 2012.
    • (2012) ICML , pp. 17-36
    • Bengio, Y.1
  • 3
  • 4
    • 84867129067 scopus 로고    scopus 로고
    • Marginalized denoising autoencoders for domain adaptation
    • M. Chen, Z. Xu, F. Sha, and K. Q. Weinberger. Marginalized denoising autoencoders for domain adaptation. In ICML, pages 767-774, 2012.
    • (2012) ICML , pp. 767-774
    • Chen, M.1    Xu, Z.2    Sha, F.3    Weinberger, K.Q.4
  • 5
    • 74049158146 scopus 로고    scopus 로고
    • Nus-wide: A real-world web image database from national university of Singapore
    • T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. Nus-wide: A real-world web image database from national university of singapore. In CIVR, page 48, 2009.
    • (2009) CIVR , pp. 48
    • Chua, T.-S.1    Tang, J.2    Hong, R.3    Li, H.4    Luo, Z.5    Zheng, Y.6
  • 6
    • 85198028989 scopus 로고    scopus 로고
    • Imagenet: A large-scale hierarchical image database
    • J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, pages 248-255, 2009.
    • (2009) CVPR , pp. 248-255
    • Deng, J.1    Dong, W.2    Socher, R.3    Li, L.-J.4    Li, K.5    Fei-Fei, L.6
  • 7
    • 84887357900 scopus 로고    scopus 로고
    • Semi-supervised domain adaptation with instance constraints
    • J. Donahue, J. Hoffman, E. Rodner, K. Saenko, and T. Darrell. Semi-supervised domain adaptation with instance constraints. In CVPR, pages 668-675, 2013.
    • (2013) CVPR , pp. 668-675
    • Donahue, J.1    Hoffman, J.2    Rodner, E.3    Saenko, K.4    Darrell, T.5
  • 8
    • 84867113087 scopus 로고    scopus 로고
    • Learning with augmented features for heterogeneous domain adaptation
    • L. Duan, D. Xu, and I. W. Tsang. Learning with augmented features for heterogeneous domain adaptation. In ICML, pages 711-718, 2012.
    • (2012) ICML , pp. 711-718
    • Duan, L.1    Xu, D.2    Tsang, I.W.3
  • 9
    • 84913546300 scopus 로고    scopus 로고
    • Cross-modal retrieval with correspondence autoencoder
    • F. Feng, X. Wang, and R. Li. Cross-modal retrieval with correspondence autoencoder. In ACM Multimedia, pages 7-16, 2014.
    • (2014) ACM Multimedia , pp. 7-16
    • Feng, F.1    Wang, X.2    Li, R.3
  • 10
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for large-scale sentiment classification: A deep learning approach
    • X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale sentiment classification: A deep learning approach. In ICML, pages 513-520, 2011.
    • (2011) ICML , pp. 513-520
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 11
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 14
    • 72449120342 scopus 로고    scopus 로고
    • Semantic context transfer across heterogeneous sources for domain adaptive video search
    • Y.-G. Jiang, C.-W. Ngo, and S.-F. Chang. Semantic context transfer across heterogeneous sources for domain adaptive video search. In ACM Multimedia, pages 155-164, 2009.
    • (2009) ACM Multimedia , pp. 155-164
    • Jiang, Y.-G.1    Ngo, C.-W.2    Chang, S.-F.3
  • 15
    • 84911383347 scopus 로고    scopus 로고
    • Stacked progressive auto-encoders (spae) for face recognition across poses
    • M. Kan, S. Shan, H. Chang, and X. Chen. Stacked progressive auto-encoders (spae) for face recognition across poses. In CVPR, pages 1883-1890, 2014.
    • (2014) CVPR , pp. 1883-1890
    • Kan, M.1    Shan, S.2    Chang, H.3    Chen, X.4
  • 16
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 17
    • 85161980001 scopus 로고    scopus 로고
    • Sparse deep belief net model for visual area v2
    • H. Lee, C. Ekanadham, and A. Y. Ng. Sparse deep belief net model for visual area v2. In NIPS, pages 873-880, 2008.
    • (2008) NIPS , pp. 873-880
    • Lee, H.1    Ekanadham, C.2    Ng, A.Y.3
  • 18
    • 84911456577 scopus 로고    scopus 로고
    • Transfer joint matching for unsupervised domain adaptation
    • M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu. Transfer joint matching for unsupervised domain adaptation. In CVPR, pages 1410-1417, 2014.
    • (2014) CVPR , pp. 1410-1417
    • Long, M.1    Wang, J.2    Ding, G.3    Sun, J.4    Yu, P.S.5
  • 21
    • 84887392643 scopus 로고    scopus 로고
    • Subspace interpolation via dictionary learning for unsupervised domain adaptation
    • J. Ni, Q. Qiu, and R. Chellappa. Subspace interpolation via dictionary learning for unsupervised domain adaptation. In CVPR, pages 692-699, 2013.
    • (2013) CVPR , pp. 692-699
    • Ni, J.1    Qiu, Q.2    Chellappa, R.3
  • 22
    • 84913569096 scopus 로고    scopus 로고
    • Inductive transfer deep hashing for image retrieval
    • X. Ou, L. Yan, H. Ling, C. Liu, and M. Liu. Inductive transfer deep hashing for image retrieval. In ACM Multimedia, pages 969-972, 2014.
    • (2014) ACM Multimedia , pp. 969-972
    • Ou, X.1    Yan, L.2    Ling, H.3    Liu, C.4    Liu, M.5
  • 23
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • S. J. Pan and Q. Yang. A survey on transfer learning. TKDE, 22(10):1345-1359, 2010.
    • (2010) TKDE , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 24
    • 84873433011 scopus 로고    scopus 로고
    • Towards semantic knowledge propagation from text corpus to web images
    • G.-J. Qi, C. Aggarwal, and T. Huang. Towards semantic knowledge propagation from text corpus to web images. In WWW, pages 297-306, 2011.
    • (2011) WWW , pp. 297-306
    • Qi, G.-J.1    Aggarwal, C.2    Huang, T.3
  • 25
    • 80053460450 scopus 로고    scopus 로고
    • Contractive auto-encoders: Explicit invariance during feature extraction
    • S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-encoders: Explicit invariance during feature extraction. In ICML, pages 833-840, 2011.
    • (2011) ICML , pp. 833-840
    • Rifai, S.1    Vincent, P.2    Muller, X.3    Glorot, X.4    Bengio, Y.5
  • 26
    • 84871387556 scopus 로고    scopus 로고
    • Socialtransfer: Cross-domain transfer learning from social streams for media applications
    • S. D. Roy, T. Mei, W. Zeng, and S. Li. Socialtransfer: cross-domain transfer learning from social streams for media applications. In ACM Multimedia, pages 649-658, 2012.
    • (2012) ACM Multimedia , pp. 649-658
    • Roy, S.D.1    Mei, T.2    Zeng, W.3    Li, S.4
  • 27
    • 84862286946 scopus 로고    scopus 로고
    • Deep boltzmann machines
    • R. Salakhutdinov and G. E. Hinton. Deep boltzmann machines. In AISTATS, pages 448-455, 2009.
    • (2009) AISTATS , pp. 448-455
    • Salakhutdinov, R.1    Hinton, G.E.2
  • 28
    • 34547983260 scopus 로고    scopus 로고
    • Restricted boltzmann machines for collaborative filtering
    • R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for collaborative filtering. In ICML, pages 791-798, 2007.
    • (2007) ICML , pp. 791-798
    • Salakhutdinov, R.1    Mnih, A.2    Hinton, G.3
  • 29
    • 84898938559 scopus 로고    scopus 로고
    • Zero-shot learning through cross-modal transfer
    • R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning through cross-modal transfer. In NIPS, pages 935-943, 2013.
    • (2013) NIPS , pp. 935-943
    • Socher, R.1    Ganjoo, M.2    Manning, C.D.3    Ng, A.4
  • 30
    • 84937873395 scopus 로고    scopus 로고
    • Improved multimodal deep learning with variation of information
    • K. Sohn, W. Shang, and H. Lee. Improved multimodal deep learning with variation of information. In NIPS, pages 2141-2149, 2014.
    • (2014) NIPS , pp. 2141-2149
    • Sohn, K.1    Shang, W.2    Lee, H.3
  • 31
    • 84877724347 scopus 로고    scopus 로고
    • Multimodal learning with deep boltzmann machines
    • N. Srivastava and R. Salakhutdinov. Multimodal learning with deep boltzmann machines. In NIPS, pages 2222-2230, 2012.
    • (2012) NIPS , pp. 2222-2230
    • Srivastava, N.1    Salakhutdinov, R.2
  • 32
    • 84911198048 scopus 로고    scopus 로고
    • Deepface: Closing the gap to human-level performance in face verification
    • Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In CVPR, pages 1701-1708, 2014.
    • (2014) CVPR , pp. 1701-1708
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 33
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, pages 1096-1103, 2008.
    • (2008) ICML , pp. 1096-1103
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 35
    • 84913546678 scopus 로고    scopus 로고
    • Dynamic background learning through deep auto-encoder networks
    • P. Xu, M. Ye, X. Li, Q. Liu, Y. Yang, and J. Ding. Dynamic background learning through deep auto-encoder networks. In ACM Multimedia, pages 107-116, 2014.
    • (2014) ACM Multimedia , pp. 107-116
    • Xu, P.1    Ye, M.2    Li, X.3    Liu, Q.4    Yang, Y.5    Ding, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.