메뉴 건너뛰기




Volumn , Issue , 2013, Pages 668-675

Semi-supervised domain adaptation with instance constraints

Author keywords

domain adaptation; visual recognition

Indexed keywords

DETECTION METHODS; DOMAIN ADAPTATION; LABELED DATASETS; OBJECT CLASSIFICATION; OBJECT DETECTION; RECOGNITION ACCURACY; SMOOTHNESS CONSTRAINTS; VISUAL RECOGNITION;

EID: 84887357900     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.92     Document Type: Conference Paper
Times cited : (177)

References (28)
  • 1
    • 84887347703 scopus 로고    scopus 로고
    • Tabula rasa: Model transfer for object category detection
    • 1, 2, 3, 6, 7
    • Y. Aytar and A. Zisserman. Tabula rasa: Model transfer for object category detection. In CVPR, 2011. 1, 2, 3, 6, 7
    • (2011) CVPR
    • Aytar, Y.1    Zisserman, A.2
  • 2
    • 85161970767 scopus 로고    scopus 로고
    • Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach
    • 2
    • A. Bergamo and L. Torresani. Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach. In NIPS, 2010. 2
    • (2010) NIPS
    • Bergamo, A.1    Torresani, L.2
  • 4
    • 80052418610 scopus 로고    scopus 로고
    • Multi-view learning in the presence of view disagreement
    • 2
    • C. Christoudias, R. Urtasun, and T. Darrell. Multi-view learning in the presence of view disagreement. In UAI, 2008. 2
    • (2008) UAI
    • Christoudias, C.1    Urtasun, R.2    Darrell, T.3
  • 5
    • 85057277997 scopus 로고    scopus 로고
    • Translated learning: Transfer learning across different feature spaces
    • 2
    • W. Dai, Y. Chen, G.-R. Xue, Q. Yang, and Y. Yu. Translated learning: Transfer learning across different feature spaces. In NIPS, 2008. 2
    • (2008) NIPS
    • Dai, W.1    Chen, Y.2    Xue, G.-R.3    Yang, Q.4    Yu, Y.5
  • 6
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • 2
    • H. Daume III. Frustratingly easy domain adaptation. In ACL, 2007. 2
    • (2007) ACL
    • Daume III, H.1
  • 7
    • 79953064532 scopus 로고    scopus 로고
    • Domain adaptation from multiple sources via auxiliary classifiers
    • 1
    • L. Duan, I. W. Tsang, D. Xu, and T.-S. Chua. Domain adaptation from multiple sources via auxiliary classifiers. In ICML, 2009. 1
    • (2009) ICML
    • Duan, L.1    Tsang, I.W.2    Xu, D.3    Chua, T.-S.4
  • 8
    • 70450185098 scopus 로고    scopus 로고
    • Domain transfer SVM for video concept detection
    • 2
    • L. Duan, I. W. Tsang, D. Xu, and S. J. Maybank. Domain transfer SVM for video concept detection. In CVPR, 2009. 2
    • (2009) CVPR
    • Duan, L.1    Tsang, I.W.2    Xu, D.3    Maybank, S.J.4
  • 9
    • 84867113087 scopus 로고    scopus 로고
    • Learning with augmented features for heterogeneous domain adaptation
    • 1, 2
    • L. Duan, D. Xu, and I. Tsang. Learning with augmented features for heterogeneous domain adaptation. In ICML, 2012. 1, 2
    • (2012) ICML
    • Duan, L.1    Xu, D.2    Tsang, I.3
  • 10
    • 77951298115 scopus 로고    scopus 로고
    • The pascal visual object classes (voc) challenge
    • 6
    • M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes (VOC) challenge. IJCV, 88(2):303-338, 2010. 6
    • (2010) IJCV , vol.88 , Issue.2 , pp. 303-338
    • Everingham, M.1    Van Gool, L.2    Williams, C.3    Winn, J.4    Zisserman, A.5
  • 11
    • 77953224915 scopus 로고    scopus 로고
    • Learning to recognize activities from the wrong view point
    • 2
    • A. Farhadi and M. K. Tabrizi. Learning to recognize activities from the wrong view point. In ECCV, 2008. 2
    • (2008) ECCV
    • Farhadi, A.1    Tabrizi, M.K.2
  • 12
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part based models
    • 3, 4, 6, 7
    • P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. PAMI, 32(9):1627-1645, 2010. 3, 4, 6, 7
    • (2010) PAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.3    Ramanan, D.4
  • 13
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • 1, 2, 5
    • B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, 2012. 1, 2, 5
    • (2012) CVPR
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 14
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • 1, 2
    • R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object recognition: An unsupervised approach. In ICCV, 2011. 1, 2
    • (2011) ICCV
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 15
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • 2
    • D. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: an overview with application to learning methods. Neural Computation, 16:26392664, 2004. 2
    • (2004) Neural Computation , vol.16 , pp. 2639-2664
    • Hardoon, D.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 16
    • 85083950659 scopus 로고    scopus 로고
    • Efficient learning of domain-invariant image representations
    • 1, 2, 3, 4, 7
    • J. Hoffman, E. Rodner, J. Donahue, T. Darrell, and K. Saenko. Efficient learning of domain-invariant image representations. In ICLR, 2013. 1, 2, 3, 4, 7
    • (2013) ICLR
    • Hoffman, J.1    Rodner, E.2    Donahue, J.3    Darrell, T.4    Saenko, K.5
  • 18
    • 80052895155 scopus 로고    scopus 로고
    • What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
    • 1, 2, 5
    • B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In CVPR, 2011. 1, 2, 5
    • (2011) CVPR
    • Kulis, B.1    Saenko, K.2    Darrell, T.3
  • 19
    • 84863045576 scopus 로고    scopus 로고
    • Key-segments for video object segmentation
    • 1
    • Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video object segmentation. In ICCV, 2011. 1
    • (2011) ICCV
    • Lee, Y.J.1    Kim, J.2    Grauman, K.3
  • 21
    • 85088179929 scopus 로고    scopus 로고
    • A general model for multiple view unsupervised learning
    • 2
    • B. Long, P. S. Yu, and Z. Zhang. A general model for multiple view unsupervised learning. In ICDM, 2009. 2
    • (2009) ICDM
    • Long, B.1    Yu, P.S.2    Zhang, Z.3
  • 22
    • 79955855934 scopus 로고    scopus 로고
    • Laplacian support vector machines trained in the primal
    • 2, 3
    • S. Melacci and M. Belkin. Laplacian support vector machines trained in the primal. JMLR, 12:1149-1184, 2011. 2, 3
    • (2011) JMLR , vol.12 , pp. 1149-1184
    • Melacci, S.1    Belkin, M.2
  • 23
    • 84866674032 scopus 로고    scopus 로고
    • Learning object class detectors from weakly annotated video
    • 2, 4
    • A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning object class detectors from weakly annotated video. In CVPR, 2012. 2, 4
    • (2012) CVPR
    • Prest, A.1    Leistner, C.2    Civera, J.3    Schmid, C.4    Ferrari, V.5
  • 24
    • 78149301639 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • 1, 2
    • K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In ECCV, 2010. 1, 2
    • (2010) ECCV
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 26
    • 84867124651 scopus 로고    scopus 로고
    • Information-theoretical learning of discriminative clusters for unsupervised domain adaptation
    • 2
    • Y. Shi and F. Sha. Information-theoretical learning of discriminative clusters for unsupervised domain adaptation. In ICML, 2012. 2
    • (2012) ICML
    • Shi, Y.1    Sha, F.2
  • 27
    • 49549114434 scopus 로고    scopus 로고
    • Adapting SVM classifiers to data with shifted distributions
    • 2
    • J. Yang, R. Yan, and A. Hauptmann. Adapting SVM classifiers to data with shifted distributions. In ICDM Workshops, 2007. 2
    • (2007) ICDM Workshops
    • Yang, J.1    Yan, R.2    Hauptmann, A.3
  • 28
    • 37849026107 scopus 로고    scopus 로고
    • Cross-domain video concept detection using adaptive SVMs
    • 1
    • J. Yang, R. Yan, and A. G. Hauptmann. Cross-domain video concept detection using adaptive SVMs. ACM Multimedia, 2007. 1
    • (2007) ACM Multimedia
    • Yang, J.1    Yan, R.2    Hauptmann, A.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.