메뉴 건너뛰기




Volumn 3, Issue 3, 2014, Pages 202-216

Integrative clustering methods for high-dimensional molecular data

Author keywords

Consensus clustering; Cophenetic correlation; Latent models; Mixture models; Non negative matrix factorization

Indexed keywords


EID: 84962699589     PISSN: 2218676X     EISSN: 22196803     Source Type: Journal    
DOI: 10.3978/j.issn.2218-676X.2014.06.03     Document Type: Review
Times cited : (33)

References (58)
  • 1
    • 0035845511 scopus 로고    scopus 로고
    • Gene expression patterns of breast cancer carcinomas distinguish tumor subclasses with clinical implications
    • Sørlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast cancer carcinomas distinguish tumor subclasses with clinical implications. PNAS 2001;98:10869-74.
    • (2001) PNAS , vol.98 , pp. 10869-10874
    • Sørlie, T.1    Perou, C.M.2    Tibshirani, R.3
  • 2
    • 73649123907 scopus 로고    scopus 로고
    • Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1
    • Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17:98-110.
    • (2010) Cancer Cell , vol.17 , pp. 98-110
    • Verhaak, R.G.1    Hoadley, K.A.2    Purdom, E.3
  • 3
    • 0042838307 scopus 로고    scopus 로고
    • Breast Cancer Classification and prognosis based on gene expression profiles from a population-based study
    • Sotiriou C, Neo SY, McShane LM, et al. Breast Cancer Classification and prognosis based on gene expression profiles from a population-based study. PNAS 2003;100:10393-8.
    • (2003) PNAS , vol.100 , pp. 10393-10398
    • Sotiriou, C.1    Neo, S.Y.2    McShane, L.M.3
  • 4
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000;403:503-11.
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.A.1    Eisen, M.B.2    Davis, R.E.3
  • 5
    • 9144251970 scopus 로고    scopus 로고
    • Gene xpression profiling identifies clinically relevant subtype of prostate cancer
    • Lapointe J, Li C, Higgins JP, et al. Gene xpression profiling identifies clinically relevant subtype of prostate cancer. PNAS 2004;101:811-6.
    • (2004) PNAS , vol.101 , pp. 811-816
    • Lapointe, J.1    Li, C.2    Higgins, J.P.3
  • 6
    • 0032441150 scopus 로고    scopus 로고
    • Cluster Analysis and display of genome-wide expression patterns
    • Eisen MB, Spellman PT, Brown PO, et al. Cluster Analysis and display of genome-wide expression patterns. PNAS 1998;95:14863-8.
    • (1998) PNAS , vol.95 , pp. 14863-14868
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3
  • 7
    • 58149330982 scopus 로고    scopus 로고
    • Meta-Analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signature
    • Wirapati P, Sotiriou C, Kunkel S, et al. Meta-Analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signature. Breast Cancer Res 2008;10:R65.
    • (2008) Breast Cancer Res , vol.10 , pp. R65
    • Wirapati, P.1    Sotiriou, C.2    Kunkel, S.3
  • 8
    • 77952449085 scopus 로고    scopus 로고
    • Comprehensive profiling of DNA methylation in colorectal cancer reveals subgroups with distinct clinicopathological and molecular features
    • Ang PW, Loh M, Liem N, et al. Comprehensive profiling of DNA methylation in colorectal cancer reveals subgroups with distinct clinicopathological and molecular features. BMC Cancer 2010;10:227.
    • (2010) BMC Cancer , vol.10 , pp. 227
    • Ang, P.W.1    Loh, M.2    Liem, N.3
  • 9
    • 62349119224 scopus 로고    scopus 로고
    • Epigenetic profiling reveals etiologically distinct patterns of DNA methylation in head and neck squamous cell carcinoma
    • Marsit CJ, Christensen BC, Houseman EA, et al. Epigenetic profiling reveals etiologically distinct patterns of DNA methylation in head and neck squamous cell carcinoma. Carcinogenesis 2009;30:416-22.
    • (2009) Carcinogenesis , vol.30 , pp. 416-422
    • Marsit, C.J.1    Christensen, B.C.2    Houseman, E.A.3
  • 10
    • 10344260184 scopus 로고    scopus 로고
    • CpG island methylator phenotype in cancer
    • Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer 2004;4:988-93.
    • (2004) Nat Rev Cancer , vol.4 , pp. 988-993
    • Issa, J.P.1
  • 11
    • 70449331456 scopus 로고    scopus 로고
    • Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast cancer subtype analysis
    • Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast cancer subtype analysis. Bioinformatics 2009;25:2906-12.
    • (2009) Bioinformatics , vol.25 , pp. 2906-2912
    • Shen, R.1    Olshen, A.B.2    Ladanyi, M.3
  • 12
    • 84868152524 scopus 로고    scopus 로고
    • Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
    • Zhang S, Liu CC, Li W, et al. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 2012;40:9379-91.
    • (2012) Nucleic Acids Res , vol.40 , pp. 9379-9391
    • Zhang, S.1    Liu, C.C.2    Li, W.3
  • 13
    • 84870001973 scopus 로고    scopus 로고
    • Integrative Model-based Clustering of microarray methylation and expression data
    • Kormaksson M, Booth JG, Figueroa ME, et al. Integrative Model-based Clustering of microarray methylation and expression data. Ann Appl Stat 2012;6:1327-47.
    • (2012) Ann Appl Stat , vol.6 , pp. 1327-1347
    • Kormaksson, M.1    Booth, J.G.2    Figueroa, M.E.3
  • 14
    • 0037076272 scopus 로고    scopus 로고
    • Diagnosis of Multiple Cancer types by Shrunken Centroids of Gene Expression
    • Tibshirani R, Hastie T, Narashimhan B, et al. Diagnosis of Multiple Cancer types by Shrunken Centroids of Gene Expression. PNAS 2002;99:6567-72.
    • (2002) PNAS , vol.99 , pp. 6567-6572
    • Tibshirani, R.1    Hastie, T.2    Narashimhan, B.3
  • 15
    • 1642529511 scopus 로고    scopus 로고
    • Metagenes and molecular pattern discovery using matrix factorization
    • Brunet JP, Tamayo P, Golub TR, et al. Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci U S A 2004;101:4164-9.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 4164-4169
    • Brunet, J.P.1    Tamayo, P.2    Golub, T.R.3
  • 16
    • 77957799227 scopus 로고    scopus 로고
    • Semi-supervised recursively partitioned mixture models for identifying cancer subtypes
    • Koestler DC, Marsit CJ, Christensen BC, et al. Semi-supervised recursively partitioned mixture models for identifying cancer subtypes. Bioinformatics 2010;26:2578-85.
    • (2010) Bioinformatics , vol.26 , pp. 2578-2585
    • Koestler, D.C.1    Marsit, C.J.2    Christensen, B.C.3
  • 17
    • 25144456056 scopus 로고    scopus 로고
    • Computational Cluster Validation in post-genomic data analysis
    • Handl J, Knowles J, Kell DB. Computational Cluster Validation in post-genomic data analysis. Bioinformatics 2005;21:3201-12.
    • (2005) Bioinformatics , vol.21 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 18
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining, Inference and Prediction
    • New York: Springer
    • Hastie T, Tibshirani R, Friedman J. eds. The Elements of Statistical Learning: Data Mining, Inference and Prediction. New York: Springer, 2001.
    • (2001)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 19
    • 0033028596 scopus 로고    scopus 로고
    • Systematic determination of genetic architecture
    • Tavazoie S, Hughes JD, Campbell MJ, et al. Systematic determination of genetic architecture. Nat Genet 1999;22:281-5.
    • (1999) Nat Genet , vol.22 , pp. 281-285
    • Tavazoie, S.1    Hughes, J.D.2    Campbell, M.J.3
  • 20
    • 70349730070 scopus 로고    scopus 로고
    • MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering
    • Kim EY, Kim SY, Ashlock D, et al. MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering. BMC Bioinformatics 2009;10:260.
    • (2009) BMC Bioinformatics , vol.10 , pp. 260
    • Kim, E.Y.1    Kim, S.Y.2    Ashlock, D.3
  • 21
    • 0003430544 scopus 로고
    • Finding groups in data: An Introduction to Cluster Analysis
    • New Jersey: John Wiley & Sons
    • Kaufman L, Rousseeuw PJ. eds. Finding groups in data: An Introduction to Cluster Analysis. New Jersey: John Wiley & Sons, 1990.
    • (1990)
    • Kaufman, L.1    Rousseeuw, P.J.2
  • 22
    • 0035923521 scopus 로고    scopus 로고
    • Classification of Human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    • Bhattacharjee A, Richards WG, Staunton J, et al. Classification of Human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. PNAS 2001;98:13790-5.
    • (2001) PNAS , vol.98 , pp. 13790-13795
    • Bhattacharjee, A.1    Richards, W.G.2    Staunton, J.3
  • 23
    • 18544365698 scopus 로고    scopus 로고
    • Gene-expression profiles predict survival of patients with lung adenocarcinoma
    • Beer DG, Kardia SL, Huang CC, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 2002;8:816-24.
    • (2002) Nat Med , vol.8 , pp. 816-824
    • Beer, D.G.1    Kardia, S.L.2    Huang, C.C.3
  • 24
    • 0034062083 scopus 로고    scopus 로고
    • Analysis of large-scale gene expression data
    • Sherlock G. Analysis of large-scale gene expression data. Curr Opin Immunol 2000;12:201-5.
    • (2000) Curr Opin Immunol , vol.12 , pp. 201-205
    • Sherlock, G.1
  • 25
    • 39449097889 scopus 로고    scopus 로고
    • Techniques for clustering gene expression data
    • Kerr G, Ruskin HJ, Crane M, et al. Techniques for clustering gene expression data. Comput Biol Med 2008;38:283-93.
    • (2008) Comput Biol Med , vol.38 , pp. 283-293
    • Kerr, G.1    Ruskin, H.J.2    Crane, M.3
  • 26
    • 0004008854 scopus 로고
    • Pattern Recognition with Fuzzy Objective Function Algorithms
    • New York: Springer
    • Bezdek JC. eds. Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Springer, 1981.
    • (1981)
    • Bezdek, J.C.1
  • 27
    • 17944394324 scopus 로고    scopus 로고
    • Fuzzy C-means method for clustering microarray data
    • Dembélé D, Kastner P. Fuzzy C-means method for clustering microarray data. Bioinformatics 2003;19:973-80.
    • (2003) Bioinformatics , vol.19 , pp. 973-980
    • Dembélé, D.1    Kastner, P.2
  • 28
    • 60049085522 scopus 로고    scopus 로고
    • Fuzzy c-means clustering with prior biological knowledge
    • Tari L, Baral C, Kim S. Fuzzy c-means clustering with prior biological knowledge. J Biomed Inform 2009;42:74-81.
    • (2009) J Biomed Inform , vol.42 , pp. 74-81
    • Tari, L.1    Baral, C.2    Kim, S.3
  • 29
    • 0025489075 scopus 로고
    • The Self-organizing Map
    • Kohonen T. The Self-organizing Map. Proc IEEE Conf 1990;78:1464-80.
    • (1990) Proc IEEE Conf , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 30
    • 0003410791 scopus 로고    scopus 로고
    • Self-Organizing Maps
    • Berlin: Springer
    • Kohonen T. eds. Self-Organizing Maps. Berlin: Springer, 2001.
    • (2001)
    • Kohonen, T.1
  • 31
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
    • Tamayo P, Slomin D, Mesirov J, et al. Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. PNAS 1999;96:2907-12.
    • (1999) PNAS , vol.96 , pp. 2907-2912
    • Tamayo, P.1    Slomin, D.2    Mesirov, J.3
  • 33
    • 0036791318 scopus 로고    scopus 로고
    • Analysis and Visualization of gene expression data using Self-Organizing Maps
    • Nikkilä J, Törönen P, Kaski S, et al. Analysis and Visualization of gene expression data using Self-Organizing Maps. Neural Networks 2002;15:953-66.
    • (2002) Neural Networks , vol.15 , pp. 953-966
    • Nikkilä, J.1    Törönen, P.2    Kaski, S.3
  • 34
    • 38849104440 scopus 로고    scopus 로고
    • UPLC-ESI-TOFMS-Based Metabolomics and Gene Expression Dynamics Inspector Self-Organizing Metabolomic Maps as Tools for Understanding the Cellular Response to Ionizing Radiation
    • Patterson AD, Li H, Eichler GS, et al. UPLC-ESI-TOFMS-Based Metabolomics and Gene Expression Dynamics Inspector Self-Organizing Metabolomic Maps as Tools for Understanding the Cellular Response to Ionizing Radiation. Anal Chem 2008;80:665-74.
    • (2008) Anal Chem , vol.80 , pp. 665-674
    • Patterson, A.D.1    Li, H.2    Eichler, G.S.3
  • 35
    • 15044346962 scopus 로고    scopus 로고
    • Tight clustering: A resampling based approach for identifying stable and tight patterns in the data
    • Tseng GC, Wong WH. Tight clustering: A resampling based approach for identifying stable and tight patterns in the data. Biometrics 2005;61:10-6.
    • (2005) Biometrics , vol.61 , pp. 10-16
    • Tseng, G.C.1    Wong, W.H.2
  • 37
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which cluster method? Answer via model based cluster analysis
    • Fraley C, Raftery AE. How many clusters? Which cluster method? Answer via model based cluster analysis. Computer J 1998;41:578-88.
    • (1998) Computer J , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 38
    • 0036372266 scopus 로고    scopus 로고
    • Model based cluster analysis of microarray gene-expression data
    • RESEARCH0009
    • Pan W, Lin J, Le CT. Model based cluster analysis of microarray gene-expression data. Genome Biol 2002;3:RESEARCH0009.
    • (2002) Genome Biol , vol.3
    • Pan, W.1    Lin, J.2    Le, C.T.3
  • 39
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model based approach to the clustering of microarray expression data
    • McLachlan GJ, Bean RW, Peel D. A mixture model based approach to the clustering of microarray expression data. Bioinformatics 2002;18:413-22.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 40
    • 77958504829 scopus 로고    scopus 로고
    • Model-based clustering of microarray expression data via latent Gaussian Mixture models
    • McNicholas PD, Murphy TB. Model-based clustering of microarray expression data via latent Gaussian Mixture models. Bioinformatics 2010;26:2705-12.
    • (2010) Bioinformatics , vol.26 , pp. 2705-2712
    • McNicholas, P.D.1    Murphy, T.B.2
  • 41
    • 0034782618 scopus 로고    scopus 로고
    • Model based clustering and data transformations for gene expression data
    • Yeung KY, Fraley C, Murua A, et al. Model based clustering and data transformations for gene expression data. Bioinformatics 2001;17:977-87.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3
  • 42
    • 84962772784 scopus 로고
    • Estimating the dimension of a model
    • Schwartz G. Estimating the dimension of a model. Ann Stat 1978;6:461-4.
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 43
    • 0028561099 scopus 로고
    • Positive Matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • Paatero P, Tapper U. Positive Matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmerics 1994;5:111-26.
    • (1994) Environmerics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 44
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature 1999;401:788-91.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 45
    • 0037810449 scopus 로고    scopus 로고
    • Subsystem identification through dimensionality reduction of large scale gene expression data
    • Kim PM, Tidor B. Subsystem identification through dimensionality reduction of large scale gene expression data. Genome Res 2003;13:1706-18.
    • (2003) Genome Res , vol.13 , pp. 1706-1718
    • Kim, P.M.1    Tidor, B.2
  • 46
    • 46649091956 scopus 로고    scopus 로고
    • Reducing microarray data via non-negative matrix factorization for visualization and clustering analysis
    • Liu W, Yuan K, Ye D. Reducing microarray data via non-negative matrix factorization for visualization and clustering analysis. J Biomed Inform 2008;41:602-6.
    • (2008) J Biomed Inform , vol.41 , pp. 602-606
    • Liu, W.1    Yuan, K.2    Ye, D.3
  • 47
    • 0038724494 scopus 로고    scopus 로고
    • Consesus Clustering: A resampling based method for class discovery and visualization of gene expression microarray data
    • Monti S, Tamayo P, Mesirov J, et al. Consesus Clustering: A resampling based method for class discovery and visualization of gene expression microarray data. Machine Learning 2003;52:91-118.
    • (2003) Machine Learning , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3
  • 49
    • 84962641043 scopus 로고    scopus 로고
    • Spectral Relaxation for K-means clustering
    • Zha H, He X, Ding C, et al. Spectral Relaxation for K-means clustering. Available online: http://ranger.uta.edu/~chqding/papers/KmeansNIPS2001.pdf
    • Zha, H.1    He, X.2    Ding, C.3
  • 52
    • 84876068958 scopus 로고    scopus 로고
    • Sparse Integrative clustering of multiple omics data sets
    • Shen R, Wang S, Mo Q. Sparse Integrative clustering of multiple omics data sets. Ann Appl Stat 2013;7:269-94.
    • (2013) Ann Appl Stat , vol.7 , pp. 269-294
    • Shen, R.1    Wang, S.2    Mo, Q.3
  • 53
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the Elastic Net
    • Zou H, Hastie T. Regularization and variable selection via the Elastic Net. J Royal Statistical Society 2005;67:301-20.
    • (2005) J Royal Statistical Society , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 55
    • 19344375744 scopus 로고    scopus 로고
    • Semi-Supervised Methods to Predict Patient Survival from Gene Expression Data
    • Bair E, Tibshirani R. Semi-Supervised Methods to Predict Patient Survival from Gene Expression Data. PLoS Biology 2004;2:E108.
    • (2004) PLoS Biology , vol.2 , pp. E108
    • Bair, E.1    Tibshirani, R.2
  • 56
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining, Inference and Prediction
    • New York: Springer
    • Hastie T, Tibshirani R, Friedman J. eds. The Elements of Statistical Learning: Data Mining, Inference and Prediction. New York: Springer, 2001.
    • (2001)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 57
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • Shipp MA, Ross KN, Tamayo P, et al. Diffuse large cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 2002;8:68-74.
    • (2002) Nature Medicine , vol.8 , pp. 68-74
    • Shipp, M.A.1    Ross, K.N.2    Tamayo, P.3
  • 58
    • 0037709918 scopus 로고    scopus 로고
    • Supervised clustering of genes
    • RESEARCH0069
    • Marcel D, Bühlmann P. Supervised clustering of genes. Genome Biol 2002;3:RESEARCH0069.
    • (2002) Genome Biol , vol.3
    • Marcel, D.1    Bühlmann, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.