-
1
-
-
0035845511
-
Gene expression patterns of breast cancer carcinomas distinguish tumor subclasses with clinical implications
-
Sørlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast cancer carcinomas distinguish tumor subclasses with clinical implications. PNAS 2001;98:10869-74.
-
(2001)
PNAS
, vol.98
, pp. 10869-10874
-
-
Sørlie, T.1
Perou, C.M.2
Tibshirani, R.3
-
2
-
-
73649123907
-
Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1
-
Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17:98-110.
-
(2010)
Cancer Cell
, vol.17
, pp. 98-110
-
-
Verhaak, R.G.1
Hoadley, K.A.2
Purdom, E.3
-
3
-
-
0042838307
-
Breast Cancer Classification and prognosis based on gene expression profiles from a population-based study
-
Sotiriou C, Neo SY, McShane LM, et al. Breast Cancer Classification and prognosis based on gene expression profiles from a population-based study. PNAS 2003;100:10393-8.
-
(2003)
PNAS
, vol.100
, pp. 10393-10398
-
-
Sotiriou, C.1
Neo, S.Y.2
McShane, L.M.3
-
4
-
-
0034598746
-
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
-
Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000;403:503-11.
-
(2000)
Nature
, vol.403
, pp. 503-511
-
-
Alizadeh, A.A.1
Eisen, M.B.2
Davis, R.E.3
-
5
-
-
9144251970
-
Gene xpression profiling identifies clinically relevant subtype of prostate cancer
-
Lapointe J, Li C, Higgins JP, et al. Gene xpression profiling identifies clinically relevant subtype of prostate cancer. PNAS 2004;101:811-6.
-
(2004)
PNAS
, vol.101
, pp. 811-816
-
-
Lapointe, J.1
Li, C.2
Higgins, J.P.3
-
6
-
-
0032441150
-
Cluster Analysis and display of genome-wide expression patterns
-
Eisen MB, Spellman PT, Brown PO, et al. Cluster Analysis and display of genome-wide expression patterns. PNAS 1998;95:14863-8.
-
(1998)
PNAS
, vol.95
, pp. 14863-14868
-
-
Eisen, M.B.1
Spellman, P.T.2
Brown, P.O.3
-
7
-
-
58149330982
-
Meta-Analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signature
-
Wirapati P, Sotiriou C, Kunkel S, et al. Meta-Analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signature. Breast Cancer Res 2008;10:R65.
-
(2008)
Breast Cancer Res
, vol.10
, pp. R65
-
-
Wirapati, P.1
Sotiriou, C.2
Kunkel, S.3
-
8
-
-
77952449085
-
Comprehensive profiling of DNA methylation in colorectal cancer reveals subgroups with distinct clinicopathological and molecular features
-
Ang PW, Loh M, Liem N, et al. Comprehensive profiling of DNA methylation in colorectal cancer reveals subgroups with distinct clinicopathological and molecular features. BMC Cancer 2010;10:227.
-
(2010)
BMC Cancer
, vol.10
, pp. 227
-
-
Ang, P.W.1
Loh, M.2
Liem, N.3
-
9
-
-
62349119224
-
Epigenetic profiling reveals etiologically distinct patterns of DNA methylation in head and neck squamous cell carcinoma
-
Marsit CJ, Christensen BC, Houseman EA, et al. Epigenetic profiling reveals etiologically distinct patterns of DNA methylation in head and neck squamous cell carcinoma. Carcinogenesis 2009;30:416-22.
-
(2009)
Carcinogenesis
, vol.30
, pp. 416-422
-
-
Marsit, C.J.1
Christensen, B.C.2
Houseman, E.A.3
-
10
-
-
10344260184
-
CpG island methylator phenotype in cancer
-
Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer 2004;4:988-93.
-
(2004)
Nat Rev Cancer
, vol.4
, pp. 988-993
-
-
Issa, J.P.1
-
11
-
-
70449331456
-
Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast cancer subtype analysis
-
Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast cancer subtype analysis. Bioinformatics 2009;25:2906-12.
-
(2009)
Bioinformatics
, vol.25
, pp. 2906-2912
-
-
Shen, R.1
Olshen, A.B.2
Ladanyi, M.3
-
12
-
-
84868152524
-
Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
-
Zhang S, Liu CC, Li W, et al. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 2012;40:9379-91.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 9379-9391
-
-
Zhang, S.1
Liu, C.C.2
Li, W.3
-
13
-
-
84870001973
-
Integrative Model-based Clustering of microarray methylation and expression data
-
Kormaksson M, Booth JG, Figueroa ME, et al. Integrative Model-based Clustering of microarray methylation and expression data. Ann Appl Stat 2012;6:1327-47.
-
(2012)
Ann Appl Stat
, vol.6
, pp. 1327-1347
-
-
Kormaksson, M.1
Booth, J.G.2
Figueroa, M.E.3
-
14
-
-
0037076272
-
Diagnosis of Multiple Cancer types by Shrunken Centroids of Gene Expression
-
Tibshirani R, Hastie T, Narashimhan B, et al. Diagnosis of Multiple Cancer types by Shrunken Centroids of Gene Expression. PNAS 2002;99:6567-72.
-
(2002)
PNAS
, vol.99
, pp. 6567-6572
-
-
Tibshirani, R.1
Hastie, T.2
Narashimhan, B.3
-
15
-
-
1642529511
-
Metagenes and molecular pattern discovery using matrix factorization
-
Brunet JP, Tamayo P, Golub TR, et al. Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci U S A 2004;101:4164-9.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 4164-4169
-
-
Brunet, J.P.1
Tamayo, P.2
Golub, T.R.3
-
16
-
-
77957799227
-
Semi-supervised recursively partitioned mixture models for identifying cancer subtypes
-
Koestler DC, Marsit CJ, Christensen BC, et al. Semi-supervised recursively partitioned mixture models for identifying cancer subtypes. Bioinformatics 2010;26:2578-85.
-
(2010)
Bioinformatics
, vol.26
, pp. 2578-2585
-
-
Koestler, D.C.1
Marsit, C.J.2
Christensen, B.C.3
-
17
-
-
25144456056
-
Computational Cluster Validation in post-genomic data analysis
-
Handl J, Knowles J, Kell DB. Computational Cluster Validation in post-genomic data analysis. Bioinformatics 2005;21:3201-12.
-
(2005)
Bioinformatics
, vol.21
, pp. 3201-3212
-
-
Handl, J.1
Knowles, J.2
Kell, D.B.3
-
18
-
-
0003684449
-
The Elements of Statistical Learning: Data Mining, Inference and Prediction
-
New York: Springer
-
Hastie T, Tibshirani R, Friedman J. eds. The Elements of Statistical Learning: Data Mining, Inference and Prediction. New York: Springer, 2001.
-
(2001)
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
19
-
-
0033028596
-
Systematic determination of genetic architecture
-
Tavazoie S, Hughes JD, Campbell MJ, et al. Systematic determination of genetic architecture. Nat Genet 1999;22:281-5.
-
(1999)
Nat Genet
, vol.22
, pp. 281-285
-
-
Tavazoie, S.1
Hughes, J.D.2
Campbell, M.J.3
-
20
-
-
70349730070
-
MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering
-
Kim EY, Kim SY, Ashlock D, et al. MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering. BMC Bioinformatics 2009;10:260.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 260
-
-
Kim, E.Y.1
Kim, S.Y.2
Ashlock, D.3
-
21
-
-
0003430544
-
Finding groups in data: An Introduction to Cluster Analysis
-
New Jersey: John Wiley & Sons
-
Kaufman L, Rousseeuw PJ. eds. Finding groups in data: An Introduction to Cluster Analysis. New Jersey: John Wiley & Sons, 1990.
-
(1990)
-
-
Kaufman, L.1
Rousseeuw, P.J.2
-
22
-
-
0035923521
-
Classification of Human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
-
Bhattacharjee A, Richards WG, Staunton J, et al. Classification of Human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. PNAS 2001;98:13790-5.
-
(2001)
PNAS
, vol.98
, pp. 13790-13795
-
-
Bhattacharjee, A.1
Richards, W.G.2
Staunton, J.3
-
23
-
-
18544365698
-
Gene-expression profiles predict survival of patients with lung adenocarcinoma
-
Beer DG, Kardia SL, Huang CC, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 2002;8:816-24.
-
(2002)
Nat Med
, vol.8
, pp. 816-824
-
-
Beer, D.G.1
Kardia, S.L.2
Huang, C.C.3
-
24
-
-
0034062083
-
Analysis of large-scale gene expression data
-
Sherlock G. Analysis of large-scale gene expression data. Curr Opin Immunol 2000;12:201-5.
-
(2000)
Curr Opin Immunol
, vol.12
, pp. 201-205
-
-
Sherlock, G.1
-
25
-
-
39449097889
-
Techniques for clustering gene expression data
-
Kerr G, Ruskin HJ, Crane M, et al. Techniques for clustering gene expression data. Comput Biol Med 2008;38:283-93.
-
(2008)
Comput Biol Med
, vol.38
, pp. 283-293
-
-
Kerr, G.1
Ruskin, H.J.2
Crane, M.3
-
26
-
-
0004008854
-
Pattern Recognition with Fuzzy Objective Function Algorithms
-
New York: Springer
-
Bezdek JC. eds. Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Springer, 1981.
-
(1981)
-
-
Bezdek, J.C.1
-
27
-
-
17944394324
-
Fuzzy C-means method for clustering microarray data
-
Dembélé D, Kastner P. Fuzzy C-means method for clustering microarray data. Bioinformatics 2003;19:973-80.
-
(2003)
Bioinformatics
, vol.19
, pp. 973-980
-
-
Dembélé, D.1
Kastner, P.2
-
28
-
-
60049085522
-
Fuzzy c-means clustering with prior biological knowledge
-
Tari L, Baral C, Kim S. Fuzzy c-means clustering with prior biological knowledge. J Biomed Inform 2009;42:74-81.
-
(2009)
J Biomed Inform
, vol.42
, pp. 74-81
-
-
Tari, L.1
Baral, C.2
Kim, S.3
-
29
-
-
0025489075
-
The Self-organizing Map
-
Kohonen T. The Self-organizing Map. Proc IEEE Conf 1990;78:1464-80.
-
(1990)
Proc IEEE Conf
, vol.78
, pp. 1464-1480
-
-
Kohonen, T.1
-
30
-
-
0003410791
-
Self-Organizing Maps
-
Berlin: Springer
-
Kohonen T. eds. Self-Organizing Maps. Berlin: Springer, 2001.
-
(2001)
-
-
Kohonen, T.1
-
31
-
-
0033027794
-
Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
-
Tamayo P, Slomin D, Mesirov J, et al. Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. PNAS 1999;96:2907-12.
-
(1999)
PNAS
, vol.96
, pp. 2907-2912
-
-
Tamayo, P.1
Slomin, D.2
Mesirov, J.3
-
33
-
-
0036791318
-
Analysis and Visualization of gene expression data using Self-Organizing Maps
-
Nikkilä J, Törönen P, Kaski S, et al. Analysis and Visualization of gene expression data using Self-Organizing Maps. Neural Networks 2002;15:953-66.
-
(2002)
Neural Networks
, vol.15
, pp. 953-966
-
-
Nikkilä, J.1
Törönen, P.2
Kaski, S.3
-
34
-
-
38849104440
-
UPLC-ESI-TOFMS-Based Metabolomics and Gene Expression Dynamics Inspector Self-Organizing Metabolomic Maps as Tools for Understanding the Cellular Response to Ionizing Radiation
-
Patterson AD, Li H, Eichler GS, et al. UPLC-ESI-TOFMS-Based Metabolomics and Gene Expression Dynamics Inspector Self-Organizing Metabolomic Maps as Tools for Understanding the Cellular Response to Ionizing Radiation. Anal Chem 2008;80:665-74.
-
(2008)
Anal Chem
, vol.80
, pp. 665-674
-
-
Patterson, A.D.1
Li, H.2
Eichler, G.S.3
-
35
-
-
15044346962
-
Tight clustering: A resampling based approach for identifying stable and tight patterns in the data
-
Tseng GC, Wong WH. Tight clustering: A resampling based approach for identifying stable and tight patterns in the data. Biometrics 2005;61:10-6.
-
(2005)
Biometrics
, vol.61
, pp. 10-16
-
-
Tseng, G.C.1
Wong, W.H.2
-
37
-
-
0032269108
-
How many clusters? Which cluster method? Answer via model based cluster analysis
-
Fraley C, Raftery AE. How many clusters? Which cluster method? Answer via model based cluster analysis. Computer J 1998;41:578-88.
-
(1998)
Computer J
, vol.41
, pp. 578-588
-
-
Fraley, C.1
Raftery, A.E.2
-
38
-
-
0036372266
-
Model based cluster analysis of microarray gene-expression data
-
RESEARCH0009
-
Pan W, Lin J, Le CT. Model based cluster analysis of microarray gene-expression data. Genome Biol 2002;3:RESEARCH0009.
-
(2002)
Genome Biol
, vol.3
-
-
Pan, W.1
Lin, J.2
Le, C.T.3
-
39
-
-
0036203115
-
A mixture model based approach to the clustering of microarray expression data
-
McLachlan GJ, Bean RW, Peel D. A mixture model based approach to the clustering of microarray expression data. Bioinformatics 2002;18:413-22.
-
(2002)
Bioinformatics
, vol.18
, pp. 413-422
-
-
McLachlan, G.J.1
Bean, R.W.2
Peel, D.3
-
40
-
-
77958504829
-
Model-based clustering of microarray expression data via latent Gaussian Mixture models
-
McNicholas PD, Murphy TB. Model-based clustering of microarray expression data via latent Gaussian Mixture models. Bioinformatics 2010;26:2705-12.
-
(2010)
Bioinformatics
, vol.26
, pp. 2705-2712
-
-
McNicholas, P.D.1
Murphy, T.B.2
-
41
-
-
0034782618
-
Model based clustering and data transformations for gene expression data
-
Yeung KY, Fraley C, Murua A, et al. Model based clustering and data transformations for gene expression data. Bioinformatics 2001;17:977-87.
-
(2001)
Bioinformatics
, vol.17
, pp. 977-987
-
-
Yeung, K.Y.1
Fraley, C.2
Murua, A.3
-
42
-
-
84962772784
-
Estimating the dimension of a model
-
Schwartz G. Estimating the dimension of a model. Ann Stat 1978;6:461-4.
-
(1978)
Ann Stat
, vol.6
, pp. 461-464
-
-
Schwartz, G.1
-
43
-
-
0028561099
-
Positive Matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
-
Paatero P, Tapper U. Positive Matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmerics 1994;5:111-26.
-
(1994)
Environmerics
, vol.5
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
44
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature 1999;401:788-91.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
45
-
-
0037810449
-
Subsystem identification through dimensionality reduction of large scale gene expression data
-
Kim PM, Tidor B. Subsystem identification through dimensionality reduction of large scale gene expression data. Genome Res 2003;13:1706-18.
-
(2003)
Genome Res
, vol.13
, pp. 1706-1718
-
-
Kim, P.M.1
Tidor, B.2
-
46
-
-
46649091956
-
Reducing microarray data via non-negative matrix factorization for visualization and clustering analysis
-
Liu W, Yuan K, Ye D. Reducing microarray data via non-negative matrix factorization for visualization and clustering analysis. J Biomed Inform 2008;41:602-6.
-
(2008)
J Biomed Inform
, vol.41
, pp. 602-606
-
-
Liu, W.1
Yuan, K.2
Ye, D.3
-
47
-
-
0038724494
-
Consesus Clustering: A resampling based method for class discovery and visualization of gene expression microarray data
-
Monti S, Tamayo P, Mesirov J, et al. Consesus Clustering: A resampling based method for class discovery and visualization of gene expression microarray data. Machine Learning 2003;52:91-118.
-
(2003)
Machine Learning
, vol.52
, pp. 91-118
-
-
Monti, S.1
Tamayo, P.2
Mesirov, J.3
-
49
-
-
84962641043
-
Spectral Relaxation for K-means clustering
-
Zha H, He X, Ding C, et al. Spectral Relaxation for K-means clustering. Available online: http://ranger.uta.edu/~chqding/papers/KmeansNIPS2001.pdf
-
-
-
Zha, H.1
He, X.2
Ding, C.3
-
52
-
-
84876068958
-
Sparse Integrative clustering of multiple omics data sets
-
Shen R, Wang S, Mo Q. Sparse Integrative clustering of multiple omics data sets. Ann Appl Stat 2013;7:269-94.
-
(2013)
Ann Appl Stat
, vol.7
, pp. 269-294
-
-
Shen, R.1
Wang, S.2
Mo, Q.3
-
53
-
-
16244401458
-
Regularization and variable selection via the Elastic Net
-
Zou H, Hastie T. Regularization and variable selection via the Elastic Net. J Royal Statistical Society 2005;67:301-20.
-
(2005)
J Royal Statistical Society
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
55
-
-
19344375744
-
Semi-Supervised Methods to Predict Patient Survival from Gene Expression Data
-
Bair E, Tibshirani R. Semi-Supervised Methods to Predict Patient Survival from Gene Expression Data. PLoS Biology 2004;2:E108.
-
(2004)
PLoS Biology
, vol.2
, pp. E108
-
-
Bair, E.1
Tibshirani, R.2
-
56
-
-
0003684449
-
The Elements of Statistical Learning: Data Mining, Inference and Prediction
-
New York: Springer
-
Hastie T, Tibshirani R, Friedman J. eds. The Elements of Statistical Learning: Data Mining, Inference and Prediction. New York: Springer, 2001.
-
(2001)
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
57
-
-
18244409933
-
Diffuse large cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
-
Shipp MA, Ross KN, Tamayo P, et al. Diffuse large cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 2002;8:68-74.
-
(2002)
Nature Medicine
, vol.8
, pp. 68-74
-
-
Shipp, M.A.1
Ross, K.N.2
Tamayo, P.3
-
58
-
-
0037709918
-
Supervised clustering of genes
-
RESEARCH0069
-
Marcel D, Bühlmann P. Supervised clustering of genes. Genome Biol 2002;3:RESEARCH0069.
-
(2002)
Genome Biol
, vol.3
-
-
Marcel, D.1
Bühlmann, P.2
|