메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1-10

Spiking neural networks: Principles and challenges

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; INTELLIGENT AGENTS; LEARNING SYSTEMS;

EID: 84962034235     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (70)

References (54)
  • 1
    • 84896747542 scopus 로고    scopus 로고
    • Complex inference in neural circuits with probabilistic population codes and topic models
    • J. Beck, K. Heller, et al. Complex inference in neural circuits with probabilistic population codes and topic models. In Advances in Neural Inf. Processing Syst. (NIPS) 25, pp. 3068-3076. 2012.
    • (2012) Advances in Neural Inf. Processing Syst. (NIPS) , vol.25 , pp. 3068-3076
    • Beck, J.1    Heller, K.2
  • 3
    • 79952458995 scopus 로고    scopus 로고
    • Spike-based population coding and working memory
    • M. Boerlin and S. Denève. Spike-based population coding and working memory. PLoS Comp. Biol., 7(2):e1001080, 2011.
    • (2011) PLoS Comp. Biol. , vol.7 , Issue.2 , pp. e1001080
    • Boerlin, M.1    Denève, S.2
  • 4
    • 84962024426 scopus 로고    scopus 로고
    • Error-backpropagation in fractional spiking neural networks
    • Springer
    • S. Bohte. Error-backpropagation in Fractional Spiking Neural Networks. In ICANN, pp. 60-68. Springer, 2011.
    • (2011) ICANN , pp. 60-68
    • Bohte, S.1
  • 5
    • 84962012581 scopus 로고    scopus 로고
    • Efficient spike-coding with multiplicative adaptation in a spike response model
    • -. Efficient spike-coding with multiplicative adaptation in a spike response model. In NIPS 25, pp. 1844-1852. 2012.
    • (2012) NIPS , vol.25 , pp. 1844-1852
    • Bohte, S.1
  • 6
    • 0036826068 scopus 로고    scopus 로고
    • Error-backpropagation in temporally encoded networks of spiking neurons
    • S. Bohte, J. Kok, et al. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing, 48:17-38, 2002.
    • (2002) Neurocomputing , vol.48 , pp. 17-38
    • Bohte, S.1    Kok, J.2
  • 7
    • 85161963751 scopus 로고    scopus 로고
    • Fractionally predictive spiking neurons
    • S. Bohte and J. Rombouts. Fractionally Predictive Spiking Neurons. In NIPS 23, pp. 253-261. 2010.
    • (2010) NIPS , vol.23 , pp. 253-261
    • Bohte, S.1    Rombouts, J.2
  • 8
    • 0025499292 scopus 로고
    • A circuit for detection of interaural time differences in the brain stem of the barn owl
    • C. Carr and M. Konishi. A circuit for detection of interaural time differences in the brain stem of the barn owl. J. of Neuroscience, 10(10):3227-3246, 1990.
    • (1990) J. of Neuroscience , vol.10 , Issue.10 , pp. 3227-3246
    • Carr, C.1    Konishi, M.2
  • 9
    • 84962001497 scopus 로고    scopus 로고
    • Neuronal spike generation mechanism as an oversampling, noise-shaping a-to-d converter
    • D. Chklovskii and D. Soudry. Neuronal spike generation mechanism as an oversampling, noise-shaping a-to-d converter. In NIPS 25, pp. 512-520. 2012.
    • (2012) NIPS , vol.25 , pp. 512-520
    • Chklovskii, D.1    Soudry, D.2
  • 10
    • 77649152514 scopus 로고    scopus 로고
    • Connectivity reflects coding: A model of voltage-based stdp with homeostasis
    • C. Clopath et al. Connectivity reflects coding: a model of voltage-based stdp with homeostasis. Nature Neurosc., 13(3):344-352, 2010.
    • (2010) Nature Neurosc. , vol.13 , Issue.3 , pp. 344-352
    • Clopath, C.1
  • 11
    • 84962019139 scopus 로고    scopus 로고
    • Toward STDP-based population action in large networks of spiking neurons
    • M. Verleysen, ed.,. D-Facto
    • E. Daucé. Toward STDP-based population action in large networks of spiking neurons. In M. Verleysen, ed., Proc ESANN'2014. D-Facto, 2014.
    • (2014) Proc ESANN'2014
    • Daucé, E.1
  • 13
    • 37549060355 scopus 로고    scopus 로고
    • Reinforcement learning with modulated spike timing-dependent synaptic plasticity
    • M. A. Farries and A. L. Fairhall. Reinforcement learning with modulated spike timing-dependent synaptic plasticity. J Neurophysiol, 98:3648-3665, 2007.
    • (2007) J Neurophysiol , vol.98 , pp. 3648-3665
    • Farries, M.A.1    Fairhall, A.L.2
  • 14
    • 51849150736 scopus 로고    scopus 로고
    • Tempotron-like learning with resume
    • V. Kurková R. Neruda et al. eds, 5164 of Lecture Notes in Computer Science, Springer Berlin Heidelberg
    • R. Florian. Tempotron-like learning with resume. In V. Kurková, R. Neruda, et al., eds., Artificial Neural Networks-ICANN 2008, vol. 5164 of Lecture Notes in Computer Science, pp. 368-375. Springer Berlin Heidelberg, 2008.
    • (2008) Artificial Neural Networks-ICANN 2008 , pp. 368-375
    • Florian, R.1
  • 15
    • 34249708388 scopus 로고    scopus 로고
    • Reinforcment learning through modulation of spike-timingdependent synaptic plasticity
    • R. V. Florian. Reinforcment learning through modulation of spike-timingdependent synaptic plasticity. Neural Computation, 19(6):1468-1502, 2007.
    • (2007) Neural Computation , vol.19 , Issue.6 , pp. 1468-1502
    • Florian, R.V.1
  • 16
    • 84864668988 scopus 로고    scopus 로고
    • The chronotron: A neuron that learns to fire temporally precise spike patterns
    • 08
    • -. The chronotron: A neuron that learns to fire temporally precise spike patterns. PLoS ONE, 7(8):e40233, 08 2012.
    • (2012) PLoS ONE , vol.7 , Issue.8 , pp. e40233
    • Florian, R.V.1
  • 17
    • 77957731196 scopus 로고    scopus 로고
    • Functional requirements for reward-modulated spile-timing-dependent plasticity
    • 10
    • N. Fremaux, H. Sprekeler, et al. Functional requirements for reward-modulated spile-timing-dependent plasticity. The Journal of Neuroscience, 30(40):13326- 13337, 10 2010.
    • (2010) The Journal of Neuroscience , vol.30 , Issue.40 , pp. 13326-13337
    • Fremaux, N.1    Sprekeler, H.2
  • 18
    • 84884914818 scopus 로고    scopus 로고
    • Learning temporally precise spiking patterns through reward modulated spike-timing-dependent plasticity
    • Lecture Notes in Computer Science Springer, September
    • B. Gardner and A. Grüning. Learning temporally precise spiking patterns through reward modulated spike-timing-dependent plasticity. In Proceedings of the International Conference on Artificial Neural Networks (ICANN), Lecture Notes in Computer Science. Springer, September 2013.
    • (2013) Proceedings of the International Conference on Artificial Neural Networks (ICANN)
    • Gardner, B.1    Grüning, A.2
  • 19
    • 84961990434 scopus 로고    scopus 로고
    • Classifying patterns in a spiking neural network
    • M. Verleysen, ed.,. D-Facto
    • -. Classifying patterns in a spiking neural network. In M. Verleysen, ed., Proc ESANN'2014. D-Facto, 2014.
    • (2014) Proc ESANN'2014
    • Gardner, B.1    Grüning, A.2
  • 21
    • 0029821128 scopus 로고    scopus 로고
    • A neuronal learning rule for sub-millisecond temporal coding
    • W. Gerstner et al. A neuronal learning rule for sub-millisecond temporal coding. Nature, 383(6595):76-78, 1996.
    • (1996) Nature , vol.383 , Issue.6595 , pp. 76-78
    • Gerstner, W.1
  • 22
    • 79951514022 scopus 로고    scopus 로고
    • Repective field optimisation and supervision of a fuzzy spiking neural network
    • C. Glackin, L. Maguire, et al. Repective field optimisation and supervision of a fuzzy spiking neural network. Neural Networks, 24:247-256, 2011.
    • (2011) Neural Networks , vol.24 , pp. 247-256
    • Glackin, C.1    Maguire, L.2
  • 24
    • 36248979779 scopus 로고    scopus 로고
    • Elman backpropagation as reinforcement for simple recurrent networks
    • A. Grüning. Elman backpropagation as reinforcement for simple recurrent networks. Neural Computation, 19(11):3108-3131, 2007. ISSN 0899-7667.
    • (2007) Neural Computation , vol.19 , Issue.11 , pp. 3108-3131
    • Grüning, A.1
  • 25
    • 84867232380 scopus 로고    scopus 로고
    • Supervised learning of logical operations in layered spiking neural networks with spike train encoding
    • A. Grüning and I. Sporea. Supervised learning of logical operations in layered spiking neural networks with spike train encoding. Neural Processing Letters, 36(2):117-134, 2012.
    • (2012) Neural Processing Letters , vol.36 , Issue.2 , pp. 117-134
    • Grüning, A.1    Sporea, I.2
  • 26
    • 33344478663 scopus 로고    scopus 로고
    • The tempotron: A neuron that learns spike timing- based decisions
    • R. Gütig and H. Sompolinsky. The tempotron: a neuron that learns spike timing- based decisions. Nature neuroscience, 9(3):420-428, 2006.
    • (2006) Nature Neuroscience , vol.9 , Issue.3 , pp. 420-428
    • Gütig, R.1    Sompolinsky, H.2
  • 27
    • 35649001607 scopus 로고
    • A quantitative description of membrane current and its application to conduction and excitation in nerve
    • A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4):500, 1952.
    • (1952) The Journal of Physiology , vol.117 , Issue.4 , pp. 500
    • Hodgkin, A.L.1    Huxley, A.F.2
  • 28
    • 33847263468 scopus 로고    scopus 로고
    • Fast population coding
    • Q. Huys, R. Zemel, et al. Fast population coding. Neural Computation, 19(2):404-441, 2007.
    • (2007) Neural Computation , vol.19 , Issue.2 , pp. 404-441
    • Huys, Q.1    Zemel, R.2
  • 29
    • 4344661328 scopus 로고    scopus 로고
    • Which model to use for cortical spiking neurons?
    • E. Izhikevich. Which model to use for cortical spiking neurons? IEEE transactions on neural networks, 15(5):1063-1070, 2004.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.5 , pp. 1063-1070
    • Izhikevich, E.1
  • 30
    • 33644898137 scopus 로고    scopus 로고
    • Polychronization: Computation with spikes
    • E. M. Izhikevich. Polychronization: computation with spikes. Neural computation, 18(2):245-282, 2006.
    • (2006) Neural Computation , vol.18 , Issue.2 , pp. 245-282
    • Izhikevich, E.M.1
  • 31
    • 0034132974 scopus 로고    scopus 로고
    • Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic action potentials
    • W. Kistler and L. J. van Hemmen. Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic action potentials. Neural Computation, 12:385-405, 2000.
    • (2000) Neural Computation , vol.12 , pp. 385-405
    • Kistler, W.1    Van Hemmen, L.J.2
  • 32
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, et al. Imagenet classification with deep convolutional neural networks. In NIPS, vol. 1(2), p. 4. 2012.
    • (2012) NIPS , vol.1 , Issue.2 , pp. 4
    • Krizhevsky, A.1    Sutskever, I.2
  • 33
    • 77649285168 scopus 로고    scopus 로고
    • Population encoding with hodgkin-huxley neurons
    • A. Lazar. Population encoding with hodgkin-huxley neurons. Information Theory, IEEE Transactions on, 56(2):821-837, 2010.
    • (2010) Information Theory, IEEE Transactions on , vol.56 , Issue.2 , pp. 821-837
    • Lazar, A.1
  • 34
    • 0141853936 scopus 로고    scopus 로고
    • Time encoding and perfect recovery of bandlimited signals
    • A. Lazar and L. Toth. Time encoding and perfect recovery of bandlimited signals. In Proc. ICASSP'03, pp. VI-709. 2003.
    • (2003) Proc. ICASSP'03 , pp. VI-709
    • Lazar, A.1    Toth, L.2
  • 35
    • 84867135575 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning
    • Q. Le et al. Building high-level features using large scale unsupervised learning. In Proc. ICML-12, pp. 81-88. 2012.
    • (2012) Proc. ICML-12 , pp. 81-88
    • Le, Q.1
  • 36
    • 55449121121 scopus 로고    scopus 로고
    • A learning theory for reward-modulated spiketiming- dependent plasticity with application to biofeedback
    • 1-27, October
    • R. Legenstein, D. Pecevski, et al. A learning theory for reward-modulated spiketiming- dependent plasticity with application to biofeedback. PLoS Computational Biology, 3(10):1-27, October 2008.
    • (2008) PLoS Computational Biology , vol.3 , pp. 10
    • Legenstein, R.1    Pecevski, D.2
  • 37
    • 33750437292 scopus 로고    scopus 로고
    • Bayesian inference with probabilistic population codes
    • W. Ma, J. Beck, et al. Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11):1432-1438, 2006.
    • (2006) Nature Neuroscience , vol.9 , Issue.11 , pp. 1432-1438
    • Ma, W.1    Beck, J.2
  • 38
    • 0031472340 scopus 로고    scopus 로고
    • Networks of spiking neurons: The third generation of neural network models
    • W. Maass. Networks of spiking neurons: the third generation of neural network models. Neural Networks, 10(9):1659-1671, 1997.
    • (1997) Neural Networks , vol.10 , Issue.9 , pp. 1659-1671
    • Maass, W.1
  • 39
    • 0031012615 scopus 로고    scopus 로고
    • Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs
    • H. Markram et al. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275(5297):213-215, 1997.
    • (1997) Science , vol.275 , Issue.5297 , pp. 213-215
    • Markram, H.1
  • 40
    • 84867799760 scopus 로고    scopus 로고
    • Mapping a complete neural population in the retina
    • O. Marre et al. Mapping a complete neural population in the retina. The Journal of Neuroscience, 32(43):14859-14873, 2012.
    • (2012) The Journal of Neuroscience , vol.32 , Issue.43 , pp. 14859-14873
    • Marre, O.1
  • 41
    • 59149087290 scopus 로고    scopus 로고
    • Spike-timing error backpropagation in theta neuron networks
    • S. McKennoch, T. Voegtlin, et al. Spike-timing error backpropagation in theta neuron networks. Neural computation, 21(1):9-45, 2009.
    • (2009) Neural Computation , vol.21 , Issue.1 , pp. 9-45
    • McKennoch, S.1    Voegtlin, T.2
  • 42
    • 84886371483 scopus 로고    scopus 로고
    • Span: Spike pattern association neuron for learning spatio-temporal sequences
    • A. Mohemmed, S. Schliebs, et al. Span: Spike pattern association neuron for learning spatio-temporal sequences. Int. J. Neural Systems, 2011.
    • (2011) Int. J. Neural Systems
    • Mohemmed, A.1    Schliebs, S.2
  • 43
    • 26444486505 scopus 로고    scopus 로고
    • Spatial and temporal pattern analysis via spiking neurons
    • T. Natschläger and B. Ruf. Spatial and temporal pattern analysis via spiking neurons. Network: Computation in Neural Systems, 9(3):319-332, 1998.
    • (1998) Network: Computation in Neural Systems , vol.9 , Issue.3 , pp. 319-332
    • Natschläger, T.1    Ruf, B.2
  • 44
    • 33646801243 scopus 로고    scopus 로고
    • Optimal spike-timing dependent plasticity for precise action potential firing in supervised learning
    • J. Pfister, T. Toyoizumi, et al. Optimal spike-timing dependent plasticity for precise action potential firing in supervised learning. Neural Comput, 18:1309-1339, 2006.
    • (2006) Neural Comput , vol.18 , pp. 1309-1339
    • Pfister, J.1    Toyoizumi, T.2
  • 45
    • 45849149861 scopus 로고    scopus 로고
    • Supervised learning in spiking neural networks with resume method
    • F. Ponulak. Supervised learning in spiking neural networks with resume method. Phd, Poznan University of Technology, 46:47, 2006.
    • (2006) Phd, Poznan University of Technology , vol.46 , pp. 47
    • Ponulak, F.1
  • 46
    • 77649334232 scopus 로고    scopus 로고
    • Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification and spike shifting
    • F. Ponulak and A. Kasiński. Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification and spike shifting. Neural Computation, 22:467-510, 2010.
    • (2010) Neural Computation , vol.22 , pp. 467-510
    • Ponulak, F.1    Kasiński, A.2
  • 47
    • 84877839888 scopus 로고    scopus 로고
    • Supervised learning in multilayer spiking neural networks
    • I. Sporea and A. Grüning. Supervised learning in multilayer spiking neural networks. Neural Computation, 25(2), 2013.
    • (2013) Neural Computation , vol.25 , pp. 2
    • Sporea, I.1    Grüning, A.2
  • 48
    • 84951010072 scopus 로고    scopus 로고
    • A new biologically plausible supervised learning method for spiking neurons
    • M. Verleysen, ed.,. D-Facto
    • A. Taherkhani et al. A new biologically plausible supervised learning method for spiking neurons. In M. Verleysen, ed., Proc. ESANN'2014. D-Facto, 2014.
    • (2014) Proc. ESANN'2014
    • Taherkhani, A.1
  • 50
    • 67650286597 scopus 로고    scopus 로고
    • A gradient learning rule for the tempotron
    • R. Urbanczik and W. Senn. A gradient learning rule for the tempotron. Neural Computation, 21:340-352, 2009.
    • (2009) Neural Computation , vol.21 , pp. 340-352
    • Urbanczik, R.1    Senn, W.2
  • 51
    • 60749100305 scopus 로고    scopus 로고
    • Reinforcement learning in populations of spiking neurons
    • Feb
    • -. Reinforcement learning in populations of spiking neurons. Nature Neuroscience, 12:250-252, Feb 2009.
    • (2009) Nature Neuroscience , vol.12 , pp. 250-252
    • Urbanczik, R.1    Senn, W.2
  • 52
    • 78149342071 scopus 로고    scopus 로고
    • Swat: A spiking neural network training algorithm for classification problems
    • J. J.Wade, L. J. McDaid, et al. Swat: A spiking neural network training algorithm for classification problems. IEEE Transactions on Neural Networks, 21(11):1817- 1829, 2010.
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.11 , pp. 1817-1829
    • Wade, J.J.1    McDaid, L.J.2
  • 53
    • 0002278965 scopus 로고
    • Adaptive switching circuits
    • IRE, New York
    • B. Widrow, M. E. Hoff, et al. Adaptive switching circuits. In 1960 IRE WESCON Convention Record, vol. Part 4, pp. 96-104. IRE, New York, 1960.
    • (1960) 1960 IRE WESCON Convention Record , pp. 96-104
    • Widrow, B.1    Hoff, M.E.2
  • 54
    • 84962000585 scopus 로고    scopus 로고
    • Spiking agrel
    • M. Verleysen, ed.,. D-Facto
    • D. Zambrano et al. Spiking AGREL. In M. Verleysen, ed., Proc ESANN 2014. D-Facto, 2014.
    • (2014) Proc ESANN 2014
    • Zambrano, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.