-
1
-
-
84896747542
-
Complex inference in neural circuits with probabilistic population codes and topic models
-
J. Beck, K. Heller, et al. Complex inference in neural circuits with probabilistic population codes and topic models. In Advances in Neural Inf. Processing Syst. (NIPS) 25, pp. 3068-3076. 2012.
-
(2012)
Advances in Neural Inf. Processing Syst. (NIPS)
, vol.25
, pp. 3068-3076
-
-
Beck, J.1
Heller, K.2
-
3
-
-
79952458995
-
Spike-based population coding and working memory
-
M. Boerlin and S. Denève. Spike-based population coding and working memory. PLoS Comp. Biol., 7(2):e1001080, 2011.
-
(2011)
PLoS Comp. Biol.
, vol.7
, Issue.2
, pp. e1001080
-
-
Boerlin, M.1
Denève, S.2
-
4
-
-
84962024426
-
Error-backpropagation in fractional spiking neural networks
-
Springer
-
S. Bohte. Error-backpropagation in Fractional Spiking Neural Networks. In ICANN, pp. 60-68. Springer, 2011.
-
(2011)
ICANN
, pp. 60-68
-
-
Bohte, S.1
-
5
-
-
84962012581
-
Efficient spike-coding with multiplicative adaptation in a spike response model
-
-. Efficient spike-coding with multiplicative adaptation in a spike response model. In NIPS 25, pp. 1844-1852. 2012.
-
(2012)
NIPS
, vol.25
, pp. 1844-1852
-
-
Bohte, S.1
-
6
-
-
0036826068
-
Error-backpropagation in temporally encoded networks of spiking neurons
-
S. Bohte, J. Kok, et al. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing, 48:17-38, 2002.
-
(2002)
Neurocomputing
, vol.48
, pp. 17-38
-
-
Bohte, S.1
Kok, J.2
-
7
-
-
85161963751
-
Fractionally predictive spiking neurons
-
S. Bohte and J. Rombouts. Fractionally Predictive Spiking Neurons. In NIPS 23, pp. 253-261. 2010.
-
(2010)
NIPS
, vol.23
, pp. 253-261
-
-
Bohte, S.1
Rombouts, J.2
-
8
-
-
0025499292
-
A circuit for detection of interaural time differences in the brain stem of the barn owl
-
C. Carr and M. Konishi. A circuit for detection of interaural time differences in the brain stem of the barn owl. J. of Neuroscience, 10(10):3227-3246, 1990.
-
(1990)
J. of Neuroscience
, vol.10
, Issue.10
, pp. 3227-3246
-
-
Carr, C.1
Konishi, M.2
-
9
-
-
84962001497
-
Neuronal spike generation mechanism as an oversampling, noise-shaping a-to-d converter
-
D. Chklovskii and D. Soudry. Neuronal spike generation mechanism as an oversampling, noise-shaping a-to-d converter. In NIPS 25, pp. 512-520. 2012.
-
(2012)
NIPS
, vol.25
, pp. 512-520
-
-
Chklovskii, D.1
Soudry, D.2
-
10
-
-
77649152514
-
Connectivity reflects coding: A model of voltage-based stdp with homeostasis
-
C. Clopath et al. Connectivity reflects coding: a model of voltage-based stdp with homeostasis. Nature Neurosc., 13(3):344-352, 2010.
-
(2010)
Nature Neurosc.
, vol.13
, Issue.3
, pp. 344-352
-
-
Clopath, C.1
-
11
-
-
84962019139
-
Toward STDP-based population action in large networks of spiking neurons
-
M. Verleysen, ed.,. D-Facto
-
E. Daucé. Toward STDP-based population action in large networks of spiking neurons. In M. Verleysen, ed., Proc ESANN'2014. D-Facto, 2014.
-
(2014)
Proc ESANN'2014
-
-
Daucé, E.1
-
13
-
-
37549060355
-
Reinforcement learning with modulated spike timing-dependent synaptic plasticity
-
M. A. Farries and A. L. Fairhall. Reinforcement learning with modulated spike timing-dependent synaptic plasticity. J Neurophysiol, 98:3648-3665, 2007.
-
(2007)
J Neurophysiol
, vol.98
, pp. 3648-3665
-
-
Farries, M.A.1
Fairhall, A.L.2
-
14
-
-
51849150736
-
Tempotron-like learning with resume
-
V. Kurková R. Neruda et al. eds, 5164 of Lecture Notes in Computer Science, Springer Berlin Heidelberg
-
R. Florian. Tempotron-like learning with resume. In V. Kurková, R. Neruda, et al., eds., Artificial Neural Networks-ICANN 2008, vol. 5164 of Lecture Notes in Computer Science, pp. 368-375. Springer Berlin Heidelberg, 2008.
-
(2008)
Artificial Neural Networks-ICANN 2008
, pp. 368-375
-
-
Florian, R.1
-
15
-
-
34249708388
-
Reinforcment learning through modulation of spike-timingdependent synaptic plasticity
-
R. V. Florian. Reinforcment learning through modulation of spike-timingdependent synaptic plasticity. Neural Computation, 19(6):1468-1502, 2007.
-
(2007)
Neural Computation
, vol.19
, Issue.6
, pp. 1468-1502
-
-
Florian, R.V.1
-
16
-
-
84864668988
-
The chronotron: A neuron that learns to fire temporally precise spike patterns
-
08
-
-. The chronotron: A neuron that learns to fire temporally precise spike patterns. PLoS ONE, 7(8):e40233, 08 2012.
-
(2012)
PLoS ONE
, vol.7
, Issue.8
, pp. e40233
-
-
Florian, R.V.1
-
17
-
-
77957731196
-
Functional requirements for reward-modulated spile-timing-dependent plasticity
-
10
-
N. Fremaux, H. Sprekeler, et al. Functional requirements for reward-modulated spile-timing-dependent plasticity. The Journal of Neuroscience, 30(40):13326- 13337, 10 2010.
-
(2010)
The Journal of Neuroscience
, vol.30
, Issue.40
, pp. 13326-13337
-
-
Fremaux, N.1
Sprekeler, H.2
-
18
-
-
84884914818
-
Learning temporally precise spiking patterns through reward modulated spike-timing-dependent plasticity
-
Lecture Notes in Computer Science Springer, September
-
B. Gardner and A. Grüning. Learning temporally precise spiking patterns through reward modulated spike-timing-dependent plasticity. In Proceedings of the International Conference on Artificial Neural Networks (ICANN), Lecture Notes in Computer Science. Springer, September 2013.
-
(2013)
Proceedings of the International Conference on Artificial Neural Networks (ICANN)
-
-
Gardner, B.1
Grüning, A.2
-
19
-
-
84961990434
-
Classifying patterns in a spiking neural network
-
M. Verleysen, ed.,. D-Facto
-
-. Classifying patterns in a spiking neural network. In M. Verleysen, ed., Proc ESANN'2014. D-Facto, 2014.
-
(2014)
Proc ESANN'2014
-
-
Gardner, B.1
Grüning, A.2
-
21
-
-
0029821128
-
A neuronal learning rule for sub-millisecond temporal coding
-
W. Gerstner et al. A neuronal learning rule for sub-millisecond temporal coding. Nature, 383(6595):76-78, 1996.
-
(1996)
Nature
, vol.383
, Issue.6595
, pp. 76-78
-
-
Gerstner, W.1
-
22
-
-
79951514022
-
Repective field optimisation and supervision of a fuzzy spiking neural network
-
C. Glackin, L. Maguire, et al. Repective field optimisation and supervision of a fuzzy spiking neural network. Neural Networks, 24:247-256, 2011.
-
(2011)
Neural Networks
, vol.24
, pp. 247-256
-
-
Glackin, C.1
Maguire, L.2
-
24
-
-
36248979779
-
Elman backpropagation as reinforcement for simple recurrent networks
-
A. Grüning. Elman backpropagation as reinforcement for simple recurrent networks. Neural Computation, 19(11):3108-3131, 2007. ISSN 0899-7667.
-
(2007)
Neural Computation
, vol.19
, Issue.11
, pp. 3108-3131
-
-
Grüning, A.1
-
25
-
-
84867232380
-
Supervised learning of logical operations in layered spiking neural networks with spike train encoding
-
A. Grüning and I. Sporea. Supervised learning of logical operations in layered spiking neural networks with spike train encoding. Neural Processing Letters, 36(2):117-134, 2012.
-
(2012)
Neural Processing Letters
, vol.36
, Issue.2
, pp. 117-134
-
-
Grüning, A.1
Sporea, I.2
-
26
-
-
33344478663
-
The tempotron: A neuron that learns spike timing- based decisions
-
R. Gütig and H. Sompolinsky. The tempotron: a neuron that learns spike timing- based decisions. Nature neuroscience, 9(3):420-428, 2006.
-
(2006)
Nature Neuroscience
, vol.9
, Issue.3
, pp. 420-428
-
-
Gütig, R.1
Sompolinsky, H.2
-
27
-
-
35649001607
-
A quantitative description of membrane current and its application to conduction and excitation in nerve
-
A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4):500, 1952.
-
(1952)
The Journal of Physiology
, vol.117
, Issue.4
, pp. 500
-
-
Hodgkin, A.L.1
Huxley, A.F.2
-
28
-
-
33847263468
-
Fast population coding
-
Q. Huys, R. Zemel, et al. Fast population coding. Neural Computation, 19(2):404-441, 2007.
-
(2007)
Neural Computation
, vol.19
, Issue.2
, pp. 404-441
-
-
Huys, Q.1
Zemel, R.2
-
29
-
-
4344661328
-
Which model to use for cortical spiking neurons?
-
E. Izhikevich. Which model to use for cortical spiking neurons? IEEE transactions on neural networks, 15(5):1063-1070, 2004.
-
(2004)
IEEE Transactions on Neural Networks
, vol.15
, Issue.5
, pp. 1063-1070
-
-
Izhikevich, E.1
-
30
-
-
33644898137
-
Polychronization: Computation with spikes
-
E. M. Izhikevich. Polychronization: computation with spikes. Neural computation, 18(2):245-282, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.2
, pp. 245-282
-
-
Izhikevich, E.M.1
-
31
-
-
0034132974
-
Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic action potentials
-
W. Kistler and L. J. van Hemmen. Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic action potentials. Neural Computation, 12:385-405, 2000.
-
(2000)
Neural Computation
, vol.12
, pp. 385-405
-
-
Kistler, W.1
Van Hemmen, L.J.2
-
32
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, et al. Imagenet classification with deep convolutional neural networks. In NIPS, vol. 1(2), p. 4. 2012.
-
(2012)
NIPS
, vol.1
, Issue.2
, pp. 4
-
-
Krizhevsky, A.1
Sutskever, I.2
-
33
-
-
77649285168
-
Population encoding with hodgkin-huxley neurons
-
A. Lazar. Population encoding with hodgkin-huxley neurons. Information Theory, IEEE Transactions on, 56(2):821-837, 2010.
-
(2010)
Information Theory, IEEE Transactions on
, vol.56
, Issue.2
, pp. 821-837
-
-
Lazar, A.1
-
34
-
-
0141853936
-
Time encoding and perfect recovery of bandlimited signals
-
A. Lazar and L. Toth. Time encoding and perfect recovery of bandlimited signals. In Proc. ICASSP'03, pp. VI-709. 2003.
-
(2003)
Proc. ICASSP'03
, pp. VI-709
-
-
Lazar, A.1
Toth, L.2
-
35
-
-
84867135575
-
Building high-level features using large scale unsupervised learning
-
Q. Le et al. Building high-level features using large scale unsupervised learning. In Proc. ICML-12, pp. 81-88. 2012.
-
(2012)
Proc. ICML-12
, pp. 81-88
-
-
Le, Q.1
-
36
-
-
55449121121
-
A learning theory for reward-modulated spiketiming- dependent plasticity with application to biofeedback
-
1-27, October
-
R. Legenstein, D. Pecevski, et al. A learning theory for reward-modulated spiketiming- dependent plasticity with application to biofeedback. PLoS Computational Biology, 3(10):1-27, October 2008.
-
(2008)
PLoS Computational Biology
, vol.3
, pp. 10
-
-
Legenstein, R.1
Pecevski, D.2
-
37
-
-
33750437292
-
Bayesian inference with probabilistic population codes
-
W. Ma, J. Beck, et al. Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11):1432-1438, 2006.
-
(2006)
Nature Neuroscience
, vol.9
, Issue.11
, pp. 1432-1438
-
-
Ma, W.1
Beck, J.2
-
38
-
-
0031472340
-
Networks of spiking neurons: The third generation of neural network models
-
W. Maass. Networks of spiking neurons: the third generation of neural network models. Neural Networks, 10(9):1659-1671, 1997.
-
(1997)
Neural Networks
, vol.10
, Issue.9
, pp. 1659-1671
-
-
Maass, W.1
-
39
-
-
0031012615
-
Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs
-
H. Markram et al. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275(5297):213-215, 1997.
-
(1997)
Science
, vol.275
, Issue.5297
, pp. 213-215
-
-
Markram, H.1
-
40
-
-
84867799760
-
Mapping a complete neural population in the retina
-
O. Marre et al. Mapping a complete neural population in the retina. The Journal of Neuroscience, 32(43):14859-14873, 2012.
-
(2012)
The Journal of Neuroscience
, vol.32
, Issue.43
, pp. 14859-14873
-
-
Marre, O.1
-
41
-
-
59149087290
-
Spike-timing error backpropagation in theta neuron networks
-
S. McKennoch, T. Voegtlin, et al. Spike-timing error backpropagation in theta neuron networks. Neural computation, 21(1):9-45, 2009.
-
(2009)
Neural Computation
, vol.21
, Issue.1
, pp. 9-45
-
-
McKennoch, S.1
Voegtlin, T.2
-
42
-
-
84886371483
-
Span: Spike pattern association neuron for learning spatio-temporal sequences
-
A. Mohemmed, S. Schliebs, et al. Span: Spike pattern association neuron for learning spatio-temporal sequences. Int. J. Neural Systems, 2011.
-
(2011)
Int. J. Neural Systems
-
-
Mohemmed, A.1
Schliebs, S.2
-
43
-
-
26444486505
-
Spatial and temporal pattern analysis via spiking neurons
-
T. Natschläger and B. Ruf. Spatial and temporal pattern analysis via spiking neurons. Network: Computation in Neural Systems, 9(3):319-332, 1998.
-
(1998)
Network: Computation in Neural Systems
, vol.9
, Issue.3
, pp. 319-332
-
-
Natschläger, T.1
Ruf, B.2
-
44
-
-
33646801243
-
Optimal spike-timing dependent plasticity for precise action potential firing in supervised learning
-
J. Pfister, T. Toyoizumi, et al. Optimal spike-timing dependent plasticity for precise action potential firing in supervised learning. Neural Comput, 18:1309-1339, 2006.
-
(2006)
Neural Comput
, vol.18
, pp. 1309-1339
-
-
Pfister, J.1
Toyoizumi, T.2
-
45
-
-
45849149861
-
Supervised learning in spiking neural networks with resume method
-
F. Ponulak. Supervised learning in spiking neural networks with resume method. Phd, Poznan University of Technology, 46:47, 2006.
-
(2006)
Phd, Poznan University of Technology
, vol.46
, pp. 47
-
-
Ponulak, F.1
-
46
-
-
77649334232
-
Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification and spike shifting
-
F. Ponulak and A. Kasiński. Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification and spike shifting. Neural Computation, 22:467-510, 2010.
-
(2010)
Neural Computation
, vol.22
, pp. 467-510
-
-
Ponulak, F.1
Kasiński, A.2
-
47
-
-
84877839888
-
Supervised learning in multilayer spiking neural networks
-
I. Sporea and A. Grüning. Supervised learning in multilayer spiking neural networks. Neural Computation, 25(2), 2013.
-
(2013)
Neural Computation
, vol.25
, pp. 2
-
-
Sporea, I.1
Grüning, A.2
-
48
-
-
84951010072
-
A new biologically plausible supervised learning method for spiking neurons
-
M. Verleysen, ed.,. D-Facto
-
A. Taherkhani et al. A new biologically plausible supervised learning method for spiking neurons. In M. Verleysen, ed., Proc. ESANN'2014. D-Facto, 2014.
-
(2014)
Proc. ESANN'2014
-
-
Taherkhani, A.1
-
50
-
-
67650286597
-
A gradient learning rule for the tempotron
-
R. Urbanczik and W. Senn. A gradient learning rule for the tempotron. Neural Computation, 21:340-352, 2009.
-
(2009)
Neural Computation
, vol.21
, pp. 340-352
-
-
Urbanczik, R.1
Senn, W.2
-
51
-
-
60749100305
-
Reinforcement learning in populations of spiking neurons
-
Feb
-
-. Reinforcement learning in populations of spiking neurons. Nature Neuroscience, 12:250-252, Feb 2009.
-
(2009)
Nature Neuroscience
, vol.12
, pp. 250-252
-
-
Urbanczik, R.1
Senn, W.2
-
52
-
-
78149342071
-
Swat: A spiking neural network training algorithm for classification problems
-
J. J.Wade, L. J. McDaid, et al. Swat: A spiking neural network training algorithm for classification problems. IEEE Transactions on Neural Networks, 21(11):1817- 1829, 2010.
-
(2010)
IEEE Transactions on Neural Networks
, vol.21
, Issue.11
, pp. 1817-1829
-
-
Wade, J.J.1
McDaid, L.J.2
-
53
-
-
0002278965
-
Adaptive switching circuits
-
IRE, New York
-
B. Widrow, M. E. Hoff, et al. Adaptive switching circuits. In 1960 IRE WESCON Convention Record, vol. Part 4, pp. 96-104. IRE, New York, 1960.
-
(1960)
1960 IRE WESCON Convention Record
, pp. 96-104
-
-
Widrow, B.1
Hoff, M.E.2
-
54
-
-
84962000585
-
Spiking agrel
-
M. Verleysen, ed.,. D-Facto
-
D. Zambrano et al. Spiking AGREL. In M. Verleysen, ed., Proc ESANN 2014. D-Facto, 2014.
-
(2014)
Proc ESANN 2014
-
-
Zambrano, D.1
|