메뉴 건너뛰기




Volumn , Issue , 2014, Pages 23-28

Classifying patterns in a spiking neural network

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; INTELLIGENT AGENTS; LEARNING ALGORITHMS; LEARNING SYSTEMS; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 84961990434     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4)

References (9)
  • 1
    • 0031472340 scopus 로고    scopus 로고
    • Networks of spiking neurons: The third generation of neural network models
    • Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models. Neural networks, 10(9):1659-1671, 1997.
    • (1997) Neural Networks , vol.10 , Issue.9 , pp. 1659-1671
    • Maass, W.1
  • 2
    • 77649334232 scopus 로고    scopus 로고
    • Supervised learning in spiking neural networks with resume: Sequence learning, classification, and spike shifting
    • Filip Ponulak and Andrzej Kasiński. Supervised learning in spiking neural networks with resume: sequence learning, classification, and spike shifting. Neural Computation, 22(2):467-510, 2010.
    • (2010) Neural Computation , vol.22 , Issue.2 , pp. 467-510
    • Ponulak, F.1    Kasiński, A.2
  • 3
    • 84864668988 scopus 로고    scopus 로고
    • The chronotron: A neuron that learns to fire temporally precise spike patterns
    • Râzvan V Florian. The chronotron: A neuron that learns to fire temporally precise spike patterns. PloS one, 7(8):e40233, 2012.
    • (2012) PloS One , vol.7 , Issue.8 , pp. e40233
    • Florian, R.V.1
  • 4
    • 33646801243 scopus 로고    scopus 로고
    • Optimal spiketiming-dependent plasticity for precise action potential firing in supervised learning
    • Jean-Pascal Pfister, Taro Toyoizumi, David Barber, and Wulfram Gerstner. Optimal spiketiming-dependent plasticity for precise action potential firing in supervised learning. Neural computation, 18(6):1318-1348, 2006.
    • (2006) Neural Computation , vol.18 , Issue.6 , pp. 1318-1348
    • Pfister, J.1    Toyoizumi, T.2    Barber, D.3    Gerstner, W.4
  • 5
    • 84877839888 scopus 로고    scopus 로고
    • Supervised learning in multilayer spiking neural networks
    • Ioana Sporea and André Grüning. Supervised learning in multilayer spiking neural networks. Neural computation, 25(2):473-509, 2013.
    • (2013) Neural Computation , vol.25 , Issue.2 , pp. 473-509
    • Sporea, I.1    Grüning, A.2
  • 7
    • 0035319165 scopus 로고    scopus 로고
    • A novel spike distance
    • Mark CW van Rossum. A novel spike distance. Neural Computation, 13(4):751-763, 2001.
    • (2001) Neural Computation , vol.13 , Issue.4 , pp. 751-763
    • Van Rossum, M.C.W.1
  • 8
    • 33344478663 scopus 로고    scopus 로고
    • The tempotron: A neuron that learns spike timing- based decisions
    • Robert Gütig and Haim Sompolinsky. The tempotron: a neuron that learns spike timing- based decisions. Nature neuroscience, 9(3):420-428, 2006.
    • (2006) Nature Neuroscience , vol.9 , Issue.3 , pp. 420-428
    • Gütig, R.1    Sompolinsky, H.2
  • 9
    • 84884914818 scopus 로고    scopus 로고
    • Learning temporally precise spiking patterns through reward modulated spike-timing-dependent plasticity
    • Springer
    • Brian Gardner and AndréGrüning. Learning temporally precise spiking patterns through reward modulated spike-timing-dependent plasticity. In Artificial Neural Networks and Machine Learning-ICANN 2013, pages 256-263. Springer, 2013.
    • (2013) Artificial Neural Networks and Machine Learning-ICANN 2013 , pp. 256-263
    • Gardner, B.1    Grüning, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.