메뉴 건너뛰기




Volumn 25, Issue 2, 2013, Pages 473-509

Supervised learning in multilayer spiking neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANIMAL; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; HUMAN; LETTER; NERVE CELL; PHYSIOLOGY;

EID: 84877839888     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00396     Document Type: Letter
Times cited : (143)

References (48)
  • 2
    • 0036826068 scopus 로고    scopus 로고
    • Error backpropagation in temporally encoded networks of spiking neurons
    • Bohte, S., Kok, J., & Poutré, H. L. (2002). Error backpropagation in temporally encoded networks of spiking neurons. Neurocomputing, 48, 17-37.
    • (2002) Neurocomputing , vol.48 , pp. 17-37
    • Bohte, S.1    Kok, J.2    Poutré, H.L.3
  • 3
    • 85161963751 scopus 로고    scopus 로고
    • Fractionally predictive spiking neurons
    • J. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Red Hook, NY: Curran
    • Bohte, S., & Rombouts, J. (2010). Fractionally predictive spiking neurons. In J. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in neural information processing, systems, 23 (pp. 253-261). Red Hook, NY: Curran.
    • (2010) Advances in neural information processing, systems , vol.23 , pp. 253-261
    • Bohte, S.1    Rombouts, J.2
  • 4
    • 23844463151 scopus 로고    scopus 로고
    • A gradient descent rule for spiking neurons emitting multiple spikes
    • Booij, O., & Nguyen, H. (2005). A gradient descent rule for spiking neurons emitting multiple spikes. Information Processing Letters, 95, 552-558.
    • (2005) Information Processing Letters , vol.95 , pp. 552-558
    • Booij, O.1    Nguyen, H.2
  • 5
    • 15844431539 scopus 로고    scopus 로고
    • Primary cortical representation of sounds by the coordination of action-potential timing
    • deCharms, R. C., & Merzenich, M. M. (1996). Primary cortical representation of sounds by the coordination of action-potential timing. Nature, 381, 610-613.
    • (1996) Nature , vol.381 , pp. 610-613
    • deCharms, R.C.1    Merzenich, M.M.2
  • 6
    • 84877811661 scopus 로고    scopus 로고
    • Building silicon nervous systems with dendritic tree neuromorphs
    • W. Maass & C. M. Bishop (Eds.), Cambridge, MA: MIT Press
    • Elias, J. G., & Northmore, D.P.M. (2002). Building silicon nervous systems with dendritic tree neuromorphs. In W. Maass & C. M. Bishop (Eds.), Pulsed neural networks. Cambridge, MA: MIT Press.
    • (2002) Pulsed neural networks
    • Elias, J.G.1    Northmore, D.P.M.2
  • 7
    • 0000764772 scopus 로고
    • The use of multiple Measurements in taxonomic problems
    • Fisher, R. A. (1936). The use of multiple Measurements in taxonomic problems. Annals of Eugenics, 7, 179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 8
    • 0030795297 scopus 로고    scopus 로고
    • Propagation of activity dependent synaptic depression in simple neural networks
    • Fitzsimonds, R. M., Song, H., & Poo, M. (1997). Propagation of activity dependent synaptic depression in simple neural networks. Nature, 388, 439-448.
    • (1997) Nature , vol.388 , pp. 439-448
    • Fitzsimonds, R.M.1    Song, H.2    Poo, M.3
  • 10
    • 77956761866 scopus 로고    scopus 로고
    • A framework for spiking neuron models: The spike response model
    • F. Moss & S. Gielen (Eds.), Amsterdam: North-Holland
    • Gerstner, W. (2001). A framework for spiking neuron models: The spike response model. In F. Moss & S. Gielen (Eds.), The handbook of biological physics, Vol. 4 (pp. 469-516). Amsterdam: North-Holland.
    • (2001) The handbook of biological physics , vol.4 , pp. 469-516
    • Gerstner, W.1
  • 12
    • 71049128082 scopus 로고    scopus 로고
    • A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection
    • Ghosh-Dastidar, S., & Adeli, H. (2009). A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Networks, 22, 1419-1431.
    • (2009) Neural Networks , vol.22 , pp. 1419-1431
    • Ghosh-Dastidar, S.1    Adeli, H.2
  • 13
    • 79951514022 scopus 로고    scopus 로고
    • Receptive field optimisation and supervision of a fuzzy spiking neural network
    • Glackin, C.,Maguire, L., McDaid, L.,&Sayers, H. (2011).Receptive field optimisation and supervision of a fuzzy spiking neural network. Neural Networks, 24, 247-256.
    • (2011) Neural Networks , vol.24 , pp. 247-256
    • Glackin, C.1    Maguire, L.2    McDaid, L.3    Sayers, H.4
  • 14
    • 36248979779 scopus 로고    scopus 로고
    • Elman backpropagation as reinforcement for simple recurrent networks
    • Grüning, A. (2007). Elman backpropagation as reinforcement for simple recurrent networks. Neural Computation, 19, 3108-3131.
    • (2007) Neural Computation , vol.19 , pp. 3108-3131
    • Grüning, A.1
  • 15
    • 84867232380 scopus 로고    scopus 로고
    • Supervised learning of logical operations in layered spiking neural networks with spike train encoding
    • doi:10.1007/s11063-012-9225-1
    • Grüning, A., & Sporea, I. (2012). Supervised learning of logical operations in layered spiking neural networks with spike train encoding. Neural Processing Letters, 36, 117-134. doi:10.1007/s11063-012-9225-1.
    • (2012) Neural Processing Letters , vol.36 , pp. 117-134
    • Grüning, A.1    Sporea, I.2
  • 16
    • 33344478663 scopus 로고    scopus 로고
    • The tempotron: A neuron that learns spike timing-based decisions
    • Gütig, R., & Sompolinsky, H. (2006). The tempotron: A neuron that learns spike timing-based decisions. Nature Neuroscience, 9, 420-428.
    • (2006) Nature Neuroscience , vol.9 , pp. 420-428
    • Gütig, R.1    Sompolinsky, H.2
  • 17
    • 39949084303 scopus 로고    scopus 로고
    • Stability of the fittest: Organizing learning through retroaxonal signals
    • Harris, K. D. (2008). Stability of the fittest: Organizing learning through retroaxonal signals. Trends in Neuroscience, 31, 130-136.
    • (2008) Trends in Neuroscience , vol.31 , pp. 130-136
    • Harris, K.D.1
  • 19
    • 1642580884 scopus 로고    scopus 로고
    • First spikes in ensembles of human tactile afferents code complex spatial fingertip events
    • Johansson, R. S., & Birznieks, I. (2004). First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nature Neuroscience, 7, 170-177.
    • (2004) Nature Neuroscience , vol.7 , pp. 170-177
    • Johansson, R.S.1    Birznieks, I.2
  • 20
    • 25144452832 scopus 로고    scopus 로고
    • What can a neuron learn with spiketiming- dependent plasticity?
    • Legenstein, R., Naeger, C., & Maass,W. (2005).What can a neuron learn with spiketiming- dependent plasticity? Neural Computation, 17, 2337-2382.
    • (2005) Neural Computation , vol.17 , pp. 2337-2382
    • Legenstein, R.1    Naeger, C.2    Maass, W.3
  • 21
    • 0028286477 scopus 로고
    • Supervised learning in the brain
    • Knudsen, E. I. (1994). Supervised learning in the brain. Journal of Neuroscience, 14, 3985-3997.
    • (1994) Journal of Neuroscience , vol.14 , pp. 3985-3997
    • Knudsen, E.I.1
  • 22
    • 0037118126 scopus 로고    scopus 로고
    • Instructed learning in the auditory localization pathway of the barn owl
    • Knudsen, E. I. (2002). Instructed learning in the auditory localization pathway of the barn owl. Nature, 417(6886), 322-328.
    • (2002) Nature , vol.417 , Issue.6886 , pp. 322-328
    • Knudsen, E.I.1
  • 24
    • 0031568358 scopus 로고    scopus 로고
    • Fast sigmoidal networks via spiking neurons
    • Maass,W. (1997b). Fast sigmoidal networks via spiking neurons. Neural Computation, 9, 279-304.
    • (1997) Neural Computation , vol.9 , pp. 279-304
    • Maass, W.1
  • 25
    • 3943100746 scopus 로고    scopus 로고
    • The neural basis of temporal processing
    • Mauk, M. D., & Buonomano, D. V. (2004). The neural basis of temporal processing. Annual Rev. Neuroscience, 27, 304-340.
    • (2004) Annual Rev. Neuroscience , vol.27 , pp. 304-340
    • Mauk, M.D.1    Buonomano, D.V.2
  • 26
    • 59149087290 scopus 로고    scopus 로고
    • Spike-timing error backpropagation in theta neuron networks
    • McKennoch, S., Voegtlin, T., & Bushnell, L. (2009). Spike-timing error backpropagation in theta neuron networks. Neural Computation, 21, 9-45.
    • (2009) Neural Computation , vol.21 , pp. 9-45
    • McKennoch, S.1    Voegtlin, T.2    Bushnell, L.3
  • 27
    • 0030032638 scopus 로고    scopus 로고
    • Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus
    • Neuenschwander, S., & Singer,W. (1996). Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature, 379, 728- 733.
    • (1996) Nature , vol.379 , pp. 728-733
    • Neuenschwander, S.1    Singer, W.2
  • 30
    • 77649334232 scopus 로고    scopus 로고
    • Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting
    • Ponulak, F., & Kasiński, A. (2010). Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting. Neural Computation, 22, 467-510.
    • (2010) Neural Computation , vol.22 , pp. 467-510
    • Ponulak, F.1    Kasiński, A.2
  • 31
    • 23944437453 scopus 로고    scopus 로고
    • Attention-gated reinforcement learning of internal representations for classification
    • Roelfsema, P. R., & van Ooyen, A. (2005). Attention-gated reinforcement learning of internal representations for classification. Neural Computation, 17, 1-39.
    • (2005) Neural Computation , vol.17 , pp. 1-39
    • Roelfsema, P.R.1    van Ooyen, A.2
  • 34
    • 0031072069 scopus 로고    scopus 로고
    • Learning temporally encoded patterns in networks of spiking neurons
    • Ruf, B., & Schmitt, M. (1997). Learning temporally encoded patterns in networks of spiking neurons. Neural Processing Letters, 5(1), 9-18.
    • (1997) Neural Processing Letters , vol.5 , Issue.1 , pp. 9-18
    • Ruf, B.1    Schmitt, M.2
  • 36
    • 33646716352 scopus 로고    scopus 로고
    • Improving spike-prop: Enhancements to an error-backpropagation rule for spiking neural networks
    • Schrauwen, B., & van Campenhout, J. (2004). Improving spike-prop: Enhancements to an error-backpropagation rule for spiking neural networks. In Proceedings of the 15th ProRISC Workshop.
    • (2004) Proceedings of the 15th ProRISC Workshop
    • Schrauwen, B.1    van Campenhout, J.2
  • 37
    • 33750503402 scopus 로고    scopus 로고
    • Arc mediates homoeostatic synaptic scaling of AMPA receptors
    • Shepard, J. D., Rumbaugh, G., Wu, J., Chowdhiry, S., Plath, N., Kuhl, D., et al. (2006). Arc mediates homoeostatic synaptic scaling of AMPA receptors. Neuron, 52, 475-484.
    • (2006) Neuron , vol.52 , pp. 475-484
    • Shepard, J.D.1    Rumbaugh, G.2    Wu, J.3    Chowdhiry, S.4    Plath, N.5    Kuhl, D.6
  • 40
    • 0034192399 scopus 로고    scopus 로고
    • Selective presynaptic propagation of long-term potentiation in defined neural Networks
    • Tao, H.W., Zhang, L. I, Bi, G. Q., & Poo, M. (2000). Selective presynaptic propagation of long-term potentiation in defined neural Networks. Journal of Neuroscience, 20, 3233-3243.
    • (2000) Journal of Neuroscience , vol.20 , pp. 3233-3243
    • Tao, H..1    Zhang, L.I.2    Bi, G.Q.3    Poo, M.4
  • 41
    • 0002936735 scopus 로고
    • Biological constraints on connectionistmodelling
    • R. Pfeifer, Z. Schreter, F. Fogelman-Souli, & L. Steels (Eds.), New York: Elsevier Science
    • Thorpe, S. T., & Imbert, M. (1989). Biological constraints on connectionistmodelling. In , R. Pfeifer, Z. Schreter, F. Fogelman-Souli, & L. Steels (Eds.), Connectionism in perspective (pp. 63-92). New York: Elsevier Science.
    • (1989) Connectionism in perspective , pp. 63-92
    • Thorpe, S.T.1    Imbert, M.2
  • 42
    • 26844545903 scopus 로고    scopus 로고
    • Learning beyond finite memory in recurrent networks of spiking neurons
    • L. Wang, K. Chen, & Y. Ong (Eds.), Berlin: Springer-Verlag
    • Tiňo, P., & Mills, A. J. (2005). Learning beyond finite memory in recurrent networks of spiking neurons. In L. Wang, K. Chen, & Y. Ong (Eds.), Advances in natural computation (pp. 666-675). Berlin: Springer-Verlag.
    • (2005) Advances in natural computation , pp. 666-675
    • Tiňo, P.1    Mills, A.J.2
  • 43
    • 60749100305 scopus 로고    scopus 로고
    • Reinforcement learning in populations of spiking neurons
    • Urbanczik, R., & Senn, W. (2009). Reinforcement learning in populations of spiking neurons. Nature Neuroscience, 12, 250-252.
    • (2009) Nature Neuroscience , vol.12 , pp. 250-252
    • Urbanczik, R.1    Senn, W.2
  • 44
    • 0035319165 scopus 로고    scopus 로고
    • A novel spike distance
    • van Rossum, M. C. (2001). A novel spike distance. Neural Computation, 13, 751-763.
    • (2001) Neural Computation , vol.13 , pp. 751-763
    • van Rossum, M.C.1
  • 46
    • 78649405204 scopus 로고    scopus 로고
    • Homeostatic plasticity and STDP: Keeping a neuron's cool in a fluctuating world
    • Watt, A. J., & Desai, N. S. (2010). Homeostatic plasticity and STDP: Keeping a neuron's cool in a fluctuating world. Frontiers in Synaptic Neuroscience, 2(5).
    • (2010) Frontiers in Synaptic Neuroscience , vol.2 , Issue.5
    • Watt, A.J.1    Desai, N.S.2
  • 47
    • 0029960378 scopus 로고    scopus 로고
    • Odour encoding by temporal sequences of firing in oscillating neural assemblies
    • Wehr, M., & Laurent, G. (1996). Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature, 384, 162-166.
    • (1996) Nature , vol.384 , pp. 162-166
    • Wehr, M.1    Laurent, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.