-
2
-
-
0036826068
-
Error backpropagation in temporally encoded networks of spiking neurons
-
Bohte, S., Kok, J., & Poutré, H. L. (2002). Error backpropagation in temporally encoded networks of spiking neurons. Neurocomputing, 48, 17-37.
-
(2002)
Neurocomputing
, vol.48
, pp. 17-37
-
-
Bohte, S.1
Kok, J.2
Poutré, H.L.3
-
3
-
-
85161963751
-
Fractionally predictive spiking neurons
-
J. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Red Hook, NY: Curran
-
Bohte, S., & Rombouts, J. (2010). Fractionally predictive spiking neurons. In J. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in neural information processing, systems, 23 (pp. 253-261). Red Hook, NY: Curran.
-
(2010)
Advances in neural information processing, systems
, vol.23
, pp. 253-261
-
-
Bohte, S.1
Rombouts, J.2
-
4
-
-
23844463151
-
A gradient descent rule for spiking neurons emitting multiple spikes
-
Booij, O., & Nguyen, H. (2005). A gradient descent rule for spiking neurons emitting multiple spikes. Information Processing Letters, 95, 552-558.
-
(2005)
Information Processing Letters
, vol.95
, pp. 552-558
-
-
Booij, O.1
Nguyen, H.2
-
5
-
-
15844431539
-
Primary cortical representation of sounds by the coordination of action-potential timing
-
deCharms, R. C., & Merzenich, M. M. (1996). Primary cortical representation of sounds by the coordination of action-potential timing. Nature, 381, 610-613.
-
(1996)
Nature
, vol.381
, pp. 610-613
-
-
deCharms, R.C.1
Merzenich, M.M.2
-
6
-
-
84877811661
-
Building silicon nervous systems with dendritic tree neuromorphs
-
W. Maass & C. M. Bishop (Eds.), Cambridge, MA: MIT Press
-
Elias, J. G., & Northmore, D.P.M. (2002). Building silicon nervous systems with dendritic tree neuromorphs. In W. Maass & C. M. Bishop (Eds.), Pulsed neural networks. Cambridge, MA: MIT Press.
-
(2002)
Pulsed neural networks
-
-
Elias, J.G.1
Northmore, D.P.M.2
-
7
-
-
0000764772
-
The use of multiple Measurements in taxonomic problems
-
Fisher, R. A. (1936). The use of multiple Measurements in taxonomic problems. Annals of Eugenics, 7, 179-188.
-
(1936)
Annals of Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.A.1
-
8
-
-
0030795297
-
Propagation of activity dependent synaptic depression in simple neural networks
-
Fitzsimonds, R. M., Song, H., & Poo, M. (1997). Propagation of activity dependent synaptic depression in simple neural networks. Nature, 388, 439-448.
-
(1997)
Nature
, vol.388
, pp. 439-448
-
-
Fitzsimonds, R.M.1
Song, H.2
Poo, M.3
-
9
-
-
56349087890
-
Shape of error surfaces in SpikeProp
-
Piscataway, NJ: IEEE
-
Fujita, M., Takase, H., Kita, H., & Hayashi, T. (2008). Shape of error surfaces in SpikeProp. In Proceedings of IEEE International Joint Conference on Neural Networks (pp. 840-844). Piscataway, NJ: IEEE.
-
(2008)
Proceedings of IEEE International Joint Conference on Neural Networks
, pp. 840-844
-
-
Fujita, M.1
Takase, H.2
Kita, H.3
Hayashi, T.4
-
10
-
-
77956761866
-
A framework for spiking neuron models: The spike response model
-
F. Moss & S. Gielen (Eds.), Amsterdam: North-Holland
-
Gerstner, W. (2001). A framework for spiking neuron models: The spike response model. In F. Moss & S. Gielen (Eds.), The handbook of biological physics, Vol. 4 (pp. 469-516). Amsterdam: North-Holland.
-
(2001)
The handbook of biological physics
, vol.4
, pp. 469-516
-
-
Gerstner, W.1
-
12
-
-
71049128082
-
A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection
-
Ghosh-Dastidar, S., & Adeli, H. (2009). A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Networks, 22, 1419-1431.
-
(2009)
Neural Networks
, vol.22
, pp. 1419-1431
-
-
Ghosh-Dastidar, S.1
Adeli, H.2
-
13
-
-
79951514022
-
Receptive field optimisation and supervision of a fuzzy spiking neural network
-
Glackin, C.,Maguire, L., McDaid, L.,&Sayers, H. (2011).Receptive field optimisation and supervision of a fuzzy spiking neural network. Neural Networks, 24, 247-256.
-
(2011)
Neural Networks
, vol.24
, pp. 247-256
-
-
Glackin, C.1
Maguire, L.2
McDaid, L.3
Sayers, H.4
-
14
-
-
36248979779
-
Elman backpropagation as reinforcement for simple recurrent networks
-
Grüning, A. (2007). Elman backpropagation as reinforcement for simple recurrent networks. Neural Computation, 19, 3108-3131.
-
(2007)
Neural Computation
, vol.19
, pp. 3108-3131
-
-
Grüning, A.1
-
15
-
-
84867232380
-
Supervised learning of logical operations in layered spiking neural networks with spike train encoding
-
doi:10.1007/s11063-012-9225-1
-
Grüning, A., & Sporea, I. (2012). Supervised learning of logical operations in layered spiking neural networks with spike train encoding. Neural Processing Letters, 36, 117-134. doi:10.1007/s11063-012-9225-1.
-
(2012)
Neural Processing Letters
, vol.36
, pp. 117-134
-
-
Grüning, A.1
Sporea, I.2
-
16
-
-
33344478663
-
The tempotron: A neuron that learns spike timing-based decisions
-
Gütig, R., & Sompolinsky, H. (2006). The tempotron: A neuron that learns spike timing-based decisions. Nature Neuroscience, 9, 420-428.
-
(2006)
Nature Neuroscience
, vol.9
, pp. 420-428
-
-
Gütig, R.1
Sompolinsky, H.2
-
17
-
-
39949084303
-
Stability of the fittest: Organizing learning through retroaxonal signals
-
Harris, K. D. (2008). Stability of the fittest: Organizing learning through retroaxonal signals. Trends in Neuroscience, 31, 130-136.
-
(2008)
Trends in Neuroscience
, vol.31
, pp. 130-136
-
-
Harris, K.D.1
-
19
-
-
1642580884
-
First spikes in ensembles of human tactile afferents code complex spatial fingertip events
-
Johansson, R. S., & Birznieks, I. (2004). First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nature Neuroscience, 7, 170-177.
-
(2004)
Nature Neuroscience
, vol.7
, pp. 170-177
-
-
Johansson, R.S.1
Birznieks, I.2
-
20
-
-
25144452832
-
What can a neuron learn with spiketiming- dependent plasticity?
-
Legenstein, R., Naeger, C., & Maass,W. (2005).What can a neuron learn with spiketiming- dependent plasticity? Neural Computation, 17, 2337-2382.
-
(2005)
Neural Computation
, vol.17
, pp. 2337-2382
-
-
Legenstein, R.1
Naeger, C.2
Maass, W.3
-
21
-
-
0028286477
-
Supervised learning in the brain
-
Knudsen, E. I. (1994). Supervised learning in the brain. Journal of Neuroscience, 14, 3985-3997.
-
(1994)
Journal of Neuroscience
, vol.14
, pp. 3985-3997
-
-
Knudsen, E.I.1
-
22
-
-
0037118126
-
Instructed learning in the auditory localization pathway of the barn owl
-
Knudsen, E. I. (2002). Instructed learning in the auditory localization pathway of the barn owl. Nature, 417(6886), 322-328.
-
(2002)
Nature
, vol.417
, Issue.6886
, pp. 322-328
-
-
Knudsen, E.I.1
-
24
-
-
0031568358
-
Fast sigmoidal networks via spiking neurons
-
Maass,W. (1997b). Fast sigmoidal networks via spiking neurons. Neural Computation, 9, 279-304.
-
(1997)
Neural Computation
, vol.9
, pp. 279-304
-
-
Maass, W.1
-
26
-
-
59149087290
-
Spike-timing error backpropagation in theta neuron networks
-
McKennoch, S., Voegtlin, T., & Bushnell, L. (2009). Spike-timing error backpropagation in theta neuron networks. Neural Computation, 21, 9-45.
-
(2009)
Neural Computation
, vol.21
, pp. 9-45
-
-
McKennoch, S.1
Voegtlin, T.2
Bushnell, L.3
-
27
-
-
0030032638
-
Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus
-
Neuenschwander, S., & Singer,W. (1996). Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature, 379, 728- 733.
-
(1996)
Nature
, vol.379
, pp. 728-733
-
-
Neuenschwander, S.1
Singer, W.2
-
30
-
-
77649334232
-
Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting
-
Ponulak, F., & Kasiński, A. (2010). Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting. Neural Computation, 22, 467-510.
-
(2010)
Neural Computation
, vol.22
, pp. 467-510
-
-
Ponulak, F.1
Kasiński, A.2
-
31
-
-
23944437453
-
Attention-gated reinforcement learning of internal representations for classification
-
Roelfsema, P. R., & van Ooyen, A. (2005). Attention-gated reinforcement learning of internal representations for classification. Neural Computation, 17, 1-39.
-
(2005)
Neural Computation
, vol.17
, pp. 1-39
-
-
Roelfsema, P.R.1
van Ooyen, A.2
-
33
-
-
84867230904
-
-
Sophia Antipolis, France: INRIA
-
Rostro-Gonzalez, H., Vasquez-Betancour, J. C., Cessac, B., & Viéville, T. (2010). Reverse-engineering in spiking neural network parameters: Exact deterministic parameter estimation. Sophia Antipolis, France: INRIA.
-
(2010)
Reverse-engineering in spiking neural network parameters: Exact deterministic parameter estimation
-
-
Rostro-Gonzalez, H.1
Vasquez-Betancour, J.C.2
Cessac, B.3
Viéville, T.4
-
34
-
-
0031072069
-
Learning temporally encoded patterns in networks of spiking neurons
-
Ruf, B., & Schmitt, M. (1997). Learning temporally encoded patterns in networks of spiking neurons. Neural Processing Letters, 5(1), 9-18.
-
(1997)
Neural Processing Letters
, vol.5
, Issue.1
, pp. 9-18
-
-
Ruf, B.1
Schmitt, M.2
-
35
-
-
0000646059
-
Learning internal representations by error propagation
-
D. E. Rumelhart & J. L. McClelland (Eds.), Cambridge, MA: MIT Press
-
Rumelhart, D. E., Hinton, G. E.,&Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.
-
(1986)
Parallel distributed processing: Explorations in the microstructure of cognition
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
36
-
-
33646716352
-
Improving spike-prop: Enhancements to an error-backpropagation rule for spiking neural networks
-
Schrauwen, B., & van Campenhout, J. (2004). Improving spike-prop: Enhancements to an error-backpropagation rule for spiking neural networks. In Proceedings of the 15th ProRISC Workshop.
-
(2004)
Proceedings of the 15th ProRISC Workshop
-
-
Schrauwen, B.1
van Campenhout, J.2
-
37
-
-
33750503402
-
Arc mediates homoeostatic synaptic scaling of AMPA receptors
-
Shepard, J. D., Rumbaugh, G., Wu, J., Chowdhiry, S., Plath, N., Kuhl, D., et al. (2006). Arc mediates homoeostatic synaptic scaling of AMPA receptors. Neuron, 52, 475-484.
-
(2006)
Neuron
, vol.52
, pp. 475-484
-
-
Shepard, J.D.1
Rumbaugh, G.2
Wu, J.3
Chowdhiry, S.4
Plath, N.5
Kuhl, D.6
-
39
-
-
70449455867
-
Obstacle to training SpikeProp networks: Cause of surges in training process
-
Piscataway, NJ: IEEE
-
Takase, H., Fujita, M., Kawanaka, H., Tsuruoka, S., Kita, H., & Hayashi, T. (2009). Obstacle to training SpikeProp networks: Cause of surges in training process. In Proceedings of IEEE International Joint Conference Neural Networks (pp. 3062-3066). Piscataway, NJ: IEEE.
-
(2009)
Proceedings of IEEE International Joint Conference Neural Networks
, pp. 3062-3066
-
-
Takase, H.1
Fujita, M.2
Kawanaka, H.3
Tsuruoka, S.4
Kita, H.5
Hayashi, T.6
-
40
-
-
0034192399
-
Selective presynaptic propagation of long-term potentiation in defined neural Networks
-
Tao, H.W., Zhang, L. I, Bi, G. Q., & Poo, M. (2000). Selective presynaptic propagation of long-term potentiation in defined neural Networks. Journal of Neuroscience, 20, 3233-3243.
-
(2000)
Journal of Neuroscience
, vol.20
, pp. 3233-3243
-
-
Tao, H..1
Zhang, L.I.2
Bi, G.Q.3
Poo, M.4
-
41
-
-
0002936735
-
Biological constraints on connectionistmodelling
-
R. Pfeifer, Z. Schreter, F. Fogelman-Souli, & L. Steels (Eds.), New York: Elsevier Science
-
Thorpe, S. T., & Imbert, M. (1989). Biological constraints on connectionistmodelling. In , R. Pfeifer, Z. Schreter, F. Fogelman-Souli, & L. Steels (Eds.), Connectionism in perspective (pp. 63-92). New York: Elsevier Science.
-
(1989)
Connectionism in perspective
, pp. 63-92
-
-
Thorpe, S.T.1
Imbert, M.2
-
42
-
-
26844545903
-
Learning beyond finite memory in recurrent networks of spiking neurons
-
L. Wang, K. Chen, & Y. Ong (Eds.), Berlin: Springer-Verlag
-
Tiňo, P., & Mills, A. J. (2005). Learning beyond finite memory in recurrent networks of spiking neurons. In L. Wang, K. Chen, & Y. Ong (Eds.), Advances in natural computation (pp. 666-675). Berlin: Springer-Verlag.
-
(2005)
Advances in natural computation
, pp. 666-675
-
-
Tiňo, P.1
Mills, A.J.2
-
43
-
-
60749100305
-
Reinforcement learning in populations of spiking neurons
-
Urbanczik, R., & Senn, W. (2009). Reinforcement learning in populations of spiking neurons. Nature Neuroscience, 12, 250-252.
-
(2009)
Nature Neuroscience
, vol.12
, pp. 250-252
-
-
Urbanczik, R.1
Senn, W.2
-
44
-
-
0035319165
-
A novel spike distance
-
van Rossum, M. C. (2001). A novel spike distance. Neural Computation, 13, 751-763.
-
(2001)
Neural Computation
, vol.13
, pp. 751-763
-
-
van Rossum, M.C.1
-
45
-
-
78149342071
-
SWAT: A spiking neural network training algorithm for classification problems
-
Wade, J. J., McDaid, L. J., Santos, J. A., & Sayers, H. M. (2010). SWAT: A spiking neural network training algorithm for classification problems. IEEE Transactions on Neural Networks, 21, 1817-1829.
-
(2010)
IEEE Transactions on Neural Networks
, vol.21
, pp. 1817-1829
-
-
Wade, J.J.1
McDaid, L.J.2
Santos, J.A.3
Sayers, H.M.4
-
46
-
-
78649405204
-
Homeostatic plasticity and STDP: Keeping a neuron's cool in a fluctuating world
-
Watt, A. J., & Desai, N. S. (2010). Homeostatic plasticity and STDP: Keeping a neuron's cool in a fluctuating world. Frontiers in Synaptic Neuroscience, 2(5).
-
(2010)
Frontiers in Synaptic Neuroscience
, vol.2
, Issue.5
-
-
Watt, A.J.1
Desai, N.S.2
-
47
-
-
0029960378
-
Odour encoding by temporal sequences of firing in oscillating neural assemblies
-
Wehr, M., & Laurent, G. (1996). Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature, 384, 162-166.
-
(1996)
Nature
, vol.384
, pp. 162-166
-
-
Wehr, M.1
Laurent, G.2
|