메뉴 건너뛰기




Volumn 36, Issue 2, 2012, Pages 117-134

Supervised learning of logical operations in layered spiking neural networks with spike train encoding

Author keywords

Logical operation; Spike trains; Spiking neural networks; Supervised learning

Indexed keywords

COMPUTATIONAL PROPERTIES; EXCLUSIVE-OR; HIDDEN LAYERS; INPUT AND OUTPUTS; LAYERED NETWORK; LAYERED NEURAL NETWORK; LOGICAL OPERATIONS; SPIKE TRAIN; SPIKING NEURAL NETWORKS;

EID: 84867232380     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-012-9225-1     Document Type: Article
Times cited : (12)

References (35)
  • 1
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw 5(2):157-166
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 2
    • 0034345038 scopus 로고    scopus 로고
    • Context-free and context-sensitive dynamics in recurrent neural networks
    • BodénM,Wiles J (2000) Context-free and context-sensitive dynamics in recurrent neural networks. Connect Sci 12(3/4):197-210
    • (2000) Connect Sci , vol.12 , Issue.3-4 , pp. 197-210
    • Bodén, M.1    Wiles, J.2
  • 3
    • 0036826068 scopus 로고    scopus 로고
    • Spike-prop: Error-backpropagation in multi-layer networks of spiking neurons
    • Bohte S, Kok J, Poutré HL (2002) Spike-prop: error-backpropagation in multi-layer networks of spiking neurons. Neurocomputing 48(1-4):17-37
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 17-37
    • Bohte, S.1    Kok, J.2    Poutré, H.L.3
  • 4
    • 23844463151 scopus 로고    scopus 로고
    • A gradient descent rule for spiking neurons emitting multiple spikes
    • Booij O, tat Nguyen H (2005) A gradient descent rule for spiking neurons emitting multiple spikes. Inf Process Lett 95:552-558
    • (2005) Inf Process Lett , vol.95 , pp. 552-558
    • Booij, O.1    Tat Nguyen, H.2
  • 6
    • 0034768759 scopus 로고    scopus 로고
    • Neural assemblies: Technical issues, analysis, and modeling
    • doi:10.1016/S0893-6080(01)00042-9
    • Gerstein GL, Kirkland KL (2001) Neural assemblies: technical issues, analysis, and modeling. Neural Netw 14(6-7). doi:10.1016/S0893-6080(01)00042-9
    • (2001) Neural Netw , vol.14 , Issue.6-7
    • Gerstein, G.L.1    Kirkland, K.L.2
  • 8
    • 79951514022 scopus 로고    scopus 로고
    • Repective field optimisation and supervision of a fuzzy spiking neural network
    • Glackin C, Maguire L, McDaid L, Sayers H (2011) Repective field optimisation and supervision of a fuzzy spiking neural network. Neural Netw 24:247-256
    • (2011) Neural Netw , vol.24 , pp. 247-256
    • Glackin, C.1    Maguire, L.2    McDaid, L.3    Sayers, H.4
  • 9
    • 32944466532 scopus 로고    scopus 로고
    • Stack- and queue-like dynamics in recurrent neural networks
    • Grüning A (2006) Stack- and queue-like dynamics in recurrent neural networks.Connect Sci 18(1):23-42
    • (2006) Connect Sci , vol.18 , Issue.1 , pp. 23-42
    • Grüning, A.1
  • 10
    • 34948906745 scopus 로고    scopus 로고
    • Solving the distal reward problem through linkage of STDP and Dopamine signalling
    • doi:10.1093/cercor/bhl152
    • Izhikevich EM (2007) Solving the distal reward problem through linkage of STDP and Dopamine signalling. Cereb Cortex 17:2443-2452. doi:10.1093/cercor/ bhl152
    • (2007) Cereb Cortex , vol.17 , pp. 2443-2452
    • Izhikevich, E.M.1
  • 11
    • 33646751873 scopus 로고    scopus 로고
    • Comparison of supervised learning methods for spike time coding in spiking neural networks
    • Kasínski A, Ponulak F (2006) Comparison of supervised learning methods for spike time coding in spiking neural networks. Int J Appl Math Comput Sci 16(1):101-113
    • (2006) Int J Appl Math Comput Sci , vol.16 , Issue.1 , pp. 101-113
    • Kasínski, A.1    Ponulak, F.2
  • 12
    • 33646178302 scopus 로고    scopus 로고
    • Experimental demonstration of learning properties of a new supervised learning method for the spiking neural networks. In: Proceedings of the 15th international conference on artificial neural networks: Biological inspirations
    • Kasínski A, Ponulak P (2005) Experimental demonstration of learning properties of a new supervised learning method for the spiking neural networks. In: Proceedings of the 15th international conference on artificial neural networks: biological inspirations, Lecture Notes in Computer Sciences, vol 3696, pp 145-153
    • (2005) Lecture Notes in Computer Sciences , vol.3696 , pp. 145-153
    • Kasínski, A.1    Ponulak, P.2
  • 13
    • 0034132974 scopus 로고    scopus 로고
    • Modeling synaptic plasticity in conjunction with the timing of preand postsynaptic action potentials
    • Kistler W, van Hemmen LJ (2000) Modeling synaptic plasticity in conjunction with the timing of preand postsynaptic action potentials. Neural Comput 12:385-405
    • (2000) Neural Comput , vol.12 , pp. 385-405
    • Kistler, W.1    Van Hemmen, L.J.2
  • 14
    • 25144452832 scopus 로고    scopus 로고
    • What can a neuron learn with spike-timing-dependent plasticity?
    • Legenstein R, Naeger C, MaassW (2005) What can a neuron learn with spike-timing-dependent plasticity?. Neural Comput 17(11):2337-2382
    • (2005) Neural Comput , vol.17 , Issue.11 , pp. 2337-2382
    • Legenstein, R.1    Naeger, C.2    Maass, W.3
  • 15
    • 55449121121 scopus 로고    scopus 로고
    • A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback
    • Legenstein R, Pecevski D, MaassW (2008) A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Comput Biol 3(10):1-27
    • (2008) PLoS Comput Biol , vol.3 , Issue.10 , pp. 1-27
    • Legenstein, R.1    Pecevski, D.2    Maass, W.3
  • 16
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computingwithout stable states: A newframework for neural computation based on perturbations
    • MaassW,Natschläger T, MarkramH (2002) Real-time computingwithout stable states: a newframework for neural computation based on perturbations. Neural Comput 14(11):2531-2560
    • (2002) Neural Comput , vol.14 , Issue.11 , pp. 2531-2560
    • Maass, W.1    Natschläger, T.2    Markram, H.3
  • 18
    • 41849129516 scopus 로고    scopus 로고
    • Neural coding of natural stimuli: Information at sub-millisecond resolution
    • doi:10.1371/journal.pcbi.1000025
    • Nemenman I, Lewen GD, BialekW, de Ruyter van Steveninck RR (2008) Neural coding of natural stimuli: information at sub-millisecond resolution. PLOS Comput Biol 4(3): el000025. doi:10.1371/journal. pcbi.1000025
    • (2008) PLOS Comput Biol , vol.4 , Issue.3
    • Nemenman, I.1    Lewen, G.D.2    Bialek, W.3    De Ruyter Van Steveninck, R.R.4
  • 19
    • 84867229527 scopus 로고    scopus 로고
    • Balance of excitation and inhibition
    • doi:10.4249/ scholarpedia.7467
    • Okun M, Lampl I (2009) Balance of excitation and inhibition. Scholarpedia 4(8):7467. doi:10.4249/ scholarpedia.7467
    • (2009) Scholarpedia , vol.4 , Issue.8 , pp. 7467
    • Okun, M.1    Lampl, I.2
  • 20
    • 33748898872 scopus 로고    scopus 로고
    • Triplets of spikes in amodel of spike timing-dependent plasticity
    • doi:10.1523/JNEUROSCI.1425-06.2006
    • Pfister JP,GerstnerW (2006) Triplets of spikes in amodel of spike timing-dependent plasticity. J Neurosci 26(38):9673-9682. doi:10.1523/JNEUROSCI. 1425-06.2006
    • (2006) J Neurosci , vol.26 , Issue.38 , pp. 9673-9682
    • Pfister, J.P.1    Gerstner, W.2
  • 21
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar R (2006) Ensemble based systems in decision making. IEEE Circuits Syst Mag 6(3):21-45
    • (2006) IEEE Circuits Syst Mag , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 22
    • 45849105552 scopus 로고    scopus 로고
    • Analysis of the ReSuMe learning process for spiking neural networks
    • doi:10.2478/v10006-008-0011-1
    • Ponulak F (2008) Analysis of the ReSuMe learning process for spiking neural networks. Int J Appl Math Comput Sci 18(2):117-127. doi:10.2478/v10006- 008-0011-1
    • (2008) Int J Appl Math Comput Sci , vol.18 , Issue.2 , pp. 117-127
    • Ponulak, F.1
  • 23
    • 77649334232 scopus 로고    scopus 로고
    • Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification and spike shifting
    • Ponulak F, Kasínski A (2010) Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification and spike shifting. Neural Comput 22:467-510
    • (2010) Neural Comput , vol.22 , pp. 467-510
    • Ponulak, F.1    Kasínski, A.2
  • 24
    • 0035462333 scopus 로고    scopus 로고
    • Simple recurrent networks learn context-free and context-sensitive languages by counting
    • Rodriguez P (2001) Simple recurrent networks learn context-free and context-sensitive languages by counting. Neural Comput 13:2093-2118
    • (2001) Neural Comput , vol.13 , pp. 2093-2118
    • Rodriguez, P.1
  • 30
    • 0029255891 scopus 로고
    • On the computational power of neural nets
    • SiegelmannHT, SontagED (1995) On the computational power of neural nets. J Comput Syst Sci 50:132- 150
    • (1995) J Comput Syst Sci , vol.50 , pp. 132-150
    • Siegelmann, H.T.1    Sontag, E.D.2
  • 33
    • 33645701621 scopus 로고    scopus 로고
    • Learning beyond finite memory in recurrent networks of spiking neurons
    • Tiňno P, Mills AJ (2006) Learning beyond finite memory in recurrent networks of spiking neurons. Neural Comput 18(3):591-613
    • (2006) Neural Comput , vol.18 , Issue.3 , pp. 591-613
    • Tiňno, P.1    Mills, A.J.2
  • 35
    • 78149342071 scopus 로고    scopus 로고
    • Swat: A spiking neural network training algorithm for classification problems
    • Wade JJ, McDaid LJ, Santos JA, Sayers HM (2010) Swat: a spiking neural network training algorithm for classification problems. IEEE Trans Neural Netw 21(11):1817-1829
    • (2010) IEEE Trans Neural Netw , vol.21 , Issue.11 , pp. 1817-1829
    • Wade, J.J.1    McDaid, L.J.2    Santos, J.A.3    Sayers, H.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.