메뉴 건너뛰기




Volumn 24, Issue 3, 2011, Pages 247-256

Receptive field optimisation and supervision of a fuzzy spiking neural network

Author keywords

Clustering methods; Evolutionary algorithms; Receptive fields; Spiking neural network; Supervised learning

Indexed keywords

BENCHMARK CLASSIFICATION; BREAST CANCER; CLUSTERING METHODS; COMPACT SOLUTIONS; FEATURE DATA; FIRING RATES; FUZZY C MEANS CLUSTERING; FUZZY MEMBERSHIP FUNCTION; FUZZY REASONING; FUZZY RULE BASE; NETWORK TOPOLOGY; OPTIMISATIONS; OUTPUT LAYER; RECEPTIVE FIELDS; SMALL DATA SET; SPIKE TRAIN; SPIKING NEURAL NETWORK; SPIKING NEURAL NETWORKS; SUPERVISED TRAINING ALGORITHM; THRESHOLDING; WISCONSIN;

EID: 79951514022     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2010.11.008     Document Type: Article
Times cited : (17)

References (49)
  • 1
    • 0033667165 scopus 로고    scopus 로고
    • Synaptic plasticity: taming the beast
    • Abbott L., Nelson S. Synaptic plasticity: taming the beast. Nature Neuroscience 2000, 3:1178-1183.
    • (2000) Nature Neuroscience , vol.3 , pp. 1178-1183
    • Abbott, L.1    Nelson, S.2
  • 2
    • 7244229524 scopus 로고    scopus 로고
    • Synaptic computation
    • Abbott L.F., Regehr W.G. Synaptic computation. Nature 2004, 431(7010):796-803.
    • (2004) Nature , vol.431 , Issue.7010 , pp. 796-803
    • Abbott, L.F.1    Regehr, W.G.2
  • 4
    • 84855312860 scopus 로고    scopus 로고
    • UCI machine learning repository.
    • Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007)
    • Asuncion, A.1    Newman, D.J.2
  • 5
    • 77049143637 scopus 로고
    • Summation and inhibition in the frog's retina
    • Barlow H. Summation and inhibition in the frog's retina. The Journal of Physiology 1953, 119:69.
    • (1953) The Journal of Physiology , vol.119 , pp. 69
    • Barlow, H.1
  • 8
    • 0020074887 scopus 로고
    • Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex
    • Bienenstock E., Cooper L., Munro P. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience 1982, 2:32-48.
    • (1982) Journal of Neuroscience , vol.2 , pp. 32-48
    • Bienenstock, E.1    Cooper, L.2    Munro, P.3
  • 9
    • 0032535029 scopus 로고    scopus 로고
    • Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type
    • Bi G., Poo M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience 1998, 18(24):10464-10472.
    • (1998) Journal of Neuroscience , vol.18 , Issue.24 , pp. 10464-10472
    • Bi, G.1    Poo, M.2
  • 10
    • 0036826068 scopus 로고    scopus 로고
    • Error-backpropagation in temporally encoded networks of spiking neurons
    • Bohte S., Kok J., La Poutré H. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 2002, 48:17-37.
    • (2002) Neurocomputing , vol.48 , pp. 17-37
    • Bohte, S.1    Kok, J.2    La Poutré, H.3
  • 11
    • 0037363001 scopus 로고    scopus 로고
    • Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity
    • Börgers C., Kopell N. Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Computation 2003, 15:509-538.
    • (2003) Neural Computation , vol.15 , pp. 509-538
    • Börgers, C.1    Kopell, N.2
  • 12
    • 26844480248 scopus 로고    scopus 로고
    • An empirical comparison of evolutionary algorithms and neural networks for classification problems
    • Cantu-Paz E., Kamath C. An empirical comparison of evolutionary algorithms and neural networks for classification problems. IEEE Transactions on Systems, Man and Cybernetics 2005, 35(5):915-927.
    • (2005) IEEE Transactions on Systems, Man and Cybernetics , vol.35 , Issue.5 , pp. 915-927
    • Cantu-Paz, E.1    Kamath, C.2
  • 13
    • 84887005480 scopus 로고    scopus 로고
    • Linear algebra for time series of spikes
    • In Proceedings of the 13th European symposium on artificial neural networks
    • Carnell, A., & Richardson, D. (2005). Linear algebra for time series of spikes. In Proceedings of the 13th European symposium on artificial neural networks(pp. 363-368).
    • (2005) , pp. 363-368
    • Carnell, A.1    Richardson, D.2
  • 14
    • 77049173124 scopus 로고
    • Quantal components of the end-plate potential
    • del Castillo J., Katz B. Quantal components of the end-plate potential. The Journal of Physiology 1954, 124:560-573.
    • (1954) The Journal of Physiology , vol.124 , pp. 560-573
    • del Castillo, J.1    Katz, B.2
  • 15
    • 33644550970 scopus 로고    scopus 로고
    • Neurobiology: efficiency measures
    • DeWeese M., Zador A. Neurobiology: efficiency measures. Nature 2006, 439:936-942.
    • (2006) Nature , vol.439 , pp. 936-942
    • DeWeese, M.1    Zador, A.2
  • 16
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich T. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 1998, 10:1895-1923.
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.1
  • 17
    • 0034652279 scopus 로고    scopus 로고
    • Interplay between facilitation, depression, and residual calcium at three presynaptic terminals
    • Dittman J.S., Kreitzer A.C., Regehr W.G. Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. Journal of Neuroscience 2000, 20(4):1374-1385.
    • (2000) Journal of Neuroscience , vol.20 , Issue.4 , pp. 1374-1385
    • Dittman, J.S.1    Kreitzer, A.C.2    Regehr, W.G.3
  • 18
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • Dunn J. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Cybernetics and Systems 1973, 3:32-57.
    • (1973) Cybernetics and Systems , vol.3 , pp. 32-57
    • Dunn, J.1
  • 19
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R. The use of multiple measurements in taxonomic problems. Annals of Eugenics 1936, 7:179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.1
  • 20
    • 0035385936 scopus 로고    scopus 로고
    • Short-term synaptic plasticity as a temporal filter
    • Fortune E.S., Rose G.J. Short-term synaptic plasticity as a temporal filter. Trends in Neurosciences 2001, 24(7):381-385.
    • (2001) Trends in Neurosciences , vol.24 , Issue.7 , pp. 381-385
    • Fortune, E.S.1    Rose, G.J.2
  • 22
    • 51849101532 scopus 로고    scopus 로고
    • Implementing fuzzy reasoning on a spiking neural network
    • In Proceedings of the 18th international conference on artificial neural networks
    • Glackin, C., McDaid, L., Maguire, L., & Sayers, H. (2008). Implementing fuzzy reasoning on a spiking neural network. In Proceedings of the 18th international conference on artificial neural networks. Part II (pp. 258-267).
    • (2008) , Issue.PART 2 , pp. 258-267
    • Glackin, C.1    McDaid, L.2    Maguire, L.3    Sayers, H.4
  • 23
    • 84855333341 scopus 로고    scopus 로고
    • Classification using a fuzzy spiking neural network
    • The 2008 UK workshop on computational intelligence (UKCI).
    • Glackin, C., McDaid, L., Maguire, L., & Sayers, H. (2008). Classification using a fuzzy spiking neural network. In The 2008 UK workshop on computational intelligence (UKCI). http://www.cci.dmu.ac.uk/conferences/ukci2008/papers/Classification-using-a-Fuzzy-Spiking-Neural-Network.pdf.
    • (2008)
    • Glackin, C.1    McDaid, L.2    Maguire, L.3    Sayers, H.4
  • 27
    • 4344661328 scopus 로고    scopus 로고
    • Which model to use for cortical spiking neurons?
    • Izhikevich E. Which model to use for cortical spiking neurons?. IEEE Transactions on Neural Networks 2004, 15:1063-1070.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , pp. 1063-1070
    • Izhikevich, E.1
  • 29
    • 33646178302 scopus 로고    scopus 로고
    • Experimental demonstration of learning properties of a new supervised learning method for the spiking neural networks. In Proceedings of the 15th international conference on artificial neural networks
    • Kasiński, A., & Ponulak, F. (2005). Experimental demonstration of learning properties of a new supervised learning method for the spiking neural networks. In Proceedings of the 15th international conference on artificial neural networks, Vol. 3696 (pp. 145-153).
    • (2005) , vol.3696 , pp. 145-153
    • Kasiński, A.1    Ponulak, F.2
  • 31
    • 0001122762 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection. In International joint conference on artificial intelligence
    • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In International joint conference on artificial intelligence, Vol. 14 (pp. 1137-1145).
    • (1995) , vol.14 , pp. 1137-1145
    • Kohavi, R.1
  • 32
    • 25144452832 scopus 로고    scopus 로고
    • What can a neuron learn with spike-timing-dependent plasticity?
    • Legenstein R., Naeger C., Maass W. What can a neuron learn with spike-timing-dependent plasticity?. Neural Computation 2005, 17:2337-2382.
    • (2005) Neural Computation , vol.17 , pp. 2337-2382
    • Legenstein, R.1    Naeger, C.2    Maass, W.3
  • 33
    • 0031472340 scopus 로고    scopus 로고
    • Networks of spiking neurons: the third generation of neural network models
    • Maass W. Networks of spiking neurons: the third generation of neural network models. Neural Networks 1997, 10:1659-1671.
    • (1997) Neural Networks , vol.10 , pp. 1659-1671
    • Maass, W.1
  • 34
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: a new framework for neural computation based on perturbations
    • Maass W., Nätschlager T., Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Computation 2002, 14:2531-2560.
    • (2002) Neural Computation , vol.14 , pp. 2531-2560
    • Maass, W.1    Nätschlager, T.2    Markram, H.3
  • 35
    • 0034244222 scopus 로고    scopus 로고
    • Neural systems as nonlinear filters
    • Maass W., Sontag E. Neural systems as nonlinear filters. Neural Computation 2000, 12:1743-1772.
    • (2000) Neural Computation , vol.12 , pp. 1743-1772
    • Maass, W.1    Sontag, E.2
  • 36
    • 0031012615 scopus 로고    scopus 로고
    • Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs
    • Markram H., Lübke J., Frotscher M., Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 1997, 275(5297):213-215.
    • (1997) Science , vol.275 , Issue.5297 , pp. 213-215
    • Markram, H.1    Lübke, J.2    Frotscher, M.3    Sakmann, B.4
  • 37
    • 0000743347 scopus 로고
    • Designing neural networks using genetic algorithms. In Proceedings of the third international conference on genetic algorithms
    • Miller, G., Todd, P., & Hegde, S. (1989). Designing neural networks using genetic algorithms. In Proceedings of the third international conference on genetic algorithms (pp. 379-384).
    • (1989) , pp. 379-384
    • Miller, G.1    Todd, P.2    Hegde, S.3
  • 38
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau C., Bengio Y. Inference for the generalization error. Machine Learning 2003, 52(3):239-281.
    • (2003) Machine Learning , vol.52 , Issue.3 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 43
    • 0031072069 scopus 로고    scopus 로고
    • Learning temporally encoded patterns in networks of spiking neurons
    • Ruf B., Schmitt M. Learning temporally encoded patterns in networks of spiking neurons. Neural Processing Letters 1997, 5:9-18.
    • (1997) Neural Processing Letters , vol.5 , pp. 9-18
    • Ruf, B.1    Schmitt, M.2
  • 44
    • 0033860923 scopus 로고    scopus 로고
    • Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
    • Song S., Miller K., Abbott L. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience 2000, 3:919-926.
    • (2000) Nature Neuroscience , vol.3 , pp. 919-926
    • Song, S.1    Miller, K.2    Abbott, L.3
  • 45
    • 84855336785 scopus 로고    scopus 로고
    • A learning algorithm for synfire chains. In Connectionist models of learning, development and evolution. Proceedings of the sixth neural computation and psychology workshop
    • Sougné, J. (2000). A learning algorithm for synfire chains. In Connectionist models of learning, development and evolution. Proceedings of the sixth neural computation and psychology workshop (p. 23).
    • (2000) , pp. 23
    • Sougné, J.1
  • 46
    • 0030811192 scopus 로고    scopus 로고
    • Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro
    • Thomson A. Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. Cerebral Cortex 1997, 7:510-522.
    • (1997) Cerebral Cortex , vol.7 , pp. 510-522
    • Thomson, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.