메뉴 건너뛰기




Volumn 21, Issue 2, 2009, Pages 340-352

A gradient learning rule for the tempotron

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ANIMAL; ARTICLE; BIOLOGICAL MODEL; HUMAN; LEARNING; NERVE CELL; NERVE CELL NETWORK; PHYSIOLOGY; TIME;

EID: 67650286597     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2008.09-07-605     Document Type: Article
Times cited : (23)

References (7)
  • 1
    • 0000759079 scopus 로고
    • The AdaTron: An adaptive perceptron algorithm
    • Anlauf, J., & Biehl, M. (1989). The AdaTron: An adaptive perceptron algorithm. Europhysics Letters, 10, 687-692.
    • (1989) Europhysics Letters , vol.10 , pp. 687-692
    • Anlauf, J.1    Biehl, M.2
  • 2
    • 33746652644 scopus 로고    scopus 로고
    • Gradient learning in spiking neural networks by dynamic perturbation of conductances
    • Fiete, I.,&Seung, H. (2006). Gradient learning in spiking neural networks by dynamic perturbation of conductances. Phys. Rev. Letts., 97, 048104.
    • (2006) Phys. Rev. Letts. , vol.97 , pp. 048104
    • Fiete, I.1    Seung, H.2
  • 3
    • 34249708388 scopus 로고    scopus 로고
    • Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity
    • Florian, R. (2007). Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural Computation, 19, 1468-1502.
    • (2007) Neural Computation , vol.19 , pp. 1468-1502
    • Florian, R.1
  • 4
    • 33344478663 scopus 로고    scopus 로고
    • The tempotron: A neuron that learns spike timing-based decision
    • Gütig, R., & Sompolinsky, H. (2006). The tempotron: A neuron that learns spike timing-based decision. Nature Neuroscience, 9, 420-428.
    • (2006) Nature Neuroscience , vol.9 , pp. 420-428
    • Gütig, R.1    Sompolinsky, H.2
  • 5
    • 33749595018 scopus 로고    scopus 로고
    • Modeling single-neuron dynamics and computations: A balance of detail and abstraction
    • Herz, A., Gollisch, T., Machens, C., & Jaeger, D. (2006). Modeling single-neuron dynamics and computations: A balance of detail and abstraction. Science, 314, 80-85.
    • (2006) Science , vol.314 , pp. 80-85
    • Herz, A.1    Gollisch, T.2    Machens, C.3    Jaeger, D.4
  • 6
    • 33646801243 scopus 로고    scopus 로고
    • Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning
    • Pfister, J., Toyoizumi, T., Barber, D., & Gerstner, W. (2006). Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning. Neural Computation, 18, 1318-1348.
    • (2006) Neural Computation , vol.18 , pp. 1318-1348
    • Pfister, J.1    Toyoizumi, T.2    Barber, D.3    Gerstner, W.4
  • 7
    • 0347362917 scopus 로고    scopus 로고
    • Learning in spiking neural networks by reinforcement of stochastic synaptic transmission
    • Seung, H. (2003). Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron, 40, 1063-1073.
    • (2003) Neuron , vol.40 , pp. 1063-1073
    • Seung, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.