메뉴 건너뛰기




Volumn 10, Issue 1, 2016, Pages 194-209

Design of modified structure multi-layer perceptron networks based on decision trees for the prediction of flow parameters in 90° open-channel bends

Author keywords

Decision trees; Depth averaged velocity; Experimental study; MLP model; Sharp bend; Water surface

Indexed keywords


EID: 84961797457     PISSN: 19942060     EISSN: 1997003X     Source Type: Journal    
DOI: 10.1080/19942060.2015.1128358     Document Type: Article
Times cited : (43)

References (65)
  • 2
    • 84969350178 scopus 로고    scopus 로고
    • Experimental investigations water surface characteristics in strongly-curved open channels
    • Akhtari, A. A., Abrishami, J., & Sharifi, M. B. (2009). Experimental investigations water surface characteristics in strongly-curved open channels. Journal of Applied Sciences, 9(20), 3699-3706.
    • (2009) Journal of Applied Sciences , vol.9 , Issue.20 , pp. 3699-3706
    • Akhtari, A.A.1    Abrishami, J.2    Sharifi, M.B.3
  • 3
    • 0022450848 scopus 로고
    • Turbulent structure in a river bend
    • Anwar, H. O. (1986). Turbulent structure in a river bend. Journal of Hydraulic Engineering, 112(8), 657-669.
    • (1986) Journal of Hydraulic Engineering , vol.112 , Issue.8 , pp. 657-669
    • Anwar, H.O.1
  • 5
    • 84872049145 scopus 로고    scopus 로고
    • Closed-form solution for flow field in curved channels in comparison with experimental and numerical analyses and artificial neural network
    • Baghalian, S., Bonakdari, H., Nazari, F., & Fazli, M. (2012). Closed-form solution for flow field in curved channels in comparison with experimental and numerical analyses and artificial neural network. Engineering Applications of Computational Fluid Mechanics, 6(4), 514-526.
    • (2012) Engineering Applications of Computational Fluid Mechanics , vol.6 , Issue.4 , pp. 514-526
    • Baghalian, S.1    Bonakdari, H.2    Nazari, F.3    Fazli, M.4
  • 8
    • 77951205244 scopus 로고    scopus 로고
    • Application of two different neural network techniques to lateral outflow over rectangular side weirs located on a straight channel
    • Bilhan, O., Emiroglu, M. E., & Kisi, O. (2010). Application of two different neural network techniques to lateral outflow over rectangular side weirs located on a straight channel. Advances in Engineering Software, 41(6), 831-837.
    • (2010) Advances in Engineering Software , vol.41 , Issue.6 , pp. 831-837
    • Bilhan, O.1    Emiroglu, M.E.2    Kisi, O.3
  • 9
    • 79953200112 scopus 로고    scopus 로고
    • Use of artificial neural networks for prediction of discharge coefficient of triangular labyrinth side weir in curved channels
    • Bilhan, O., Emiroglu, M. E., & Kisi, O. (2011). Use of artificial neural networks for prediction of discharge coefficient of triangular labyrinth side weir in curved channels. Advances in Engineering Software, 42(4), 208-214.
    • (2011) Advances in Engineering Software , vol.42 , Issue.4 , pp. 208-214
    • Bilhan, O.1    Emiroglu, M.E.2    Kisi, O.3
  • 12
    • 0035475234 scopus 로고    scopus 로고
    • Mean flow and turbulence in open channel bend
    • Blanckaert, K., & Graf,W. H. (2001).Mean flow and turbulence in open channel bend. Journal of Hydraulic Engineering, 127(10), 835-847.
    • (2001) Journal of Hydraulic Engineering , vol.127 , Issue.10 , pp. 835-847
    • Blanckaert, K.1    Graf, W.H.2
  • 13
    • 33749012798 scopus 로고    scopus 로고
    • Numerical simulation of turbulent free-surface flow in curved channel
    • Bodnar, T., & Prihoda, J. (2006). Numerical simulation of turbulent free-surface flow in curved channel. Flow, Turbulence and Combustion, 76, 429-442.
    • (2006) Flow, Turbulence and Combustion , vol.76 , pp. 429-442
    • Bodnar, T.1    Prihoda, J.2
  • 14
    • 80052326951 scopus 로고    scopus 로고
    • Numerical analysis and prediction of the velocity field in curved open channel using artificial neural network and genetic algorithm
    • Bonakdari, H., Baghalian, S., Nazari, F., & Fazli, M. (2011). Numerical analysis and prediction of the velocity field in curved open channel using artificial neural network and genetic algorithm. Engineering Applications of Computational Fluid Mechanics, 5(3), 384-396.
    • (2011) Engineering Applications of Computational Fluid Mechanics , vol.5 , Issue.3 , pp. 384-396
    • Bonakdari, H.1    Baghalian, S.2    Nazari, F.3    Fazli, M.4
  • 16
    • 84882397085 scopus 로고    scopus 로고
    • Parameter sensitivity analysis of artificial neural network for predicting water turbidity
    • Chang, C. L., & Liao, C. S. (2012). Parameter sensitivity analysis of artificial neural network for predicting water turbidity. World Academy of Science, Engineering and Technology, 70, 657-660.
    • (2012) World Academy of Science, Engineering and Technology , vol.70 , pp. 657-660
    • Chang, C.L.1    Liao, C.S.2
  • 17
    • 84943231434 scopus 로고    scopus 로고
    • Real-time prediction of water stage with artificial neural network approach
    • Chau, K.W., & Chen,W. (2006). Real-time prediction of water stage with artificial neural network approach. Lecture Notes in Computer Science, 2557, 715.
    • (2006) Lecture Notes in Computer Science , vol.2557 , pp. 715
    • Chau, K.W.1    Chen, W.2
  • 18
    • 78049358493 scopus 로고    scopus 로고
    • A hybrid model coupled with singular spectrum analysis for daily rainfall prediction
    • Chau, K.W., & Wu, C. L. (2010). A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. Journal of Hydroinformatics, 12 (4), 458-473.
    • (2010) Journal of Hydroinformatics , vol.12 , Issue.4 , pp. 458-473
    • Chau, K.W.1    Wu, C.L.2
  • 19
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze river
    • Chau, K. W., Wu, C. L., & Li, Y. S. (2005). Comparison of several flood forecasting models in Yangtze river. Journal of Hydrologic Engineering, 10(6), 485-491.
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.6 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 20
    • 24944573867 scopus 로고    scopus 로고
    • Long-term prediction of discharges in manwan reservoir using artificial neural network models
    • Cheng, C., Chau, K. W., Sun, Y., & Lin, J. (2005). Long-term prediction of discharges in manwan reservoir using artificial neural network models. Lecture Notes in Computer Science, 3498, 1040-1045.
    • (2005) Lecture Notes in Computer Science , vol.3498 , pp. 1040-1045
    • Cheng, C.1    Chau, K.W.2    Sun, Y.3    Lin, J.4
  • 21
    • 33845428421 scopus 로고    scopus 로고
    • Intelligent manipulation and calibration of parameters for hydrologicalmodels
    • Chen,W., Chau, K.W. (2006). Intelligent manipulation and calibration of parameters for hydrologicalmodels. International Journal of Environment and Pollution, 28(3-4), 432-447.
    • (2006) International Journal of Environment and Pollution , vol.28 , Issue.3-4 , pp. 432-447
    • Chen, W.1    Chau, K.W.2
  • 22
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C. W., & Wilby, R. L. (2005). Hydrological modelling using artificial neural networks. Progress in physical geography, 25(1), 80-108.
    • (2005) Progress in Physical Geography , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 25
    • 84857190718 scopus 로고    scopus 로고
    • Estimating discharge coefficient of semi-elliptical side weir using ANFIS
    • Dursun, O. F., Kaya, N., & Firat, M. (2012). Estimating discharge coefficient of semi-elliptical side weir using ANFIS. Journal of Hydrology, 426-427, 55-62.
    • (2012) Journal of Hydrology , vol.426-427 , pp. 55-62
    • Dursun, O.F.1    Kaya, N.2    Firat, M.3
  • 28
  • 32
    • 33645864343 scopus 로고    scopus 로고
    • Application of support vector machine in lake water level prediction
    • Khan, M. S. & Coulibaly, P. (2006). Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering, 11(3), 199-205.
    • (2006) Journal of Hydrologic Engineering , vol.11 , Issue.3 , pp. 199-205
    • Khan, M.S.1    Coulibaly, P.2
  • 33
    • 84865479667 scopus 로고    scopus 로고
    • Pan evaporation modeling using neural computing approach for different climatic zones
    • Kim, S., Shiri, J., & Kisi, O. (2012). Pan evaporation modeling using neural computing approach for different climatic zones.Water Resources Management, 26, 3231-3249.
    • (2012) Water Resources Management , vol.26 , pp. 3231-3249
    • Kim, S.1    Shiri, J.2    Kisi, O.3
  • 34
    • 10244249159 scopus 로고    scopus 로고
    • Multi-layer perceptrons with Levenberg- Marquardt training algorithm for suspended sediment concentration prediction and estimation
    • Kisi, O. (2008a). Multi-layer perceptrons with Levenberg- Marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrological Sciences Journal, 49(6), 1025-1040.
    • (2008) Hydrological Sciences Journal , vol.49 , Issue.6 , pp. 1025-1040
    • Kisi, O.1
  • 35
    • 48649099727 scopus 로고    scopus 로고
    • The potential of different ANN techniques in evapotranspiration modelling
    • Kisi, O. (2008b). The potential of different ANN techniques in evapotranspiration modelling. Hydrological Processes, 22, 2449-2460.
    • (2008) Hydrological Processes , vol.22 , pp. 2449-2460
    • Kisi, O.1
  • 36
    • 61749102355 scopus 로고    scopus 로고
    • Daily pan evaporation modelling using multilayer perceptrons and radial basis neural networks
    • Kisi, O. (2009). Daily pan evaporation modelling using multilayer perceptrons and radial basis neural networks. Hydrological Processes, 23, 213-223.
    • (2009) Hydrological Processes , vol.23 , pp. 213-223
    • Kisi, O.1
  • 37
    • 34548425056 scopus 로고    scopus 로고
    • Comparison of different ANN techniques in river flow prediction
    • Kisi, O., & Cigizoglu, H. K. (2007). Comparison of different ANN techniques in river flow prediction. Civil Engineering and Environmental Systems, 24(51), 211-231.
    • (2007) Civil Engineering and Environmental Systems , vol.24 , Issue.51 , pp. 211-231
    • Kisi, O.1    Cigizoglu, H.K.2
  • 38
    • 80255131241 scopus 로고    scopus 로고
    • Prediction of lateral outflow over triangular labyrinth side weirs under subcritical conditions using soft computing approaches
    • Kisi, O., Emiroglu, M. E., Bilhan, O., & Guven, A. (2012). Prediction of lateral outflow over triangular labyrinth side weirs under subcritical conditions using soft computing approaches. Expert Systems with Applications, 39(3), 3454-3460.
    • (2012) Expert Systems with Applications , vol.39 , Issue.3 , pp. 3454-3460
    • Kisi, O.1    Emiroglu, M.E.2    Bilhan, O.3    Guven, A.4
  • 39
    • 0018528913 scopus 로고
    • Calculation of strongly curved open channel flow
    • Leschziner, M. A., & Rodi, W. (1979). Calculation of strongly curved open channel flow. Journal of the Hydraulics Division, 105(10), 1297-1314.
    • (1979) Journal of the Hydraulics Division , vol.105 , Issue.10 , pp. 1297-1314
    • Leschziner, M.A.1    Rodi, W.2
  • 40
    • 0000873069 scopus 로고
    • Amethod for the solution of certain nonlinear problems in Least-Squares
    • Levenberg, K. (1944).Amethod for the solution of certain nonlinear problems in Least-Squares. The Quarterly of Applied Mathematics, 2, 164-168.
    • (1944) The Quarterly of Applied Mathematics , vol.2 , pp. 164-168
    • Levenberg, K.1
  • 41
    • 84962497731 scopus 로고    scopus 로고
    • Estimation of longitudinal dispersion coefficient in rivers using artificial neural networks
    • Mohamed, H. I., & Hashem, M. (2006). Estimation of longitudinal dispersion coefficient in rivers using artificial neural networks. Journal of Engineering Sciences, 34(5), 1341-1352.
    • (2006) Journal of Engineering Sciences , vol.34 , Issue.5 , pp. 1341-1352
    • Mohamed, H.I.1    Hashem, M.2
  • 44
    • 84876158673 scopus 로고    scopus 로고
    • Three-dimensional simulation parameters for 90° open channel bend flows
    • Ramamurthy,A.,Han, S.,&Biron, P. (2013).Three-dimensional simulation parameters for 90° open channel bend flows. Journal of Computing in Civil Engineering, 27(3), 282-291.
    • (2013) Journal of Computing in Civil Engineering , vol.27 , Issue.3 , pp. 282-291
    • Ramamurthy, A.1    Han, S.2    Biron, P.3
  • 45
    • 77955735474 scopus 로고    scopus 로고
    • Daily outflowprediction bymultilayer perception with logistic sigmoid and tangent sigmoid activation functions
    • Rezaeian Zadeh, M., Amin, S., Khalili, D., & Singh, V. P. (2010). Daily outflowprediction bymultilayer perception with logistic sigmoid and tangent sigmoid activation functions. Journal of Water Resources Mangement, 24(11), 2673-2688.
    • (2010) Journal of Water Resources Mangement , vol.24 , Issue.11 , pp. 2673-2688
    • Rezaeian Zadeh, M.1    Amin, S.2    Khalili, D.3    Singh, V.P.4
  • 46
    • 13244288058 scopus 로고    scopus 로고
    • Les techniquesde reseauxde neurones artificiels sont-elles pertinentes pour estimer le coefficient de dispersion longitudinale en rivieres?
    • Rowiński, P. M., Piotrowski, A., & Napiorkowski, J. J. (2005). Are artificial neural network techniques relevant for the estimation of longitudinal dispersion coefficient in rivers?/Les techniquesde reseauxde neurones artificiels sont-elles pertinentes pour estimer le coefficient de dispersion longitudinale en rivieres? Journal of Hydrological Sciences, 50(1), 175-187.
    • (2005) Journal of Hydrological Sciences , vol.50 , Issue.1 , pp. 175-187
    • Rowiński, P.M.1    Piotrowski, A.2    Napiorkowski, J.J.3
  • 47
    • 0003664804 scopus 로고
    • Kiev: Academy of Sciences of the Ukrainian SSR. [Jerusalem: Israel Programfor ScientificTranslations]
    • Rozovskii, I. L. (1957). Flow of Water in Bends of Open Channels. Kiev: Academy of Sciences of the Ukrainian SSR. [Jerusalem: Israel Programfor ScientificTranslations [1961]].
    • (1957) Flow of Water in Bends of Open Channels
    • Rozovskii, I.L.1
  • 49
    • 0346765195 scopus 로고
    • Flow around bends in an open flume
    • Shukry, A. (1950). Flow around bends in an open flume. Transactions, ASCE, 115, 751-788.
    • (1950) Transactions, ASCE , vol.115 , pp. 751-788
    • Shukry, A.1
  • 51
    • 33751360802 scopus 로고    scopus 로고
    • An experimental study into local scour in a channel caused by a 90° bend
    • Sui, J., Fang, D., & Karney, B.W. (2006). An experimental study into local scour in a channel caused by a 90° bend. Canadian Journal of Civil Engineering, 33, 902-911.
    • (2006) Canadian Journal of Civil Engineering , vol.33 , pp. 902-911
    • Sui, J.1    Fang, D.2    Karney, B.W.3
  • 52
    • 84924153739 scopus 로고    scopus 로고
    • Neural network river forecasting with multi-objective fully informed particle swarm optimization
    • Taormina, R., & Chau, K.W. (2015). Neural network river forecasting with multi-objective fully informed particle swarm optimization. Journal of Hydroinformatics, 17(1), 99-113.
    • (2015) Journal of Hydroinformatics , vol.17 , Issue.1 , pp. 99-113
    • Taormina, R.1    Chau, K.W.2
  • 54
  • 55
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecastingmonthly discharge time series
    • Wang, W. C., Chau, K. W., Cheng, C. T., & Qiu, L. (2009). A comparison of performance of several artificial intelligence methods for forecastingmonthly discharge time series. Journal of Hydrology, 374(3-4), 294-306.
    • (2009) Journal of Hydrology , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 56
    • 84939955777 scopus 로고    scopus 로고
    • Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition
    • Wang, W. C., Chau, K. W., Xu, D. M., & Chen, X. Y. (2015). Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resources Management, 29(8), 2655-2675.
    • (2015) Water Resources Management , vol.29 , Issue.8 , pp. 2655-2675
    • Wang, W.C.1    Chau, K.W.2    Xu, D.M.3    Chen, X.Y.4
  • 57
    • 47949121319 scopus 로고    scopus 로고
    • River stage prediction based on a distributed support vector regression
    • Wu, C. L., Chau, K.W., & Li, Y. S. (2008). River stage prediction based on a distributed support vector regression. Journal of Hydrology, 358(1-2), 96-111.
    • (2008) Journal of Hydrology , vol.358 , Issue.1-2 , pp. 96-111
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 58
    • 65749118118 scopus 로고    scopus 로고
    • Methods to improve neural network performance in daily flows prediction
    • Wu, C. L., Chau, K.W., & Li, Y. S. (2009). Methods to improve neural network performance in daily flows prediction. Journal of Hydrology, 372(1-4), 80-93.
    • (2009) Journal of Hydrology , vol.372 , Issue.1-4 , pp. 80-93
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 59
    • 14444277002 scopus 로고    scopus 로고
    • Simulation of curved open channel flows by 3D hydrodynamic model
    • Ye, J., & McCorquodale, J. A. (1998). Simulation of curved open channel flows by 3D hydrodynamic model. Journal of Hydraulic Engineering, 124(7), 687-698.
    • (1998) Journal of Hydraulic Engineering , vol.124 , Issue.7 , pp. 687-698
    • Ye, J.1    McCorquodale, J.A.2
  • 60
    • 77953342831 scopus 로고    scopus 로고
    • Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting
    • Yonaba, H., Anctil, F., & Fortin, V. (2010). Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting. Journal of Hydrologic Engineering, 15(4), 275-283.
    • (2010) Journal of Hydrologic Engineering , vol.15 , Issue.4 , pp. 275-283
    • Yonaba, H.1    Anctil, F.2    Fortin, V.3
  • 61
    • 84908606898 scopus 로고    scopus 로고
    • Performance evaluation of two different neural network and particle swarm optimization methods for prediction of discharge capacity of modified triangular side weirs
    • Zaji, A. H., & Bonakdari, H. (2014). Performance evaluation of two different neural network and particle swarm optimization methods for prediction of discharge capacity of modified triangular side weirs. Flow Measurement and Instrumentation, 40, 149-156.
    • (2014) Flow Measurement and Instrumentation , vol.40 , pp. 149-156
    • Zaji, A.H.1    Bonakdari, H.2
  • 62
    • 84910632672 scopus 로고    scopus 로고
    • Application of artificial neural network and genetic programming models for estimating the longitudinal velocity field in open channel junctions
    • Zaji, A. H., & Bonakdari, H. (2015a). Application of artificial neural network and genetic programming models for estimating the longitudinal velocity field in open channel junctions. Flow Measurement and Instrumentation, 41, 81-89.
    • (2015) Flow Measurement and Instrumentation , vol.41 , pp. 81-89
    • Zaji, A.H.1    Bonakdari, H.2
  • 63
    • 84930217896 scopus 로고    scopus 로고
    • Efficientmethods for prediction of velocity fields in open channel junctions based on the artifical neural network
    • Zaji, A.H., & Bonakdari,H. (2015b). Efficientmethods for prediction of velocity fields in open channel junctions based on the artifical neural network. Engineering Applications of Computational Fluid Mechanics, 9(1), 1-13.
    • (2015) Engineering Applications of Computational Fluid Mechanics , vol.9 , Issue.1 , pp. 1-13
    • Zaji, A.H.1    Bonakdari, H.2
  • 64
    • 56049120308 scopus 로고    scopus 로고
    • Application of artificial neural network to predict the friction factor of open channel flow
    • Zeng, Y., & Huai, W. (2009). Application of artificial neural network to predict the friction factor of open channel flow. Communications in Nonlinear Science and Numerical Simulation, 14, 2373-2378.
    • (2009) Communications in Nonlinear Science and Numerical Simulation , vol.14 , pp. 2373-2378
    • Zeng, Y.1    Huai, W.2
  • 65
    • 50849141343 scopus 로고    scopus 로고
    • Three dimensional simulation of meandering river based on 3-D k-ε (RNG) turbulence model
    • Zhang, M. L., & Shen, Y. M. (2008). Three dimensional simulation of meandering river based on 3-D k-ε (RNG) turbulence model. Journal of Hydrodynamics, 20(4), 448-455.
    • (2008) Journal of Hydrodynamics , vol.20 , Issue.4 , pp. 448-455
    • Zhang, M.L.1    Shen, Y.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.