메뉴 건너뛰기




Volumn 14, Issue 5, 2009, Pages 2373-2378

Application of artificial neural network to predict the friction factor of open channel flow

Author keywords

Artificial neural network (ANN); Friction factor; Lavenberg Marquart (LM) algorithm; Open channel flow

Indexed keywords

FORECASTING; FRICTION; NETWORK LAYERS; OPEN CHANNEL FLOW; REYNOLDS NUMBER; TRIBOLOGY;

EID: 56049120308     PISSN: 10075704     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cnsns.2008.06.020     Document Type: Article
Times cited : (100)

References (10)
  • 2
    • 0034578871 scopus 로고    scopus 로고
    • Modelling of the river flowrate: the influence of the training set selection
    • Kocjancic R., and Zupan J. Modelling of the river flowrate: the influence of the training set selection. Chemometr Intell Lab Syst 54 (2000) 21-34
    • (2000) Chemometr Intell Lab Syst , vol.54 , pp. 21-34
    • Kocjancic, R.1    Zupan, J.2
  • 3
    • 19044375542 scopus 로고    scopus 로고
    • Wuhan University of Hydraulic and Electrical Engineering Publishing Company, Wuhan p. 140-56 [in Chinese]
    • Li W., and Xu X.P. Hydraulics (2000), Wuhan University of Hydraulic and Electrical Engineering Publishing Company, Wuhan p. 140-56 [in Chinese]
    • (2000) Hydraulics
    • Li, W.1    Xu, X.P.2
  • 4
    • 52949109310 scopus 로고    scopus 로고
    • Lin YC, Zhang J, Zhong J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel. Comp Mater Sci, 2008, in press, doi:10.1016/j.commatsci.2008.01.039.
    • Lin YC, Zhang J, Zhong J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel. Comp Mater Sci, 2008, in press, doi:10.1016/j.commatsci.2008.01.039.
  • 5
    • 85196205028 scopus 로고    scopus 로고
    • Martin T, Howard B, Mark H. Neural network design, Thomson learning; 2002.
    • Martin T, Howard B, Mark H. Neural network design, Thomson learning; 2002.
  • 6
    • 34249898039 scopus 로고    scopus 로고
    • A simple neural network model for the determination of aquifer parameters
    • Samani N., Gohari-Moghadam M., and Safavi A.A. A simple neural network model for the determination of aquifer parameters. J Hydrol 340 (2007) 1-11
    • (2007) J Hydrol , vol.340 , pp. 1-11
    • Samani, N.1    Gohari-Moghadam, M.2    Safavi, A.A.3
  • 7
    • 0032448045 scopus 로고    scopus 로고
    • An artificial neural network for non-iterative calculation of the friction factor in pipeline flow
    • Walid H.S., and Shyam S.S. An artificial neural network for non-iterative calculation of the friction factor in pipeline flow. Comput Electron Agriculture 21 (1998) 219-228
    • (1998) Comput Electron Agriculture , vol.21 , pp. 219-228
    • Walid, H.S.1    Shyam, S.S.2
  • 8
    • 85196166002 scopus 로고    scopus 로고
    • Wang ST. Fuzzy system, fuzzy neural network and application programming. Shanghai Scientific and Technical Literature Publishing Company; 1998 [in Chinese].
    • Wang ST. Fuzzy system, fuzzy neural network and application programming. Shanghai Scientific and Technical Literature Publishing Company; 1998 [in Chinese].
  • 9
    • 27744506428 scopus 로고    scopus 로고
    • Electronic Industry publishing company, Beijing [in Chinese]
    • Xu L.N. Neural network control (2003), Electronic Industry publishing company, Beijing [in Chinese]
    • (2003) Neural network control
    • Xu, L.N.1
  • 10
    • 12444254723 scopus 로고
    • Higher Education Publishing Company, Beijing [in Chinese]
    • Xu Z.F. Hydraulics (1986), Higher Education Publishing Company, Beijing [in Chinese]
    • (1986) Hydraulics
    • Xu, Z.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.