메뉴 건너뛰기




Volumn 55, Issue , 2015, Pages 1-9

A comparison of machine learning techniques for customer churn prediction

Author keywords

Boosting algorithm; Churn prediction; Machine learning techniques

Indexed keywords

ADAPTIVE BOOSTING; ARTIFICIAL INTELLIGENCE; FORECASTING; INTELLIGENT SYSTEMS; LEARNING ALGORITHMS; MONTE CARLO METHODS; TELECOMMUNICATION INDUSTRY;

EID: 84961288268     PISSN: 1569190X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.simpat.2015.03.003     Document Type: Article
Times cited : (342)

References (43)
  • 3
    • 84902682759 scopus 로고    scopus 로고
    • Improved churn prediction in telecommunication industry by analyzing a large network
    • K. Kim, C.-H. Jun, and J. Lee Improved churn prediction in telecommunication industry by analyzing a large network Expert Syst. Appl. 41 15 2014 6575 6584
    • (2014) Expert Syst. Appl. , vol.41 , Issue.15 , pp. 6575-6584
    • Kim, K.1    Jun, C.-H.2    Lee, J.3
  • 4
    • 84914109809 scopus 로고    scopus 로고
    • Predicting customer churn in mobile telephony industry using probabilistic classifiers in data mining
    • C. Kirui, L. Hong, W. Cheruiyot, and H. Kirui Predicting customer churn in mobile telephony industry using probabilistic classifiers in data mining Int. J. Comput. Sci. Iss. (IJCSI) 10 2 2013 165 172
    • (2013) Int. J. Comput. Sci. Iss. (IJCSI) , vol.10 , Issue.2 , pp. 165-172
    • Kirui, C.1    Hong, L.2    Cheruiyot, W.3    Kirui, H.4
  • 6
    • 84926036147 scopus 로고    scopus 로고
    • Churn prediction in telecommunication using data mining technology
    • R.J. Jadhav, and U.T. Pawar Churn prediction in telecommunication using data mining technology IJACSA Edit. 2 2 2011 17 19
    • (2011) IJACSA Edit. , vol.2 , Issue.2 , pp. 17-19
    • Jadhav, R.J.1    Pawar, U.T.2
  • 7
    • 84887063480 scopus 로고    scopus 로고
    • The impact of experimental setup in prepaid churn prediction for mobile telecommunications: What to predict, for whom and does the customer experience matter?
    • D. Radosavljevik, P. van der Putten, and K.K. Larsen The impact of experimental setup in prepaid churn prediction for mobile telecommunications: what to predict, for whom and does the customer experience matter? Trans. MLDM 3 2 2010 80 99
    • (2010) Trans. MLDM , vol.3 , Issue.2 , pp. 80-99
    • Radosavljevik, D.1    Van Der Putten, P.2    Larsen, K.K.3
  • 8
    • 78651341699 scopus 로고    scopus 로고
    • Predicting customer churn in mobile networks through analysis of social groups
    • SIAM
    • Y. Richter, E. Yom-Tov, and N. Slonim Predicting customer churn in mobile networks through analysis of social groups SDM vol. 2010 2010 SIAM 732 741
    • (2010) SDM , vol.2010 , pp. 732-741
    • Richter, Y.1    Yom-Tov, E.2    Slonim, N.3
  • 9
    • 84904019521 scopus 로고    scopus 로고
    • Customer churn analysis in telecommunication sector
    • Ş. Gürsoy, and U. Tuʇba Customer churn analysis in telecommunication sector J. School Bus. Admin. Istanbul Univ. 39 1 2010 35 49
    • (2010) J. School Bus. Admin. Istanbul Univ. , vol.39 , Issue.1 , pp. 35-49
    • Gürsoy Ş.1    Tuʇba, U.2
  • 12
    • 84961297790 scopus 로고    scopus 로고
    • Prediction of churn behaviour of bank customers using data mining tools
    • U.D. Prasad, and S. Madhavi Prediction of churn behaviour of bank customers using data mining tools Indian J. Market. 42 9 2011 25 30
    • (2011) Indian J. Market. , vol.42 , Issue.9 , pp. 25-30
    • Prasad, U.D.1    Madhavi, S.2
  • 18
    • 0036696364 scopus 로고    scopus 로고
    • Turning telecommunications call details to churn prediction: A data mining approach
    • C.-P. Wei, and I. Chiu Turning telecommunications call details to churn prediction: a data mining approach Expert Syst. Appl. 23 2 2002 103 112
    • (2002) Expert Syst. Appl. , vol.23 , Issue.2 , pp. 103-112
    • Wei, C.-P.1    Chiu, I.2
  • 20
    • 84896849083 scopus 로고    scopus 로고
    • Churn prediction using comprehensible support vector machine: An analytical CRM application
    • M. Farquad, V. Ravi, and S.B. Raju Churn prediction using comprehensible support vector machine: an analytical CRM application Appl. Soft Comput. 19 2014 31 40
    • (2014) Appl. Soft Comput. , vol.19 , pp. 31-40
    • Farquad, M.1    Ravi, V.2    Raju, S.B.3
  • 25
    • 84875108096 scopus 로고    scopus 로고
    • A neural network based approach for predicting customer churn in cellular network services
    • A. Sharma, and D.P.K. Panigrahi A neural network based approach for predicting customer churn in cellular network services Int. J. Comput. Appl. 27 11 2011 26 31
    • (2011) Int. J. Comput. Appl. , vol.27 , Issue.11 , pp. 26-31
    • Sharma, A.1    Panigrahi, D.P.K.2
  • 26
    • 77956289965 scopus 로고    scopus 로고
    • Applying chaid for logistic regression diagnostics and classification accuracy improvement
    • E. Antipov, and E. Pokryshevskaya Applying chaid for logistic regression diagnostics and classification accuracy improvement J. Target. Meas. Anal. Market. 18 2 2010 109 117
    • (2010) J. Target. Meas. Anal. Market. , vol.18 , Issue.2 , pp. 109-117
    • Antipov, E.1    Pokryshevskaya, E.2
  • 27
    • 84878519292 scopus 로고    scopus 로고
    • Constraint mining in business intelligence: A case study of customer churn prediction
    • N. Kerdprasop, P. Kongchai, and K. Kerdprasop Constraint mining in business intelligence: a case study of customer churn prediction Int. J. Multimedia Ubiquitous Eng. 8 3 2013
    • (2013) Int. J. Multimedia Ubiquitous Eng. , vol.8 , Issue.3
    • Kerdprasop, N.1    Kongchai, P.2    Kerdprasop, K.3
  • 29
    • 24944534149 scopus 로고    scopus 로고
    • Customer churning prediction using support vector machines in online auto insurance service
    • Springer
    • Y. Hur, and S. Lim Customer churning prediction using support vector machines in online auto insurance service Advances in Neural Networks - ISNN 2005 2005 Springer 928 933
    • (2005) Advances in Neural Networks - ISNN 2005 , pp. 928-933
    • Hur, Y.1    Lim, S.2
  • 30
    • 0034187076 scopus 로고    scopus 로고
    • Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry
    • M.C. Mozer, R. Wolniewicz, D.B. Grimes, E. Johnson, and H. Kaushansky Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry IEEE Trans. Neural Netw. 11 3 2000 690 696
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.3 , pp. 690-696
    • Mozer, M.C.1    Wolniewicz, R.2    Grimes, D.B.3    Johnson, E.4    Kaushansky, H.5
  • 31
    • 0345872225 scopus 로고    scopus 로고
    • A novel evolutionary data mining algorithm with applications to churn prediction
    • W.-H. Au, K.C. Chan, and X. Yao A novel evolutionary data mining algorithm with applications to churn prediction IEEE Trans. Evol. Comput. 7 6 2003 532 545
    • (2003) IEEE Trans. Evol. Comput. , vol.7 , Issue.6 , pp. 532-545
    • Au, W.-H.1    Chan, K.C.2    Yao, X.3
  • 33
    • 0035780739 scopus 로고    scopus 로고
    • A review of data mining techniques
    • S.J. Lee, and K. Siau A review of data mining techniques Ind. Manage. Data Syst. 101 1 2001 41 46
    • (2001) Ind. Manage. Data Syst. , vol.101 , Issue.1 , pp. 41-46
    • Lee, S.J.1    Siau, K.2
  • 35
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to roc analysis
    • T. Fawcett An introduction to roc analysis Pattern Recogn. Lett. 27 8 2006 861 874
    • (2006) Pattern Recogn. Lett. , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 36
    • 84961374751 scopus 로고    scopus 로고
    • Manuscript, Dept. of Applied Statistics, OR and Quality, Universitat Politcnica de Valncia, Camino de Vera s/n 46022
    • M. Clemente, V. Giner-Bosch, S. San Matías, Assessing Classification Methods for Churn Prediction by Composite Indicators, Manuscript, Dept. of Applied Statistics, OR and Quality, Universitat Politcnica de Valncia, Camino de Vera s/n 46022. (2010). Available from: http://www.upv.es/deioac/Investigacion/ManuscriptDSS.pdf.
    • (2010) Assessing Classification Methods for Churn Prediction by Composite Indicators
    • Clemente, M.1
  • 37
    • 33744526493 scopus 로고    scopus 로고
    • Bagging and boosting classification trees to predict churn
    • A. Lemmens, and C. Croux Bagging and boosting classification trees to predict churn J. Market. Res. 43 2 2006 276 286
    • (2006) J. Market. Res. , vol.43 , Issue.2 , pp. 276-286
    • Lemmens, A.1    Croux, C.2
  • 38
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors)
    • J. Friedman, T. Hastie, and R. Tibshirani Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors) Ann. Stat. 28 2 2000 337 407
    • (2000) Ann. Stat. , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 39
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer, and R. Kohavi An empirical comparison of voting classification algorithms: bagging, boosting, and variants Mach. Learn. 36 1-2 1999 105 139
    • (1999) Mach. Learn. , vol.36 , Issue.12 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 42
    • 84983110889 scopus 로고
    • A desicion-theoretic generalization of on-line learning and an application to boosting
    • Springer
    • Y. Freund, and R.E. Schapire A desicion-theoretic generalization of on-line learning and an application to boosting Computational Learning Theory 1995 Springer 23 37
    • (1995) Computational Learning Theory , pp. 23-37
    • Freund, Y.1    Schapire, R.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.