-
1
-
-
84962741532
-
Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer
-
Kwatra D., Venugopal A., Anant S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl. Cancer Res 2013, 2:330-342. 10.3978/j.issn.2218-676X.2013.08.06.
-
(2013)
Transl. Cancer Res
, vol.2
, pp. 330-342
-
-
Kwatra, D.1
Venugopal, A.2
Anant, S.3
-
2
-
-
84900495085
-
The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy
-
Babaei M., Ganjalikhani M. The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy. Bioimpacts 2014, 4:15-20. 10.5681/bi.2014.003.
-
(2014)
Bioimpacts
, vol.4
, pp. 15-20
-
-
Babaei, M.1
Ganjalikhani, M.2
-
3
-
-
84965086254
-
[Nanoparticles and radiation therapy]
-
Calugaru V., Magné N., Hérault J., Bonvalot S., Le Tourneau C., Thariat J. [Nanoparticles and radiation therapy]. Bull. Cancer 2015, 102:83-91. 10.1016/j.bulcan.2014.10.002.
-
(2015)
Bull. Cancer
, vol.102
, pp. 83-91
-
-
Calugaru, V.1
Magné, N.2
Hérault, J.3
Bonvalot, S.4
Le Tourneau, C.5
Thariat, J.6
-
4
-
-
4644321604
-
The use of gold nanoparticles to enhance radiotherapy in mice
-
Hainfeld J.F., Slatkin D.N., Smilowitz H.M. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol 2004, 49:N309-N315. 10.1088/0031-9155/49/18/N03.
-
(2004)
Phys. Med. Biol
, vol.49
, pp. N309-N315
-
-
Hainfeld, J.F.1
Slatkin, D.N.2
Smilowitz, H.M.3
-
5
-
-
35348882024
-
Nanotechnology applications in cancer
-
Nie S., Xing Y., Kim G.J., Simons J.W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng 2007, 9:257-288. 10.1146/annurev.bioeng.9.060906.152025.
-
(2007)
Annu. Rev. Biomed. Eng
, vol.9
, pp. 257-288
-
-
Nie, S.1
Xing, Y.2
Kim, G.J.3
Simons, J.W.4
-
6
-
-
0034000453
-
Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review
-
Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 2000, 65:271-284. 10.1016/S0168-3659(99)00248-5.
-
(2000)
J. Control. Release
, vol.65
, pp. 271-284
-
-
Maeda, H.1
Wu, J.2
Sawa, T.3
Matsumura, Y.4
Hori, K.5
-
7
-
-
77949762340
-
Targeting of drugs and nanoparticles to tumors
-
Ruoslahti E., Bhatia S.N., Sailor M.J. Targeting of drugs and nanoparticles to tumors. J. Cell Biol 2010, 188:759-768. 10.1083/jcb.200910104.
-
(2010)
J. Cell Biol
, vol.188
, pp. 759-768
-
-
Ruoslahti, E.1
Bhatia, S.N.2
Sailor, M.J.3
-
8
-
-
4444379133
-
Nanoparticle and targeted systems for cancer therapy
-
Brannon-Peppas L., Blanchette J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev 2004, 56:1649-1659. 10.1016/j.addr.2004.02.014.
-
(2004)
Adv. Drug Deliv. Rev
, vol.56
, pp. 1649-1659
-
-
Brannon-Peppas, L.1
Blanchette, J.O.2
-
9
-
-
77953257877
-
Passive and active drug targeting: drug delivery to tumors as an example
-
Torchilin V.P. Passive and active drug targeting: drug delivery to tumors as an example. Handb. Exp. Pharmacol 2010, 3-53. 10.1007/978-3-642-00477-3_1.
-
(2010)
Handb. Exp. Pharmacol
, pp. 3-53
-
-
Torchilin, V.P.1
-
10
-
-
84871791641
-
Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation
-
Chattopadhyay N., Cai Z., Kwon Y.L., Lechtman E., Pignol J.-P., Reilly R.M. Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation. Breast Cancer Res. Treat 2013, 137:81-91. 10.1007/s10549-012-2338-4.
-
(2013)
Breast Cancer Res. Treat
, vol.137
, pp. 81-91
-
-
Chattopadhyay, N.1
Cai, Z.2
Kwon, Y.L.3
Lechtman, E.4
Pignol, J.-P.5
Reilly, R.M.6
-
11
-
-
84955481635
-
Tumor angiogenesis targeted radiosensitization therapy using gold nanoprobes guided by MRI/SPECT imaging
-
Yang Y., Zhang L., Cai J., Li X., Cheng D., Su H., et al. Tumor angiogenesis targeted radiosensitization therapy using gold nanoprobes guided by MRI/SPECT imaging. ACS Appl. Mater. Interfaces 2016, 1718-1732. 10.1021/acsami.5b09274.
-
(2016)
ACS Appl. Mater. Interfaces
, pp. 1718-1732
-
-
Yang, Y.1
Zhang, L.2
Cai, J.3
Li, X.4
Cheng, D.5
Su, H.6
-
12
-
-
84864672239
-
Role of antibody-mediated tumor targeting and route of administration in nanoparticle tumor accumulation in vivo
-
Chattopadhyay N., Fonge H., Cai Z., Scollard D., Lechtman E., Done S.J., et al. Role of antibody-mediated tumor targeting and route of administration in nanoparticle tumor accumulation in vivo. Mol. Pharm 2012, 9:2168-2179. 10.1021/mp300016p.
-
(2012)
Mol. Pharm
, vol.9
, pp. 2168-2179
-
-
Chattopadhyay, N.1
Fonge, H.2
Cai, Z.3
Scollard, D.4
Lechtman, E.5
Done, S.J.6
-
13
-
-
79959971282
-
Nanoparticle PEGylation for imaging and therapy
-
Jokerst J.V., Lobovkina T., Zare R.N., Gambhir S.S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond.) 2011, 6:715-728. 10.2217/nnm.11.19.
-
(2011)
Nanomedicine (Lond.)
, vol.6
, pp. 715-728
-
-
Jokerst, J.V.1
Lobovkina, T.2
Zare, R.N.3
Gambhir, S.S.4
-
14
-
-
0017640176
-
Effect of radiation and contrast media on chromosomes. Preliminary report
-
Adams F.H., Norman A., Mello R.S., Bass D. Effect of radiation and contrast media on chromosomes. Preliminary report. Radiology 1977, 124:823-826. 10.1148/124.3.823.
-
(1977)
Radiology
, vol.124
, pp. 823-826
-
-
Adams, F.H.1
Norman, A.2
Mello, R.S.3
Bass, D.4
-
15
-
-
35348998981
-
Characterization of the theorectical radiation dose enhancement from nanoparticles
-
Roeske J.C., Nunez L., Hoggarth M., Labay E., Weichselbaum R.R. Characterization of the theorectical radiation dose enhancement from nanoparticles. Technol. Cancer Res. Treat 2007, 6:395-401. 10.1177/153303460700600504.
-
(2007)
Technol. Cancer Res. Treat
, vol.6
, pp. 395-401
-
-
Roeske, J.C.1
Nunez, L.2
Hoggarth, M.3
Labay, E.4
Weichselbaum, R.R.5
-
16
-
-
79959204282
-
Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer
-
Geng F., Song K., Xing J.Z., Yuan C., Yan S., Yang Q., et al. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology 2011, 22:285101. 10.1088/0957-4484/22/28/285101.
-
(2011)
Nanotechnology
, vol.22
, pp. 285101
-
-
Geng, F.1
Song, K.2
Xing, J.Z.3
Yuan, C.4
Yan, S.5
Yang, Q.6
-
17
-
-
84870344590
-
Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles
-
Coulter J.A., Jain S., Butterworth K.T., Taggart L.E., Dickson G.R., McMahon S.J., et al. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. Int. J. Nanomedicine 2012, 7:2673-2685. 10.2147/IJN.S31751.
-
(2012)
Int. J. Nanomedicine
, vol.7
, pp. 2673-2685
-
-
Coulter, J.A.1
Jain, S.2
Butterworth, K.T.3
Taggart, L.E.4
Dickson, G.R.5
McMahon, S.J.6
-
18
-
-
70349101328
-
Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle
-
Roa W., Zhang X., Guo L., Shaw A., Hu X., Xiong Y., et al. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology 2009, 20:375101-375110. 10.1088/0957-4484/20/37/375101.
-
(2009)
Nanotechnology
, vol.20
, pp. 375101-375110
-
-
Roa, W.1
Zhang, X.2
Guo, L.3
Shaw, A.4
Hu, X.5
Xiong, Y.6
-
19
-
-
84863588510
-
Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy
-
Zhang X.-D., Wu D., Shen X., Chen J., Sun Y.-M., Liu P.-X., et al. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 2012, 33:6408-6419. 10.1016/j.biomaterials.2012.05.047.
-
(2012)
Biomaterials
, vol.33
, pp. 6408-6419
-
-
Zhang, X.-D.1
Wu, D.2
Shen, X.3
Chen, J.4
Sun, Y.-M.5
Liu, P.-X.6
-
20
-
-
70349470888
-
Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage
-
Pan Y., Leifert A., Ruau D., Neuss S., Bornemann J., Schmid G., et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 2009, 5:2067-2076. 10.1002/smll.200900466.
-
(2009)
Small
, vol.5
, pp. 2067-2076
-
-
Pan, Y.1
Leifert, A.2
Ruau, D.3
Neuss, S.4
Bornemann, J.5
Schmid, G.6
-
21
-
-
84949844307
-
Silica nanoparticles induce oxidative stress and autophagy but not apoptosis in the MRC-5 cell line
-
Petrache Voicu S.N., Dinu D., Sima C., Hermenean A., Ardelean A., Codrici E., et al. Silica nanoparticles induce oxidative stress and autophagy but not apoptosis in the MRC-5 cell line. Int. J. Mol. Sci 2015, 16:29398-29416. 10.3390/ijms161226171.
-
(2015)
Int. J. Mol. Sci
, vol.16
, pp. 29398-29416
-
-
Petrache Voicu, S.N.1
Dinu, D.2
Sima, C.3
Hermenean, A.4
Ardelean, A.5
Codrici, E.6
-
22
-
-
44449122444
-
Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice
-
Chang M.-Y., Shiau A.-L., Chen Y.-H., Chang C.-J., Chen H.H.-W., Wu C.-L. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci 2008, 99:1479-1484. 10.1111/j.1349-7006.2008.00827.x.
-
(2008)
Cancer Sci
, vol.99
, pp. 1479-1484
-
-
Chang, M.-Y.1
Shiau, A.-L.2
Chen, Y.-H.3
Chang, C.-J.4
Chen, H.H.-W.5
Wu, C.-L.6
-
23
-
-
84867095663
-
Nanoscale radiotherapy with hafnium oxide nanoparticles
-
Maggiorella L., Barouch G., Devaux C., Pottier A., Deutsch E., Bourhis J., et al. Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol 2012, 8:1167-1181. 10.2217/fon.12.96.
-
(2012)
Future Oncol
, vol.8
, pp. 1167-1181
-
-
Maggiorella, L.1
Barouch, G.2
Devaux, C.3
Pottier, A.4
Deutsch, E.5
Bourhis, J.6
-
24
-
-
80053199539
-
Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations
-
Misawa M., Takahashi J. Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations. Nanomedicine 2011, 7:604-614. 10.1016/j.nano.2011.01.014.
-
(2011)
Nanomedicine
, vol.7
, pp. 604-614
-
-
Misawa, M.1
Takahashi, J.2
-
25
-
-
78349284044
-
The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles
-
Chompoosor A., Saha K., Ghosh P.S., Macarthy D.J., Miranda O.R., Zhu Z.-J., et al. The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small 2010, 6:2246-2249. 10.1002/smll.201000463.
-
(2010)
Small
, vol.6
, pp. 2246-2249
-
-
Chompoosor, A.1
Saha, K.2
Ghosh, P.S.3
Macarthy, D.J.4
Miranda, O.R.5
Zhu, Z.-J.6
-
26
-
-
77953811755
-
Autophagy and oxidative stress associated with gold nanoparticles
-
Li J.J., Hartono D., Ong C.-N., Bay B.-H., Yung L.-Y.L. Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 2010, 31:5996-6003. 10.1016/j.biomaterials.2010.04.014.
-
(2010)
Biomaterials
, vol.31
, pp. 5996-6003
-
-
Li, J.J.1
Hartono, D.2
Ong, C.-N.3
Bay, B.-H.4
Yung, L.-Y.L.5
-
27
-
-
84891627149
-
Effect of gold nanoparticles on production of reactive oxygen species by human peripheral blood leukocytes stimulated with opsonized zymosan
-
Piryazev A.P., Azizova O.A., Aseichev A.V., Dudnik L.B., Sergienko V.I. Effect of gold nanoparticles on production of reactive oxygen species by human peripheral blood leukocytes stimulated with opsonized zymosan. Bull. Exp. Biol. Med 2013, 156:101-103. 10.1007/s10517-013-2288-9.
-
(2013)
Bull. Exp. Biol. Med
, vol.156
, pp. 101-103
-
-
Piryazev, A.P.1
Azizova, O.A.2
Aseichev, A.V.3
Dudnik, L.B.4
Sergienko, V.I.5
-
28
-
-
84896833328
-
Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells
-
Mateo D., Morales P., Ávalos A., Haza A.I. Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells. Toxicol. Mech. Methods 2014, 24:161-172. 10.3109/15376516.2013.869783.
-
(2014)
Toxicol. Mech. Methods
, vol.24
, pp. 161-172
-
-
Mateo, D.1
Morales, P.2
Ávalos, A.3
Haza, A.I.4
-
29
-
-
84946934965
-
Nanoparticle mediated tumor vascular disruption: a novel strategy in radiation therapy
-
Kunjachan S., Detappe A., Kumar R., Ireland T., Cameron L., Biancur D.E., et al. Nanoparticle mediated tumor vascular disruption: a novel strategy in radiation therapy. Nano Lett 2015, 15:7488-7496. 10.1021/acs.nanolett.5b03073.
-
(2015)
Nano Lett
, vol.15
, pp. 7488-7496
-
-
Kunjachan, S.1
Detappe, A.2
Kumar, R.3
Ireland, T.4
Cameron, L.5
Biancur, D.E.6
-
30
-
-
84918572683
-
Chemical radiosensitivity of DNA induced by gold nanoparticles
-
Yao X., Huang C., Chen X., Yi Z., Sanche L. Chemical radiosensitivity of DNA induced by gold nanoparticles. J. Biomed. Nanotechnol 2015, 11:478-485. 10.1166/jbn.2015.1922.
-
(2015)
J. Biomed. Nanotechnol
, vol.11
, pp. 478-485
-
-
Yao, X.1
Huang, C.2
Chen, X.3
Yi, Z.4
Sanche, L.5
-
31
-
-
51649111448
-
Variation of strand break yield for plasmid DNA irradiated with high-Z metal nanoparticles
-
Butterworth K.T., Wyer J.A., Brennan-Fournet M., Latimer C.J., Shah M.B., Currell F.J., et al. Variation of strand break yield for plasmid DNA irradiated with high-Z metal nanoparticles. Radiat. Res 2008, 170:381-387. 10.1667/RR1320.1.
-
(2008)
Radiat. Res
, vol.170
, pp. 381-387
-
-
Butterworth, K.T.1
Wyer, J.A.2
Brennan-Fournet, M.3
Latimer, C.J.4
Shah, M.B.5
Currell, F.J.6
-
32
-
-
67349243478
-
Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution
-
Brun E., Sanche L., Sicard-Roselli C. Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids Surf. B. Biointerfaces 2009, 72:128-134. 10.1016/j.colsurfb.2009.03.025.
-
(2009)
Colloids Surf. B. Biointerfaces
, vol.72
, pp. 128-134
-
-
Brun, E.1
Sanche, L.2
Sicard-Roselli, C.3
-
33
-
-
84864391593
-
X-ray enabled detection and eradication of circulating tumor cells with nanoparticles
-
Hossain M., Luo Y., Sun Z., Wang C., Zhang M., Fu H., et al. X-ray enabled detection and eradication of circulating tumor cells with nanoparticles. Biosens. Bioelectron 2012, 38:348-354. 10.1016/j.bios.2012.06.020.
-
(2012)
Biosens. Bioelectron
, vol.38
, pp. 348-354
-
-
Hossain, M.1
Luo, Y.2
Sun, Z.3
Wang, C.4
Zhang, M.5
Fu, H.6
-
34
-
-
84871450025
-
In vitro radiosensitization by gold nanoparticles during continuous low-dose-rate gamma irradiation with I-125 brachytherapy seeds
-
Ngwa W., Korideck H., Kassis A.I., Kumar R., Sridhar S., Makrigiorgos G.M., et al. In vitro radiosensitization by gold nanoparticles during continuous low-dose-rate gamma irradiation with I-125 brachytherapy seeds. Nanomedicine 2013, 9:25-27. 10.1016/j.nano.2012.09.001.
-
(2013)
Nanomedicine
, vol.9
, pp. 25-27
-
-
Ngwa, W.1
Korideck, H.2
Kassis, A.I.3
Kumar, R.4
Sridhar, S.5
Makrigiorgos, G.M.6
-
35
-
-
79961069906
-
Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location
-
Lechtman E., Chattopadhyay N., Cai Z., Mashouf S., Reilly R., Pignol J.P. Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Phys. Med. Biol 2011, 56:4631-4647. 10.1088/0031-9155/56/15/001.
-
(2011)
Phys. Med. Biol
, vol.56
, pp. 4631-4647
-
-
Lechtman, E.1
Chattopadhyay, N.2
Cai, Z.3
Mashouf, S.4
Reilly, R.5
Pignol, J.P.6
-
36
-
-
84872041296
-
Novel multicompartment 3-dimensional radiochromic radiation dosimeters for nanoparticle-enhanced radiation therapy dosimetry
-
Alqathami M., Blencowe A., Yeo U.J., Doran S.J., Qiao G., Geso M. Novel multicompartment 3-dimensional radiochromic radiation dosimeters for nanoparticle-enhanced radiation therapy dosimetry. Int. J. Radiat. Oncol. Biol. Phys 2012, 84:e549-e555. 10.1016/j.ijrobp.2012.05.029.
-
(2012)
Int. J. Radiat. Oncol. Biol. Phys
, vol.84
, pp. e549-e555
-
-
Alqathami, M.1
Blencowe, A.2
Yeo, U.J.3
Doran, S.J.4
Qiao, G.5
Geso, M.6
-
37
-
-
84877000537
-
Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization
-
Joh D.Y., Sun L., Stangl M., Al Zaki A., Murty S., Santoiemma P.P., et al. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLoS ONE 2013, 8:e62425. 10.1371/journal.pone.0062425.
-
(2013)
PLoS ONE
, vol.8
, pp. e62425
-
-
Joh, D.Y.1
Sun, L.2
Stangl, M.3
Al Zaki, A.4
Murty, S.5
Santoiemma, P.P.6
-
38
-
-
0030013113
-
Gadolinium(III) texaphyrin: a tumor selective radiation sensitizer that is detectable by MRI
-
Young S.W., Qing F., Harriman A., Sessler J.L., Dow W.C., Mody T.D., et al. Gadolinium(III) texaphyrin: a tumor selective radiation sensitizer that is detectable by MRI. Proc. Natl. Acad. Sci. U. S. A. 1996, 93:6610-6615. 10.1073/pnas.93.13.6610.
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, pp. 6610-6615
-
-
Young, S.W.1
Qing, F.2
Harriman, A.3
Sessler, J.L.4
Dow, W.C.5
Mody, T.D.6
-
39
-
-
84868116499
-
Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles
-
Rima W., Sancey L., Aloy M.-T., Armandy E., Alcantara G.B., Epicier T., et al. Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles. Biomaterials 2013, 34:181-195. 10.1016/j.biomaterials.2012.09.029.
-
(2013)
Biomaterials
, vol.34
, pp. 181-195
-
-
Rima, W.1
Sancey, L.2
Aloy, M.-T.3
Armandy, E.4
Alcantara, G.B.5
Epicier, T.6
-
40
-
-
84856367687
-
In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells
-
Mowat P., Mignot A., Rima W., Lux F., Tillement O., Roulin C., et al. In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells. J. Nanosci. Nanotechnol 2011, 11:7833-7839. 10.1166/jnn.2011.4725.
-
(2011)
J. Nanosci. Nanotechnol
, vol.11
, pp. 7833-7839
-
-
Mowat, P.1
Mignot, A.2
Rima, W.3
Lux, F.4
Tillement, O.5
Roulin, C.6
-
41
-
-
84555220471
-
Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles
-
Le Duc G., Miladi I., Alric C., Mowat P., Bräuer-Krisch E., Bouchet A., et al. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano 2011, 5:9566-9574. 10.1021/nn202797h.
-
(2011)
ACS Nano
, vol.5
, pp. 9566-9574
-
-
Le Duc, G.1
Miladi, I.2
Alric, C.3
Mowat, P.4
Bräuer-Krisch, E.5
Bouchet, A.6
-
42
-
-
84919866006
-
Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma
-
Miladi I., Aloy M.-T., Armandy E., Mowat P., Kryza D., Magné N., et al. Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma. Nanomedicine 2015, 11:247-257. 10.1016/j.nano.2014.06.013.
-
(2015)
Nanomedicine
, vol.11
, pp. 247-257
-
-
Miladi, I.1
Aloy, M.-T.2
Armandy, E.3
Mowat, P.4
Kryza, D.5
Magné, N.6
-
43
-
-
0033995220
-
Gadolinium neutron-capture therapy using novel gadopentetic acid-chitosan complex nanoparticles: in vivo growth suppression of experimental melanoma solid tumor
-
Tokumitsu H., Hiratsuka J., Sakurai Y., Kobayashi T., Ichikawa H., Fukumori Y. Gadolinium neutron-capture therapy using novel gadopentetic acid-chitosan complex nanoparticles: in vivo growth suppression of experimental melanoma solid tumor. Cancer Lett 2000, 150:177-182. 10.1016/S0304-3835(99)00388-2.
-
(2000)
Cancer Lett
, vol.150
, pp. 177-182
-
-
Tokumitsu, H.1
Hiratsuka, J.2
Sakurai, Y.3
Kobayashi, T.4
Ichikawa, H.5
Fukumori, Y.6
-
44
-
-
84876243428
-
Nanoparticle surface and nanocore properties determine the effect on radiosensitivity of cancer cells upon ionizing radiation treatment
-
Ma J., Xu R., Sun J., Zhao D., Tong J., Sun X. Nanoparticle surface and nanocore properties determine the effect on radiosensitivity of cancer cells upon ionizing radiation treatment. J. Nanosci. Nanotechnol 2013, 13:1472-1475. http://dx.doi.org/10.1166/jnn.2013.6087.
-
(2013)
J. Nanosci. Nanotechnol
, vol.13
, pp. 1472-1475
-
-
Ma, J.1
Xu, R.2
Sun, J.3
Zhao, D.4
Tong, J.5
Sun, X.6
-
45
-
-
84887470942
-
Silver nanoparticles: a novel radiation sensitizer for glioma?
-
Liu P., Huang Z., Chen Z., Xu R., Wu H., Zang F., et al. Silver nanoparticles: a novel radiation sensitizer for glioma?. Nanoscale 2013, 5:11829-11836. 10.1039/c3nr01351k.
-
(2013)
Nanoscale
, vol.5
, pp. 11829-11836
-
-
Liu, P.1
Huang, Z.2
Chen, Z.3
Xu, R.4
Wu, H.5
Zang, F.6
-
46
-
-
76249097304
-
Platinum nanoparticles: a promising material for future cancer therapy?
-
Porcel E., Liehn S., Remita H., Usami N., Kobayashi K., Furusawa Y., et al. Platinum nanoparticles: a promising material for future cancer therapy?. Nanotechnology 2010, 21:85103-85110. 10.1088/0957-4484/21/8/085103.
-
(2010)
Nanotechnology
, vol.21
, pp. 85103-85110
-
-
Porcel, E.1
Liehn, S.2
Remita, H.3
Usami, N.4
Kobayashi, K.5
Furusawa, Y.6
-
47
-
-
77649234433
-
Synthesis and characterization of hafnium oxide films for thermo and photoluminescence applications
-
Mendoza J.G., Frutis M.A.A., Flores G.A., Hipólito M.G., Maciel Cerda A., Azorín Nieto J., et al. Synthesis and characterization of hafnium oxide films for thermo and photoluminescence applications. Appl. Radiat. Isot 2010, 68:696-699. 10.1016/j.apradiso.2009.09.031.
-
(2010)
Appl. Radiat. Isot
, vol.68
, pp. 696-699
-
-
Mendoza, J.G.1
Frutis, M.A.A.2
Flores, G.A.3
Hipólito, M.G.4
Maciel Cerda, A.5
Azorín Nieto, J.6
-
48
-
-
55749115086
-
Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer
-
Juzenas P., Chen W., Sun Y.-P., Coelho M.A.N., Generalov R., Generalova N., et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev 2008, 60:1600-1614. 10.1016/j.addr.2008.08.004.
-
(2008)
Adv. Drug Deliv. Rev
, vol.60
, pp. 1600-1614
-
-
Juzenas, P.1
Chen, W.2
Sun, Y.-P.3
Coelho, M.A.N.4
Generalov, R.5
Generalova, N.6
-
49
-
-
42449148826
-
Synthesis and photoluminescence of ZnS quantum dots
-
Wang Y.H., Chen Z., Zhou X.Q. Synthesis and photoluminescence of ZnS quantum dots. J. Nanosci. Nanotechnol 2008, 8:1312-1315. 10.1016/j.solidstatesciences.2011.12.005.
-
(2008)
J. Nanosci. Nanotechnol
, vol.8
, pp. 1312-1315
-
-
Wang, Y.H.1
Chen, Z.2
Zhou, X.Q.3
-
50
-
-
55749099142
-
Nanoparticles in photodynamic therapy: an emerging paradigm
-
Chatterjee D.K., Fong L.S., Zhang Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv. Drug Deliv. Rev 2008, 60:1627-1637. 10.1016/j.addr.2008.08.003.
-
(2008)
Adv. Drug Deliv. Rev
, vol.60
, pp. 1627-1637
-
-
Chatterjee, D.K.1
Fong, L.S.2
Zhang, Y.3
-
51
-
-
84931589277
-
Carbon nanotubes part II: a remarkable carrier for drug and gene delivery
-
Karimi M., Solati N., Ghasemi A., Estiar M.A., Hashemkhani M., Kiani P., et al. Carbon nanotubes part II: a remarkable carrier for drug and gene delivery. Expert Opin. Drug Deliv 2015, 12:1089-1105. 10.1517/17425247.2015.1004309.
-
(2015)
Expert Opin. Drug Deliv
, vol.12
, pp. 1089-1105
-
-
Karimi, M.1
Solati, N.2
Ghasemi, A.3
Estiar, M.A.4
Hashemkhani, M.5
Kiani, P.6
-
52
-
-
84888875280
-
Carbon nanotubes for biomedical imaging: the recent advances
-
Gong H., Peng R., Liu Z. Carbon nanotubes for biomedical imaging: the recent advances. Adv. Drug Deliv. Rev 2013, 65:1951-1963. 10.1016/j.addr.2013.10.002.
-
(2013)
Adv. Drug Deliv. Rev
, vol.65
, pp. 1951-1963
-
-
Gong, H.1
Peng, R.2
Liu, Z.3
-
53
-
-
38949105860
-
Functionalized carbon nanotubes in drug design and discovery
-
Prato M., Kostarelos K., Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res 2008, 41:60-68. 10.1021/ar700089b.
-
(2008)
Acc. Chem. Res
, vol.41
, pp. 60-68
-
-
Prato, M.1
Kostarelos, K.2
Bianco, A.3
-
54
-
-
70350662339
-
Promises, facts and challenges for carbon nanotubes in imaging and therapeutics
-
Kostarelos K., Bianco A., Prato M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nanotechnol 2009, 4:627-633. 10.1038/nnano.2009.241.
-
(2009)
Nat. Nanotechnol
, vol.4
, pp. 627-633
-
-
Kostarelos, K.1
Bianco, A.2
Prato, M.3
-
55
-
-
84959507771
-
Single-walled and multi-walled carbon nanotubes based drug delivery system: cancer therapy: a review
-
Dineshkumar B., Krishnakumar K., Bhatt A.R., Paul D., Cherian J., John A., et al. Single-walled and multi-walled carbon nanotubes based drug delivery system: cancer therapy: a review. Indian J. Cancer 2015, 52:262-264. 10.4103/0019-509X.176720.
-
(2015)
Indian J. Cancer
, vol.52
, pp. 262-264
-
-
Dineshkumar, B.1
Krishnakumar, K.2
Bhatt, A.R.3
Paul, D.4
Cherian, J.5
John, A.6
-
56
-
-
84920842349
-
Carbon nanomaterials for drug delivery and cancer therapy
-
Chakrabarti M., Kiseleva R., Vertegel A., Ray S.K. Carbon nanomaterials for drug delivery and cancer therapy. J. Nanosci. Nanotechnol 2015, 15:5501-5511. http://dx.doi.org/10.1166/jnn.2015.10614.
-
(2015)
J. Nanosci. Nanotechnol
, vol.15
, pp. 5501-5511
-
-
Chakrabarti, M.1
Kiseleva, R.2
Vertegel, A.3
Ray, S.K.4
-
57
-
-
46949106134
-
The long and short of carbon nanotube toxicity
-
Kostarelos K. The long and short of carbon nanotube toxicity. Nat. Biotechnol 2008, 26:774-776. 10.1038/nbt0708-774.
-
(2008)
Nat. Biotechnol
, vol.26
, pp. 774-776
-
-
Kostarelos, K.1
-
58
-
-
33746915096
-
Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells
-
Dumortier H., Lacotte S., Pastorin G., Marega R., Wu W., Bonifazi D., et al. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 2006, 6:1522-1528. 10.1021/nl061160x.
-
(2006)
Nano Lett
, vol.6
, pp. 1522-1528
-
-
Dumortier, H.1
Lacotte, S.2
Pastorin, G.3
Marega, R.4
Wu, W.5
Bonifazi, D.6
-
59
-
-
84928533989
-
Advances in the biomedical application of polymer-functionalized carbon nanotubes
-
Soleyman R., Hirbod S., Adeli M. Advances in the biomedical application of polymer-functionalized carbon nanotubes. Biomater. Sci 2015, 3:695-711. 10.1039/c4bm00421c.
-
(2015)
Biomater. Sci
, vol.3
, pp. 695-711
-
-
Soleyman, R.1
Hirbod, S.2
Adeli, M.3
-
60
-
-
77956313876
-
Current progress on the chemical modification of carbon nanotubes
-
Karousis N., Tagmatarchis N., Tasis D. Current progress on the chemical modification of carbon nanotubes. Chem. Rev 2010, 110:5366-5397. 10.1021/cr100018g.
-
(2010)
Chem. Rev
, vol.110
, pp. 5366-5397
-
-
Karousis, N.1
Tagmatarchis, N.2
Tasis, D.3
-
61
-
-
7444234174
-
Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles
-
Gupta A.K., Gupta M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 2005, 26:1565-1573. 10.1016/j.biomaterials.2004.05.022.
-
(2005)
Biomaterials
, vol.26
, pp. 1565-1573
-
-
Gupta, A.K.1
Gupta, M.2
-
62
-
-
57849113507
-
Physical approaches to biomaterial design
-
Mitragotri S., Lahann J. Physical approaches to biomaterial design. Nat. Mater 2009, 8:15-23. 10.1038/nmat2344.
-
(2009)
Nat. Mater
, vol.8
, pp. 15-23
-
-
Mitragotri, S.1
Lahann, J.2
-
63
-
-
79960363229
-
More effective nanomedicines through particle design
-
Wang J., Byrne J.D., Napier M.E., DeSimone J.M. More effective nanomedicines through particle design. Small 2011, 7:1919-1931. 10.1002/smll.201100442.
-
(2011)
Small
, vol.7
, pp. 1919-1931
-
-
Wang, J.1
Byrne, J.D.2
Napier, M.E.3
DeSimone, J.M.4
-
64
-
-
77953162813
-
Gold nanoparticles as radiation sensitizers in cancer therapy
-
Chithrani D.B., Jelveh S., Jalali F., van Prooijen M., Allen C., Bristow R.G., et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat. Res 2010, 173:719-728. 10.1667/RR1984.1.
-
(2010)
Radiat. Res
, vol.173
, pp. 719-728
-
-
Chithrani, D.B.1
Jelveh, S.2
Jalali, F.3
van Prooijen, M.4
Allen, C.5
Bristow, R.G.6
-
65
-
-
84959421064
-
Tailoring nanoparticle designs to target cancer based on tumor pathophysiology
-
Sykes E.A., Dai Q., Sarsons C.D., Chen J., Rocheleau J.V., Hwang D.M., et al. Tailoring nanoparticle designs to target cancer based on tumor pathophysiology. Proc. Natl. Acad. Sci. U. S. A. 2016, 113:E1142-E1151. 10.1073/pnas.1521265113.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. E1142-E1151
-
-
Sykes, E.A.1
Dai, Q.2
Sarsons, C.D.3
Chen, J.4
Rocheleau, J.V.5
Hwang, D.M.6
-
66
-
-
48349116380
-
Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers
-
Muro S., Garnacho C., Champion J.A., Leferovich J., Gajewski C., Schuchman E.H., et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther 2008, 16:1450-1458. 10.1038/mt.2008.127.
-
(2008)
Mol. Ther
, vol.16
, pp. 1450-1458
-
-
Muro, S.1
Garnacho, C.2
Champion, J.A.3
Leferovich, J.4
Gajewski, C.5
Schuchman, E.H.6
-
67
-
-
79953714588
-
Nano delivers big: designing molecular missiles for cancer therapeutics
-
Patel S., Bhirde A.A., Rusling J.F., Chen X., Gutkind J.S., Patel V. Nano delivers big: designing molecular missiles for cancer therapeutics. Pharmaceutics 2011, 3:34-52. 10.3390/pharmaceutics3010034.
-
(2011)
Pharmaceutics
, vol.3
, pp. 34-52
-
-
Patel, S.1
Bhirde, A.A.2
Rusling, J.F.3
Chen, X.4
Gutkind, J.S.5
Patel, V.6
-
68
-
-
77955175216
-
Strategies in the design of nanoparticles for therapeutic applications
-
Petros R.A., DeSimone J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov 2010, 9:615-627. 10.1038/nrd2591.
-
(2010)
Nat. Rev. Drug Discov
, vol.9
, pp. 615-627
-
-
Petros, R.A.1
DeSimone, J.M.2
-
69
-
-
84947254613
-
Hybrid nanoparticles for combination therapy of cancer
-
He C., Lu J., Lin W. Hybrid nanoparticles for combination therapy of cancer. J. Control. Release 2015, 219:224-236. 10.1016/j.jconrel.2015.09.029.
-
(2015)
J. Control. Release
, vol.219
, pp. 224-236
-
-
He, C.1
Lu, J.2
Lin, W.3
-
70
-
-
34249823330
-
Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro
-
Jin C., Bai L., Wu H., Tian F., Guo G. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro. Biomaterials 2007, 28:3724-3730. 10.1016/j.biomaterials.2007.04.032.
-
(2007)
Biomaterials
, vol.28
, pp. 3724-3730
-
-
Jin, C.1
Bai, L.2
Wu, H.3
Tian, F.4
Guo, G.5
-
71
-
-
84880625081
-
Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer
-
Werner M.E., Cummings N.D., Sethi M., Wang E.C., Sukumar R., Moore D.T., et al. Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys 2013, 86:463-468. 10.1016/j.ijrobp.2013.02.009.
-
(2013)
Int. J. Radiat. Oncol. Biol. Phys
, vol.86
, pp. 463-468
-
-
Werner, M.E.1
Cummings, N.D.2
Sethi, M.3
Wang, E.C.4
Sukumar, R.5
Moore, D.T.6
-
72
-
-
84870384027
-
Doxorubicin-mediated radiosensitivity in multicellular spheroids from a lung cancer cell line is enhanced by composite micelle encapsulation
-
Xu W.-H., Han M., Dong Q., Fu Z.-X., Diao Y.-Y., Liu H., et al. Doxorubicin-mediated radiosensitivity in multicellular spheroids from a lung cancer cell line is enhanced by composite micelle encapsulation. Int. J. Nanomedicine 2012, 7:2661-2671. 10.2147/IJN.S30445.
-
(2012)
Int. J. Nanomedicine
, vol.7
, pp. 2661-2671
-
-
Xu, W.-H.1
Han, M.2
Dong, Q.3
Fu, Z.-X.4
Diao, Y.-Y.5
Liu, H.6
-
73
-
-
84924911894
-
Dual-function nanosystem for synergetic cancer chemo-/radiotherapy through ROS-mediated signaling pathways
-
He L., Lai H., Chen T. Dual-function nanosystem for synergetic cancer chemo-/radiotherapy through ROS-mediated signaling pathways. Biomaterials 2015, 51:30-42. 10.1016/j.biomaterials.2015.01.063.
-
(2015)
Biomaterials
, vol.51
, pp. 30-42
-
-
He, L.1
Lai, H.2
Chen, T.3
-
74
-
-
84918532538
-
Radiosensitization of Hs-766T pancreatic tumor xenografts in mice dosed with dodecafluoropentane nano-emulsion-preliminary findings
-
Johnson J.L.H., Leos R.A., Baker A.F., Unger E.C. Radiosensitization of Hs-766T pancreatic tumor xenografts in mice dosed with dodecafluoropentane nano-emulsion-preliminary findings. J. Biomed. Nanotechnol 2015, 11:274-281. 10.1166/jbn.2015.1903.
-
(2015)
J. Biomed. Nanotechnol
, vol.11
, pp. 274-281
-
-
Johnson, J.L.H.1
Leos, R.A.2
Baker, A.F.3
Unger, E.C.4
-
75
-
-
84868686600
-
Survivin-miRNA-loaded nanoparticles as auxiliary tools for radiation therapy: preparation, characterisation, drug release, cytotoxicity and therapeutic effect on colorectal cancer cells
-
Gaca S., Reichert S., Rödel C., Rödel F., Kreuter J. Survivin-miRNA-loaded nanoparticles as auxiliary tools for radiation therapy: preparation, characterisation, drug release, cytotoxicity and therapeutic effect on colorectal cancer cells. J. Microencapsul 2012, 29:685-694. 10.3109/02652048.2012.680511.
-
(2012)
J. Microencapsul
, vol.29
, pp. 685-694
-
-
Gaca, S.1
Reichert, S.2
Rödel, C.3
Rödel, F.4
Kreuter, J.5
-
76
-
-
67949092853
-
Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and radiation
-
Zheng Y., Sanche L. Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and radiation. Radiat. Res 2009, 172:114-119. 10.1667/RR1689.1.
-
(2009)
Radiat. Res
, vol.172
, pp. 114-119
-
-
Zheng, Y.1
Sanche, L.2
-
77
-
-
70349306262
-
Systemic delivery and preclinical evaluation of Au nanoparticle containing beta-lapachone for radiosensitization
-
Jeong S.-Y., Park S.-J., Yoon S.M., Jung J., Woo H.N., Yi S.L., et al. Systemic delivery and preclinical evaluation of Au nanoparticle containing beta-lapachone for radiosensitization. J. Control. Release 2009, 139:239-245. 10.1016/j.jconrel.2009.07.007.
-
(2009)
J. Control. Release
, vol.139
, pp. 239-245
-
-
Jeong, S.-Y.1
Park, S.-J.2
Yoon, S.M.3
Jung, J.4
Woo, H.N.5
Yi, S.L.6
-
78
-
-
84939616894
-
Enhancement of radiotherapy by ceria nanoparticles modified with neogambogic acid in breast cancer cells
-
Chen F., Zhang X.H., Hu X.D., Zhang W., Lou Z.C., Xie L.H., et al. Enhancement of radiotherapy by ceria nanoparticles modified with neogambogic acid in breast cancer cells. Int. J. Nanomedicine 2015, 10:4957-4969. 10.2147/IJN.S82980.
-
(2015)
Int. J. Nanomedicine
, vol.10
, pp. 4957-4969
-
-
Chen, F.1
Zhang, X.H.2
Hu, X.D.3
Zhang, W.4
Lou, Z.C.5
Xie, L.H.6
-
79
-
-
84951049935
-
Design and pharmacokinetical aspects for the use of inorganic nanoparticles in radiomedicine
-
Puntes V. Design and pharmacokinetical aspects for the use of inorganic nanoparticles in radiomedicine. Br. J. Radiol 2015, 20150210. 10.1259/bjr.20150210.
-
(2015)
Br. J. Radiol
, pp. 20150210
-
-
Puntes, V.1
-
80
-
-
84947998422
-
Magnetic resonance nano-theranostics for glioblastoma multiforme
-
Yao J., Hsu C.-H., Li Z., Kim T.S., Hwang L.-P., Lin Y.-C., et al. Magnetic resonance nano-theranostics for glioblastoma multiforme. Curr. Pharm. Des 2015, 21:5256-5266. 10.2174/1381612821666150923103307.
-
(2015)
Curr. Pharm. Des
, vol.21
, pp. 5256-5266
-
-
Yao, J.1
Hsu, C.-H.2
Li, Z.3
Kim, T.S.4
Hwang, L.-P.5
Lin, Y.-C.6
-
81
-
-
84931846432
-
Gadolinium-based nanoparticles for theranostic MRI-radiosensitization
-
Lux F., Sancey L., Bianchi A., Crémillieux Y., Roux S., Tillement O. Gadolinium-based nanoparticles for theranostic MRI-radiosensitization. Nanomedicine (Lond.) 2015, 10:1801-1815. 10.2217/nnm.15.30.
-
(2015)
Nanomedicine (Lond.)
, vol.10
, pp. 1801-1815
-
-
Lux, F.1
Sancey, L.2
Bianchi, A.3
Crémillieux, Y.4
Roux, S.5
Tillement, O.6
-
82
-
-
84920545965
-
Nebulized gadolinium-based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization
-
Dufort S., Bianchi A., Henry M., Lux F., Le Duc G., Josserand V., et al. Nebulized gadolinium-based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization. Small 2015, 11:215-221. 10.1002/smll.201401284.
-
(2015)
Small
, vol.11
, pp. 215-221
-
-
Dufort, S.1
Bianchi, A.2
Henry, M.3
Lux, F.4
Le Duc, G.5
Josserand, V.6
-
83
-
-
84942162965
-
Imaging intracellular and systemic in vivo gold nanoparticles to enhance radiotherapy
-
Botchway S.W., Coulter J.A., Currell F.J. Imaging intracellular and systemic in vivo gold nanoparticles to enhance radiotherapy. Br. J. Radiol 2015, 88:20150170. 10.1259/bjr.20150170.
-
(2015)
Br. J. Radiol
, vol.88
, pp. 20150170
-
-
Botchway, S.W.1
Coulter, J.A.2
Currell, F.J.3
-
84
-
-
84920767656
-
Applications of nanomaterials in radiotherapy for malignant tumors
-
Wang Y., Liang R., Fang F. Applications of nanomaterials in radiotherapy for malignant tumors. J. Nanosci. Nanotechnol 2015, 15:5487-5500. 10.1166/jnn.2015.10617.
-
(2015)
J. Nanosci. Nanotechnol
, vol.15
, pp. 5487-5500
-
-
Wang, Y.1
Liang, R.2
Fang, F.3
-
85
-
-
84907486504
-
The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy
-
Sancey L., Lux F., Kotb S., Roux S., Dufort S., Bianchi A., et al. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br. J. Radiol 2014, 87:20140134. 10.1259/bjr.20140134.
-
(2014)
Br. J. Radiol
, vol.87
, pp. 20140134
-
-
Sancey, L.1
Lux, F.2
Kotb, S.3
Roux, S.4
Dufort, S.5
Bianchi, A.6
-
86
-
-
84907861542
-
Development and applications of radioactive nanoparticles for imaging of biological systems
-
Lewis M.R., Kannan R. Development and applications of radioactive nanoparticles for imaging of biological systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol 2014, 6:628-640. 10.1002/wnan.1292.
-
(2014)
Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol
, vol.6
, pp. 628-640
-
-
Lewis, M.R.1
Kannan, R.2
-
87
-
-
84923013303
-
A multifunctional nanoplatform for imaging, radiotherapy, and the prediction of therapeutic response
-
McQuade C., Al Zaki A., Desai Y., Vido M., Sakhuja T., Cheng Z., et al. A multifunctional nanoplatform for imaging, radiotherapy, and the prediction of therapeutic response. Small 2015, 11:834-843. 10.1002/smll.201401927.
-
(2015)
Small
, vol.11
, pp. 834-843
-
-
McQuade, C.1
Al Zaki, A.2
Desai, Y.3
Vido, M.4
Sakhuja, T.5
Cheng, Z.6
-
88
-
-
84961213598
-
-
J. Clin. Oncol. (n.d.), accessed 08.01.2016
-
Bonvalot S., Le Pechoux C., De Baere T., Buy X., Italiano A., Stockle E., et al. Phase I study of NBTXR3 nanoparticles, in patients with advanced soft tissue sarcoma (STS) J. Clin. Oncol. (n.d.), accessed 08.01.2016. http://meetinglibrary.asco.org/content/127447-144.
-
Phase I study of NBTXR3 nanoparticles, in patients with advanced soft tissue sarcoma (STS)
-
-
Bonvalot, S.1
Le Pechoux, C.2
De Baere, T.3
Buy, X.4
Italiano, A.5
Stockle, E.6
-
89
-
-
84929088300
-
Nab-paclitaxel in combination with weekly carboplatin with concurrent radiotherapy in stage III non-small cell lung cancer
-
Lammers P.E., Lu B., Horn L., Shyr Y., Keedy V. nab-paclitaxel in combination with weekly carboplatin with concurrent radiotherapy in stage III non-small cell lung cancer. Oncologist 2015, 20:491-492. 10.1634/theoncologist.2015-0030.
-
(2015)
Oncologist
, vol.20
, pp. 491-492
-
-
Lammers, P.E.1
Lu, B.2
Horn, L.3
Shyr, Y.4
Keedy, V.5
-
90
-
-
67349281952
-
Protracted elimination of gold nanoparticles from mouse liver
-
Sadauskas E., Danscher G., Stoltenberg M., Vogel U., Larsen A., Wallin H. Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine 2009, 5:162-169. 10.1016/j.nano.2008.11.002.
-
(2009)
Nanomedicine
, vol.5
, pp. 162-169
-
-
Sadauskas, E.1
Danscher, G.2
Stoltenberg, M.3
Vogel, U.4
Larsen, A.5
Wallin, H.6
-
91
-
-
84864239616
-
Cytotoxic effects of gold nanoparticles: a multiparametric study
-
Soenen S.J., Manshian B., Montenegro J.M., Amin F., Meermann B., Thiron T., et al. Cytotoxic effects of gold nanoparticles: a multiparametric study. ACS Nano 2012, 6:5767-5783. 10.1021/nn301714n.
-
(2012)
ACS Nano
, vol.6
, pp. 5767-5783
-
-
Soenen, S.J.1
Manshian, B.2
Montenegro, J.M.3
Amin, F.4
Meermann, B.5
Thiron, T.6
-
92
-
-
77953686566
-
Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy
-
Zhang X.-D., Guo M.-L., Wu H.-Y., Sun Y.-M., Ding Y.-Q., Feng X., et al. Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. Int. J. Nanomedicine 2009, 4:165-173. http://dx.doi.org/10.2147/IJN.S6723.
-
(2009)
Int. J. Nanomedicine
, vol.4
, pp. 165-173
-
-
Zhang, X.-D.1
Guo, M.-L.2
Wu, H.-Y.3
Sun, Y.-M.4
Ding, Y.-Q.5
Feng, X.6
-
93
-
-
84951750820
-
Roadmap to clinical use of gold nanoparticles for radiation sensitization
-
Schuemann J., Berbeco R., Chithrani D.B., Cho S.H., Kumar R., McMahon S.J., et al. Roadmap to clinical use of gold nanoparticles for radiation sensitization. Int. J. Radiat. Oncol. Biol. Phys 2016, 94:189-205. 10.1016/j.ijrobp.2015.09.032.
-
(2016)
Int. J. Radiat. Oncol. Biol. Phys
, vol.94
, pp. 189-205
-
-
Schuemann, J.1
Berbeco, R.2
Chithrani, D.B.3
Cho, S.H.4
Kumar, R.5
McMahon, S.J.6
|