메뉴 건너뛰기




Volumn 375, Issue 2, 2016, Pages 256-262

Nanoparticles in radiation oncology: From bench-side to bedside

Author keywords

Clinical trials; Drug vector; Nanoparticles; Radio sensitizer; Radiotherapy

Indexed keywords

ALBUMIN; CAMPTOTHECIN; CARBON NANOTUBE; CARBOPLATIN; CISPLATIN; CYCLODEXTRIN; DOXORUBICIN; EPIDERMAL GROWTH FACTOR RECEPTOR 2; ETANIDAZOLE; GADOLINIUM; GOLD NANOPARTICLE; HAFNIUM OXIDE NANOPARTICLE; NANOPARTICLE; PACLITAXEL; PLATINUM NANOPARTICLE; QUANTUM DOT; RADIOSENSITIZING AGENT; SILVER NANOPARTICLE; SURVIVIN; TRASTUZUMAB; UNCLASSIFIED DRUG;

EID: 84961233655     PISSN: 03043835     EISSN: 18727980     Source Type: Journal    
DOI: 10.1016/j.canlet.2016.03.011     Document Type: Review
Times cited : (78)

References (93)
  • 1
    • 84962741532 scopus 로고    scopus 로고
    • Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer
    • Kwatra D., Venugopal A., Anant S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl. Cancer Res 2013, 2:330-342. 10.3978/j.issn.2218-676X.2013.08.06.
    • (2013) Transl. Cancer Res , vol.2 , pp. 330-342
    • Kwatra, D.1    Venugopal, A.2    Anant, S.3
  • 2
    • 84900495085 scopus 로고    scopus 로고
    • The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy
    • Babaei M., Ganjalikhani M. The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy. Bioimpacts 2014, 4:15-20. 10.5681/bi.2014.003.
    • (2014) Bioimpacts , vol.4 , pp. 15-20
    • Babaei, M.1    Ganjalikhani, M.2
  • 4
    • 4644321604 scopus 로고    scopus 로고
    • The use of gold nanoparticles to enhance radiotherapy in mice
    • Hainfeld J.F., Slatkin D.N., Smilowitz H.M. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol 2004, 49:N309-N315. 10.1088/0031-9155/49/18/N03.
    • (2004) Phys. Med. Biol , vol.49 , pp. N309-N315
    • Hainfeld, J.F.1    Slatkin, D.N.2    Smilowitz, H.M.3
  • 5
    • 35348882024 scopus 로고    scopus 로고
    • Nanotechnology applications in cancer
    • Nie S., Xing Y., Kim G.J., Simons J.W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng 2007, 9:257-288. 10.1146/annurev.bioeng.9.060906.152025.
    • (2007) Annu. Rev. Biomed. Eng , vol.9 , pp. 257-288
    • Nie, S.1    Xing, Y.2    Kim, G.J.3    Simons, J.W.4
  • 6
    • 0034000453 scopus 로고    scopus 로고
    • Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review
    • Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 2000, 65:271-284. 10.1016/S0168-3659(99)00248-5.
    • (2000) J. Control. Release , vol.65 , pp. 271-284
    • Maeda, H.1    Wu, J.2    Sawa, T.3    Matsumura, Y.4    Hori, K.5
  • 7
    • 77949762340 scopus 로고    scopus 로고
    • Targeting of drugs and nanoparticles to tumors
    • Ruoslahti E., Bhatia S.N., Sailor M.J. Targeting of drugs and nanoparticles to tumors. J. Cell Biol 2010, 188:759-768. 10.1083/jcb.200910104.
    • (2010) J. Cell Biol , vol.188 , pp. 759-768
    • Ruoslahti, E.1    Bhatia, S.N.2    Sailor, M.J.3
  • 8
    • 4444379133 scopus 로고    scopus 로고
    • Nanoparticle and targeted systems for cancer therapy
    • Brannon-Peppas L., Blanchette J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev 2004, 56:1649-1659. 10.1016/j.addr.2004.02.014.
    • (2004) Adv. Drug Deliv. Rev , vol.56 , pp. 1649-1659
    • Brannon-Peppas, L.1    Blanchette, J.O.2
  • 9
    • 77953257877 scopus 로고    scopus 로고
    • Passive and active drug targeting: drug delivery to tumors as an example
    • Torchilin V.P. Passive and active drug targeting: drug delivery to tumors as an example. Handb. Exp. Pharmacol 2010, 3-53. 10.1007/978-3-642-00477-3_1.
    • (2010) Handb. Exp. Pharmacol , pp. 3-53
    • Torchilin, V.P.1
  • 10
    • 84871791641 scopus 로고    scopus 로고
    • Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation
    • Chattopadhyay N., Cai Z., Kwon Y.L., Lechtman E., Pignol J.-P., Reilly R.M. Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation. Breast Cancer Res. Treat 2013, 137:81-91. 10.1007/s10549-012-2338-4.
    • (2013) Breast Cancer Res. Treat , vol.137 , pp. 81-91
    • Chattopadhyay, N.1    Cai, Z.2    Kwon, Y.L.3    Lechtman, E.4    Pignol, J.-P.5    Reilly, R.M.6
  • 11
    • 84955481635 scopus 로고    scopus 로고
    • Tumor angiogenesis targeted radiosensitization therapy using gold nanoprobes guided by MRI/SPECT imaging
    • Yang Y., Zhang L., Cai J., Li X., Cheng D., Su H., et al. Tumor angiogenesis targeted radiosensitization therapy using gold nanoprobes guided by MRI/SPECT imaging. ACS Appl. Mater. Interfaces 2016, 1718-1732. 10.1021/acsami.5b09274.
    • (2016) ACS Appl. Mater. Interfaces , pp. 1718-1732
    • Yang, Y.1    Zhang, L.2    Cai, J.3    Li, X.4    Cheng, D.5    Su, H.6
  • 12
    • 84864672239 scopus 로고    scopus 로고
    • Role of antibody-mediated tumor targeting and route of administration in nanoparticle tumor accumulation in vivo
    • Chattopadhyay N., Fonge H., Cai Z., Scollard D., Lechtman E., Done S.J., et al. Role of antibody-mediated tumor targeting and route of administration in nanoparticle tumor accumulation in vivo. Mol. Pharm 2012, 9:2168-2179. 10.1021/mp300016p.
    • (2012) Mol. Pharm , vol.9 , pp. 2168-2179
    • Chattopadhyay, N.1    Fonge, H.2    Cai, Z.3    Scollard, D.4    Lechtman, E.5    Done, S.J.6
  • 14
    • 0017640176 scopus 로고
    • Effect of radiation and contrast media on chromosomes. Preliminary report
    • Adams F.H., Norman A., Mello R.S., Bass D. Effect of radiation and contrast media on chromosomes. Preliminary report. Radiology 1977, 124:823-826. 10.1148/124.3.823.
    • (1977) Radiology , vol.124 , pp. 823-826
    • Adams, F.H.1    Norman, A.2    Mello, R.S.3    Bass, D.4
  • 15
    • 35348998981 scopus 로고    scopus 로고
    • Characterization of the theorectical radiation dose enhancement from nanoparticles
    • Roeske J.C., Nunez L., Hoggarth M., Labay E., Weichselbaum R.R. Characterization of the theorectical radiation dose enhancement from nanoparticles. Technol. Cancer Res. Treat 2007, 6:395-401. 10.1177/153303460700600504.
    • (2007) Technol. Cancer Res. Treat , vol.6 , pp. 395-401
    • Roeske, J.C.1    Nunez, L.2    Hoggarth, M.3    Labay, E.4    Weichselbaum, R.R.5
  • 16
    • 79959204282 scopus 로고    scopus 로고
    • Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer
    • Geng F., Song K., Xing J.Z., Yuan C., Yan S., Yang Q., et al. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology 2011, 22:285101. 10.1088/0957-4484/22/28/285101.
    • (2011) Nanotechnology , vol.22 , pp. 285101
    • Geng, F.1    Song, K.2    Xing, J.Z.3    Yuan, C.4    Yan, S.5    Yang, Q.6
  • 18
    • 70349101328 scopus 로고    scopus 로고
    • Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle
    • Roa W., Zhang X., Guo L., Shaw A., Hu X., Xiong Y., et al. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology 2009, 20:375101-375110. 10.1088/0957-4484/20/37/375101.
    • (2009) Nanotechnology , vol.20 , pp. 375101-375110
    • Roa, W.1    Zhang, X.2    Guo, L.3    Shaw, A.4    Hu, X.5    Xiong, Y.6
  • 19
    • 84863588510 scopus 로고    scopus 로고
    • Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy
    • Zhang X.-D., Wu D., Shen X., Chen J., Sun Y.-M., Liu P.-X., et al. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 2012, 33:6408-6419. 10.1016/j.biomaterials.2012.05.047.
    • (2012) Biomaterials , vol.33 , pp. 6408-6419
    • Zhang, X.-D.1    Wu, D.2    Shen, X.3    Chen, J.4    Sun, Y.-M.5    Liu, P.-X.6
  • 20
    • 70349470888 scopus 로고    scopus 로고
    • Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage
    • Pan Y., Leifert A., Ruau D., Neuss S., Bornemann J., Schmid G., et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 2009, 5:2067-2076. 10.1002/smll.200900466.
    • (2009) Small , vol.5 , pp. 2067-2076
    • Pan, Y.1    Leifert, A.2    Ruau, D.3    Neuss, S.4    Bornemann, J.5    Schmid, G.6
  • 21
    • 84949844307 scopus 로고    scopus 로고
    • Silica nanoparticles induce oxidative stress and autophagy but not apoptosis in the MRC-5 cell line
    • Petrache Voicu S.N., Dinu D., Sima C., Hermenean A., Ardelean A., Codrici E., et al. Silica nanoparticles induce oxidative stress and autophagy but not apoptosis in the MRC-5 cell line. Int. J. Mol. Sci 2015, 16:29398-29416. 10.3390/ijms161226171.
    • (2015) Int. J. Mol. Sci , vol.16 , pp. 29398-29416
    • Petrache Voicu, S.N.1    Dinu, D.2    Sima, C.3    Hermenean, A.4    Ardelean, A.5    Codrici, E.6
  • 22
    • 44449122444 scopus 로고    scopus 로고
    • Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice
    • Chang M.-Y., Shiau A.-L., Chen Y.-H., Chang C.-J., Chen H.H.-W., Wu C.-L. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci 2008, 99:1479-1484. 10.1111/j.1349-7006.2008.00827.x.
    • (2008) Cancer Sci , vol.99 , pp. 1479-1484
    • Chang, M.-Y.1    Shiau, A.-L.2    Chen, Y.-H.3    Chang, C.-J.4    Chen, H.H.-W.5    Wu, C.-L.6
  • 24
    • 80053199539 scopus 로고    scopus 로고
    • Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations
    • Misawa M., Takahashi J. Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations. Nanomedicine 2011, 7:604-614. 10.1016/j.nano.2011.01.014.
    • (2011) Nanomedicine , vol.7 , pp. 604-614
    • Misawa, M.1    Takahashi, J.2
  • 25
    • 78349284044 scopus 로고    scopus 로고
    • The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles
    • Chompoosor A., Saha K., Ghosh P.S., Macarthy D.J., Miranda O.R., Zhu Z.-J., et al. The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small 2010, 6:2246-2249. 10.1002/smll.201000463.
    • (2010) Small , vol.6 , pp. 2246-2249
    • Chompoosor, A.1    Saha, K.2    Ghosh, P.S.3    Macarthy, D.J.4    Miranda, O.R.5    Zhu, Z.-J.6
  • 26
    • 77953811755 scopus 로고    scopus 로고
    • Autophagy and oxidative stress associated with gold nanoparticles
    • Li J.J., Hartono D., Ong C.-N., Bay B.-H., Yung L.-Y.L. Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 2010, 31:5996-6003. 10.1016/j.biomaterials.2010.04.014.
    • (2010) Biomaterials , vol.31 , pp. 5996-6003
    • Li, J.J.1    Hartono, D.2    Ong, C.-N.3    Bay, B.-H.4    Yung, L.-Y.L.5
  • 27
    • 84891627149 scopus 로고    scopus 로고
    • Effect of gold nanoparticles on production of reactive oxygen species by human peripheral blood leukocytes stimulated with opsonized zymosan
    • Piryazev A.P., Azizova O.A., Aseichev A.V., Dudnik L.B., Sergienko V.I. Effect of gold nanoparticles on production of reactive oxygen species by human peripheral blood leukocytes stimulated with opsonized zymosan. Bull. Exp. Biol. Med 2013, 156:101-103. 10.1007/s10517-013-2288-9.
    • (2013) Bull. Exp. Biol. Med , vol.156 , pp. 101-103
    • Piryazev, A.P.1    Azizova, O.A.2    Aseichev, A.V.3    Dudnik, L.B.4    Sergienko, V.I.5
  • 28
    • 84896833328 scopus 로고    scopus 로고
    • Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells
    • Mateo D., Morales P., Ávalos A., Haza A.I. Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells. Toxicol. Mech. Methods 2014, 24:161-172. 10.3109/15376516.2013.869783.
    • (2014) Toxicol. Mech. Methods , vol.24 , pp. 161-172
    • Mateo, D.1    Morales, P.2    Ávalos, A.3    Haza, A.I.4
  • 29
    • 84946934965 scopus 로고    scopus 로고
    • Nanoparticle mediated tumor vascular disruption: a novel strategy in radiation therapy
    • Kunjachan S., Detappe A., Kumar R., Ireland T., Cameron L., Biancur D.E., et al. Nanoparticle mediated tumor vascular disruption: a novel strategy in radiation therapy. Nano Lett 2015, 15:7488-7496. 10.1021/acs.nanolett.5b03073.
    • (2015) Nano Lett , vol.15 , pp. 7488-7496
    • Kunjachan, S.1    Detappe, A.2    Kumar, R.3    Ireland, T.4    Cameron, L.5    Biancur, D.E.6
  • 30
    • 84918572683 scopus 로고    scopus 로고
    • Chemical radiosensitivity of DNA induced by gold nanoparticles
    • Yao X., Huang C., Chen X., Yi Z., Sanche L. Chemical radiosensitivity of DNA induced by gold nanoparticles. J. Biomed. Nanotechnol 2015, 11:478-485. 10.1166/jbn.2015.1922.
    • (2015) J. Biomed. Nanotechnol , vol.11 , pp. 478-485
    • Yao, X.1    Huang, C.2    Chen, X.3    Yi, Z.4    Sanche, L.5
  • 31
    • 51649111448 scopus 로고    scopus 로고
    • Variation of strand break yield for plasmid DNA irradiated with high-Z metal nanoparticles
    • Butterworth K.T., Wyer J.A., Brennan-Fournet M., Latimer C.J., Shah M.B., Currell F.J., et al. Variation of strand break yield for plasmid DNA irradiated with high-Z metal nanoparticles. Radiat. Res 2008, 170:381-387. 10.1667/RR1320.1.
    • (2008) Radiat. Res , vol.170 , pp. 381-387
    • Butterworth, K.T.1    Wyer, J.A.2    Brennan-Fournet, M.3    Latimer, C.J.4    Shah, M.B.5    Currell, F.J.6
  • 32
    • 67349243478 scopus 로고    scopus 로고
    • Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution
    • Brun E., Sanche L., Sicard-Roselli C. Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids Surf. B. Biointerfaces 2009, 72:128-134. 10.1016/j.colsurfb.2009.03.025.
    • (2009) Colloids Surf. B. Biointerfaces , vol.72 , pp. 128-134
    • Brun, E.1    Sanche, L.2    Sicard-Roselli, C.3
  • 33
    • 84864391593 scopus 로고    scopus 로고
    • X-ray enabled detection and eradication of circulating tumor cells with nanoparticles
    • Hossain M., Luo Y., Sun Z., Wang C., Zhang M., Fu H., et al. X-ray enabled detection and eradication of circulating tumor cells with nanoparticles. Biosens. Bioelectron 2012, 38:348-354. 10.1016/j.bios.2012.06.020.
    • (2012) Biosens. Bioelectron , vol.38 , pp. 348-354
    • Hossain, M.1    Luo, Y.2    Sun, Z.3    Wang, C.4    Zhang, M.5    Fu, H.6
  • 34
    • 84871450025 scopus 로고    scopus 로고
    • In vitro radiosensitization by gold nanoparticles during continuous low-dose-rate gamma irradiation with I-125 brachytherapy seeds
    • Ngwa W., Korideck H., Kassis A.I., Kumar R., Sridhar S., Makrigiorgos G.M., et al. In vitro radiosensitization by gold nanoparticles during continuous low-dose-rate gamma irradiation with I-125 brachytherapy seeds. Nanomedicine 2013, 9:25-27. 10.1016/j.nano.2012.09.001.
    • (2013) Nanomedicine , vol.9 , pp. 25-27
    • Ngwa, W.1    Korideck, H.2    Kassis, A.I.3    Kumar, R.4    Sridhar, S.5    Makrigiorgos, G.M.6
  • 35
    • 79961069906 scopus 로고    scopus 로고
    • Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location
    • Lechtman E., Chattopadhyay N., Cai Z., Mashouf S., Reilly R., Pignol J.P. Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Phys. Med. Biol 2011, 56:4631-4647. 10.1088/0031-9155/56/15/001.
    • (2011) Phys. Med. Biol , vol.56 , pp. 4631-4647
    • Lechtman, E.1    Chattopadhyay, N.2    Cai, Z.3    Mashouf, S.4    Reilly, R.5    Pignol, J.P.6
  • 36
    • 84872041296 scopus 로고    scopus 로고
    • Novel multicompartment 3-dimensional radiochromic radiation dosimeters for nanoparticle-enhanced radiation therapy dosimetry
    • Alqathami M., Blencowe A., Yeo U.J., Doran S.J., Qiao G., Geso M. Novel multicompartment 3-dimensional radiochromic radiation dosimeters for nanoparticle-enhanced radiation therapy dosimetry. Int. J. Radiat. Oncol. Biol. Phys 2012, 84:e549-e555. 10.1016/j.ijrobp.2012.05.029.
    • (2012) Int. J. Radiat. Oncol. Biol. Phys , vol.84 , pp. e549-e555
    • Alqathami, M.1    Blencowe, A.2    Yeo, U.J.3    Doran, S.J.4    Qiao, G.5    Geso, M.6
  • 37
    • 84877000537 scopus 로고    scopus 로고
    • Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization
    • Joh D.Y., Sun L., Stangl M., Al Zaki A., Murty S., Santoiemma P.P., et al. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLoS ONE 2013, 8:e62425. 10.1371/journal.pone.0062425.
    • (2013) PLoS ONE , vol.8 , pp. e62425
    • Joh, D.Y.1    Sun, L.2    Stangl, M.3    Al Zaki, A.4    Murty, S.5    Santoiemma, P.P.6
  • 38
    • 0030013113 scopus 로고    scopus 로고
    • Gadolinium(III) texaphyrin: a tumor selective radiation sensitizer that is detectable by MRI
    • Young S.W., Qing F., Harriman A., Sessler J.L., Dow W.C., Mody T.D., et al. Gadolinium(III) texaphyrin: a tumor selective radiation sensitizer that is detectable by MRI. Proc. Natl. Acad. Sci. U. S. A. 1996, 93:6610-6615. 10.1073/pnas.93.13.6610.
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , pp. 6610-6615
    • Young, S.W.1    Qing, F.2    Harriman, A.3    Sessler, J.L.4    Dow, W.C.5    Mody, T.D.6
  • 39
    • 84868116499 scopus 로고    scopus 로고
    • Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles
    • Rima W., Sancey L., Aloy M.-T., Armandy E., Alcantara G.B., Epicier T., et al. Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles. Biomaterials 2013, 34:181-195. 10.1016/j.biomaterials.2012.09.029.
    • (2013) Biomaterials , vol.34 , pp. 181-195
    • Rima, W.1    Sancey, L.2    Aloy, M.-T.3    Armandy, E.4    Alcantara, G.B.5    Epicier, T.6
  • 40
    • 84856367687 scopus 로고    scopus 로고
    • In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells
    • Mowat P., Mignot A., Rima W., Lux F., Tillement O., Roulin C., et al. In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells. J. Nanosci. Nanotechnol 2011, 11:7833-7839. 10.1166/jnn.2011.4725.
    • (2011) J. Nanosci. Nanotechnol , vol.11 , pp. 7833-7839
    • Mowat, P.1    Mignot, A.2    Rima, W.3    Lux, F.4    Tillement, O.5    Roulin, C.6
  • 41
    • 84555220471 scopus 로고    scopus 로고
    • Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles
    • Le Duc G., Miladi I., Alric C., Mowat P., Bräuer-Krisch E., Bouchet A., et al. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano 2011, 5:9566-9574. 10.1021/nn202797h.
    • (2011) ACS Nano , vol.5 , pp. 9566-9574
    • Le Duc, G.1    Miladi, I.2    Alric, C.3    Mowat, P.4    Bräuer-Krisch, E.5    Bouchet, A.6
  • 42
    • 84919866006 scopus 로고    scopus 로고
    • Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma
    • Miladi I., Aloy M.-T., Armandy E., Mowat P., Kryza D., Magné N., et al. Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma. Nanomedicine 2015, 11:247-257. 10.1016/j.nano.2014.06.013.
    • (2015) Nanomedicine , vol.11 , pp. 247-257
    • Miladi, I.1    Aloy, M.-T.2    Armandy, E.3    Mowat, P.4    Kryza, D.5    Magné, N.6
  • 43
    • 0033995220 scopus 로고    scopus 로고
    • Gadolinium neutron-capture therapy using novel gadopentetic acid-chitosan complex nanoparticles: in vivo growth suppression of experimental melanoma solid tumor
    • Tokumitsu H., Hiratsuka J., Sakurai Y., Kobayashi T., Ichikawa H., Fukumori Y. Gadolinium neutron-capture therapy using novel gadopentetic acid-chitosan complex nanoparticles: in vivo growth suppression of experimental melanoma solid tumor. Cancer Lett 2000, 150:177-182. 10.1016/S0304-3835(99)00388-2.
    • (2000) Cancer Lett , vol.150 , pp. 177-182
    • Tokumitsu, H.1    Hiratsuka, J.2    Sakurai, Y.3    Kobayashi, T.4    Ichikawa, H.5    Fukumori, Y.6
  • 44
    • 84876243428 scopus 로고    scopus 로고
    • Nanoparticle surface and nanocore properties determine the effect on radiosensitivity of cancer cells upon ionizing radiation treatment
    • Ma J., Xu R., Sun J., Zhao D., Tong J., Sun X. Nanoparticle surface and nanocore properties determine the effect on radiosensitivity of cancer cells upon ionizing radiation treatment. J. Nanosci. Nanotechnol 2013, 13:1472-1475. http://dx.doi.org/10.1166/jnn.2013.6087.
    • (2013) J. Nanosci. Nanotechnol , vol.13 , pp. 1472-1475
    • Ma, J.1    Xu, R.2    Sun, J.3    Zhao, D.4    Tong, J.5    Sun, X.6
  • 45
    • 84887470942 scopus 로고    scopus 로고
    • Silver nanoparticles: a novel radiation sensitizer for glioma?
    • Liu P., Huang Z., Chen Z., Xu R., Wu H., Zang F., et al. Silver nanoparticles: a novel radiation sensitizer for glioma?. Nanoscale 2013, 5:11829-11836. 10.1039/c3nr01351k.
    • (2013) Nanoscale , vol.5 , pp. 11829-11836
    • Liu, P.1    Huang, Z.2    Chen, Z.3    Xu, R.4    Wu, H.5    Zang, F.6
  • 46
    • 76249097304 scopus 로고    scopus 로고
    • Platinum nanoparticles: a promising material for future cancer therapy?
    • Porcel E., Liehn S., Remita H., Usami N., Kobayashi K., Furusawa Y., et al. Platinum nanoparticles: a promising material for future cancer therapy?. Nanotechnology 2010, 21:85103-85110. 10.1088/0957-4484/21/8/085103.
    • (2010) Nanotechnology , vol.21 , pp. 85103-85110
    • Porcel, E.1    Liehn, S.2    Remita, H.3    Usami, N.4    Kobayashi, K.5    Furusawa, Y.6
  • 47
  • 48
    • 55749115086 scopus 로고    scopus 로고
    • Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer
    • Juzenas P., Chen W., Sun Y.-P., Coelho M.A.N., Generalov R., Generalova N., et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev 2008, 60:1600-1614. 10.1016/j.addr.2008.08.004.
    • (2008) Adv. Drug Deliv. Rev , vol.60 , pp. 1600-1614
    • Juzenas, P.1    Chen, W.2    Sun, Y.-P.3    Coelho, M.A.N.4    Generalov, R.5    Generalova, N.6
  • 49
    • 42449148826 scopus 로고    scopus 로고
    • Synthesis and photoluminescence of ZnS quantum dots
    • Wang Y.H., Chen Z., Zhou X.Q. Synthesis and photoluminescence of ZnS quantum dots. J. Nanosci. Nanotechnol 2008, 8:1312-1315. 10.1016/j.solidstatesciences.2011.12.005.
    • (2008) J. Nanosci. Nanotechnol , vol.8 , pp. 1312-1315
    • Wang, Y.H.1    Chen, Z.2    Zhou, X.Q.3
  • 50
    • 55749099142 scopus 로고    scopus 로고
    • Nanoparticles in photodynamic therapy: an emerging paradigm
    • Chatterjee D.K., Fong L.S., Zhang Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv. Drug Deliv. Rev 2008, 60:1627-1637. 10.1016/j.addr.2008.08.003.
    • (2008) Adv. Drug Deliv. Rev , vol.60 , pp. 1627-1637
    • Chatterjee, D.K.1    Fong, L.S.2    Zhang, Y.3
  • 52
    • 84888875280 scopus 로고    scopus 로고
    • Carbon nanotubes for biomedical imaging: the recent advances
    • Gong H., Peng R., Liu Z. Carbon nanotubes for biomedical imaging: the recent advances. Adv. Drug Deliv. Rev 2013, 65:1951-1963. 10.1016/j.addr.2013.10.002.
    • (2013) Adv. Drug Deliv. Rev , vol.65 , pp. 1951-1963
    • Gong, H.1    Peng, R.2    Liu, Z.3
  • 53
    • 38949105860 scopus 로고    scopus 로고
    • Functionalized carbon nanotubes in drug design and discovery
    • Prato M., Kostarelos K., Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res 2008, 41:60-68. 10.1021/ar700089b.
    • (2008) Acc. Chem. Res , vol.41 , pp. 60-68
    • Prato, M.1    Kostarelos, K.2    Bianco, A.3
  • 54
    • 70350662339 scopus 로고    scopus 로고
    • Promises, facts and challenges for carbon nanotubes in imaging and therapeutics
    • Kostarelos K., Bianco A., Prato M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nanotechnol 2009, 4:627-633. 10.1038/nnano.2009.241.
    • (2009) Nat. Nanotechnol , vol.4 , pp. 627-633
    • Kostarelos, K.1    Bianco, A.2    Prato, M.3
  • 55
    • 84959507771 scopus 로고    scopus 로고
    • Single-walled and multi-walled carbon nanotubes based drug delivery system: cancer therapy: a review
    • Dineshkumar B., Krishnakumar K., Bhatt A.R., Paul D., Cherian J., John A., et al. Single-walled and multi-walled carbon nanotubes based drug delivery system: cancer therapy: a review. Indian J. Cancer 2015, 52:262-264. 10.4103/0019-509X.176720.
    • (2015) Indian J. Cancer , vol.52 , pp. 262-264
    • Dineshkumar, B.1    Krishnakumar, K.2    Bhatt, A.R.3    Paul, D.4    Cherian, J.5    John, A.6
  • 56
    • 84920842349 scopus 로고    scopus 로고
    • Carbon nanomaterials for drug delivery and cancer therapy
    • Chakrabarti M., Kiseleva R., Vertegel A., Ray S.K. Carbon nanomaterials for drug delivery and cancer therapy. J. Nanosci. Nanotechnol 2015, 15:5501-5511. http://dx.doi.org/10.1166/jnn.2015.10614.
    • (2015) J. Nanosci. Nanotechnol , vol.15 , pp. 5501-5511
    • Chakrabarti, M.1    Kiseleva, R.2    Vertegel, A.3    Ray, S.K.4
  • 57
    • 46949106134 scopus 로고    scopus 로고
    • The long and short of carbon nanotube toxicity
    • Kostarelos K. The long and short of carbon nanotube toxicity. Nat. Biotechnol 2008, 26:774-776. 10.1038/nbt0708-774.
    • (2008) Nat. Biotechnol , vol.26 , pp. 774-776
    • Kostarelos, K.1
  • 58
    • 33746915096 scopus 로고    scopus 로고
    • Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells
    • Dumortier H., Lacotte S., Pastorin G., Marega R., Wu W., Bonifazi D., et al. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 2006, 6:1522-1528. 10.1021/nl061160x.
    • (2006) Nano Lett , vol.6 , pp. 1522-1528
    • Dumortier, H.1    Lacotte, S.2    Pastorin, G.3    Marega, R.4    Wu, W.5    Bonifazi, D.6
  • 59
    • 84928533989 scopus 로고    scopus 로고
    • Advances in the biomedical application of polymer-functionalized carbon nanotubes
    • Soleyman R., Hirbod S., Adeli M. Advances in the biomedical application of polymer-functionalized carbon nanotubes. Biomater. Sci 2015, 3:695-711. 10.1039/c4bm00421c.
    • (2015) Biomater. Sci , vol.3 , pp. 695-711
    • Soleyman, R.1    Hirbod, S.2    Adeli, M.3
  • 60
    • 77956313876 scopus 로고    scopus 로고
    • Current progress on the chemical modification of carbon nanotubes
    • Karousis N., Tagmatarchis N., Tasis D. Current progress on the chemical modification of carbon nanotubes. Chem. Rev 2010, 110:5366-5397. 10.1021/cr100018g.
    • (2010) Chem. Rev , vol.110 , pp. 5366-5397
    • Karousis, N.1    Tagmatarchis, N.2    Tasis, D.3
  • 61
    • 7444234174 scopus 로고    scopus 로고
    • Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles
    • Gupta A.K., Gupta M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 2005, 26:1565-1573. 10.1016/j.biomaterials.2004.05.022.
    • (2005) Biomaterials , vol.26 , pp. 1565-1573
    • Gupta, A.K.1    Gupta, M.2
  • 62
    • 57849113507 scopus 로고    scopus 로고
    • Physical approaches to biomaterial design
    • Mitragotri S., Lahann J. Physical approaches to biomaterial design. Nat. Mater 2009, 8:15-23. 10.1038/nmat2344.
    • (2009) Nat. Mater , vol.8 , pp. 15-23
    • Mitragotri, S.1    Lahann, J.2
  • 63
    • 79960363229 scopus 로고    scopus 로고
    • More effective nanomedicines through particle design
    • Wang J., Byrne J.D., Napier M.E., DeSimone J.M. More effective nanomedicines through particle design. Small 2011, 7:1919-1931. 10.1002/smll.201100442.
    • (2011) Small , vol.7 , pp. 1919-1931
    • Wang, J.1    Byrne, J.D.2    Napier, M.E.3    DeSimone, J.M.4
  • 66
    • 48349116380 scopus 로고    scopus 로고
    • Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers
    • Muro S., Garnacho C., Champion J.A., Leferovich J., Gajewski C., Schuchman E.H., et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther 2008, 16:1450-1458. 10.1038/mt.2008.127.
    • (2008) Mol. Ther , vol.16 , pp. 1450-1458
    • Muro, S.1    Garnacho, C.2    Champion, J.A.3    Leferovich, J.4    Gajewski, C.5    Schuchman, E.H.6
  • 67
    • 79953714588 scopus 로고    scopus 로고
    • Nano delivers big: designing molecular missiles for cancer therapeutics
    • Patel S., Bhirde A.A., Rusling J.F., Chen X., Gutkind J.S., Patel V. Nano delivers big: designing molecular missiles for cancer therapeutics. Pharmaceutics 2011, 3:34-52. 10.3390/pharmaceutics3010034.
    • (2011) Pharmaceutics , vol.3 , pp. 34-52
    • Patel, S.1    Bhirde, A.A.2    Rusling, J.F.3    Chen, X.4    Gutkind, J.S.5    Patel, V.6
  • 68
    • 77955175216 scopus 로고    scopus 로고
    • Strategies in the design of nanoparticles for therapeutic applications
    • Petros R.A., DeSimone J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov 2010, 9:615-627. 10.1038/nrd2591.
    • (2010) Nat. Rev. Drug Discov , vol.9 , pp. 615-627
    • Petros, R.A.1    DeSimone, J.M.2
  • 69
    • 84947254613 scopus 로고    scopus 로고
    • Hybrid nanoparticles for combination therapy of cancer
    • He C., Lu J., Lin W. Hybrid nanoparticles for combination therapy of cancer. J. Control. Release 2015, 219:224-236. 10.1016/j.jconrel.2015.09.029.
    • (2015) J. Control. Release , vol.219 , pp. 224-236
    • He, C.1    Lu, J.2    Lin, W.3
  • 70
    • 34249823330 scopus 로고    scopus 로고
    • Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro
    • Jin C., Bai L., Wu H., Tian F., Guo G. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro. Biomaterials 2007, 28:3724-3730. 10.1016/j.biomaterials.2007.04.032.
    • (2007) Biomaterials , vol.28 , pp. 3724-3730
    • Jin, C.1    Bai, L.2    Wu, H.3    Tian, F.4    Guo, G.5
  • 71
    • 84880625081 scopus 로고    scopus 로고
    • Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer
    • Werner M.E., Cummings N.D., Sethi M., Wang E.C., Sukumar R., Moore D.T., et al. Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys 2013, 86:463-468. 10.1016/j.ijrobp.2013.02.009.
    • (2013) Int. J. Radiat. Oncol. Biol. Phys , vol.86 , pp. 463-468
    • Werner, M.E.1    Cummings, N.D.2    Sethi, M.3    Wang, E.C.4    Sukumar, R.5    Moore, D.T.6
  • 72
    • 84870384027 scopus 로고    scopus 로고
    • Doxorubicin-mediated radiosensitivity in multicellular spheroids from a lung cancer cell line is enhanced by composite micelle encapsulation
    • Xu W.-H., Han M., Dong Q., Fu Z.-X., Diao Y.-Y., Liu H., et al. Doxorubicin-mediated radiosensitivity in multicellular spheroids from a lung cancer cell line is enhanced by composite micelle encapsulation. Int. J. Nanomedicine 2012, 7:2661-2671. 10.2147/IJN.S30445.
    • (2012) Int. J. Nanomedicine , vol.7 , pp. 2661-2671
    • Xu, W.-H.1    Han, M.2    Dong, Q.3    Fu, Z.-X.4    Diao, Y.-Y.5    Liu, H.6
  • 73
    • 84924911894 scopus 로고    scopus 로고
    • Dual-function nanosystem for synergetic cancer chemo-/radiotherapy through ROS-mediated signaling pathways
    • He L., Lai H., Chen T. Dual-function nanosystem for synergetic cancer chemo-/radiotherapy through ROS-mediated signaling pathways. Biomaterials 2015, 51:30-42. 10.1016/j.biomaterials.2015.01.063.
    • (2015) Biomaterials , vol.51 , pp. 30-42
    • He, L.1    Lai, H.2    Chen, T.3
  • 74
    • 84918532538 scopus 로고    scopus 로고
    • Radiosensitization of Hs-766T pancreatic tumor xenografts in mice dosed with dodecafluoropentane nano-emulsion-preliminary findings
    • Johnson J.L.H., Leos R.A., Baker A.F., Unger E.C. Radiosensitization of Hs-766T pancreatic tumor xenografts in mice dosed with dodecafluoropentane nano-emulsion-preliminary findings. J. Biomed. Nanotechnol 2015, 11:274-281. 10.1166/jbn.2015.1903.
    • (2015) J. Biomed. Nanotechnol , vol.11 , pp. 274-281
    • Johnson, J.L.H.1    Leos, R.A.2    Baker, A.F.3    Unger, E.C.4
  • 75
    • 84868686600 scopus 로고    scopus 로고
    • Survivin-miRNA-loaded nanoparticles as auxiliary tools for radiation therapy: preparation, characterisation, drug release, cytotoxicity and therapeutic effect on colorectal cancer cells
    • Gaca S., Reichert S., Rödel C., Rödel F., Kreuter J. Survivin-miRNA-loaded nanoparticles as auxiliary tools for radiation therapy: preparation, characterisation, drug release, cytotoxicity and therapeutic effect on colorectal cancer cells. J. Microencapsul 2012, 29:685-694. 10.3109/02652048.2012.680511.
    • (2012) J. Microencapsul , vol.29 , pp. 685-694
    • Gaca, S.1    Reichert, S.2    Rödel, C.3    Rödel, F.4    Kreuter, J.5
  • 76
    • 67949092853 scopus 로고    scopus 로고
    • Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and radiation
    • Zheng Y., Sanche L. Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and radiation. Radiat. Res 2009, 172:114-119. 10.1667/RR1689.1.
    • (2009) Radiat. Res , vol.172 , pp. 114-119
    • Zheng, Y.1    Sanche, L.2
  • 77
    • 70349306262 scopus 로고    scopus 로고
    • Systemic delivery and preclinical evaluation of Au nanoparticle containing beta-lapachone for radiosensitization
    • Jeong S.-Y., Park S.-J., Yoon S.M., Jung J., Woo H.N., Yi S.L., et al. Systemic delivery and preclinical evaluation of Au nanoparticle containing beta-lapachone for radiosensitization. J. Control. Release 2009, 139:239-245. 10.1016/j.jconrel.2009.07.007.
    • (2009) J. Control. Release , vol.139 , pp. 239-245
    • Jeong, S.-Y.1    Park, S.-J.2    Yoon, S.M.3    Jung, J.4    Woo, H.N.5    Yi, S.L.6
  • 78
    • 84939616894 scopus 로고    scopus 로고
    • Enhancement of radiotherapy by ceria nanoparticles modified with neogambogic acid in breast cancer cells
    • Chen F., Zhang X.H., Hu X.D., Zhang W., Lou Z.C., Xie L.H., et al. Enhancement of radiotherapy by ceria nanoparticles modified with neogambogic acid in breast cancer cells. Int. J. Nanomedicine 2015, 10:4957-4969. 10.2147/IJN.S82980.
    • (2015) Int. J. Nanomedicine , vol.10 , pp. 4957-4969
    • Chen, F.1    Zhang, X.H.2    Hu, X.D.3    Zhang, W.4    Lou, Z.C.5    Xie, L.H.6
  • 79
    • 84951049935 scopus 로고    scopus 로고
    • Design and pharmacokinetical aspects for the use of inorganic nanoparticles in radiomedicine
    • Puntes V. Design and pharmacokinetical aspects for the use of inorganic nanoparticles in radiomedicine. Br. J. Radiol 2015, 20150210. 10.1259/bjr.20150210.
    • (2015) Br. J. Radiol , pp. 20150210
    • Puntes, V.1
  • 80
    • 84947998422 scopus 로고    scopus 로고
    • Magnetic resonance nano-theranostics for glioblastoma multiforme
    • Yao J., Hsu C.-H., Li Z., Kim T.S., Hwang L.-P., Lin Y.-C., et al. Magnetic resonance nano-theranostics for glioblastoma multiforme. Curr. Pharm. Des 2015, 21:5256-5266. 10.2174/1381612821666150923103307.
    • (2015) Curr. Pharm. Des , vol.21 , pp. 5256-5266
    • Yao, J.1    Hsu, C.-H.2    Li, Z.3    Kim, T.S.4    Hwang, L.-P.5    Lin, Y.-C.6
  • 82
    • 84920545965 scopus 로고    scopus 로고
    • Nebulized gadolinium-based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization
    • Dufort S., Bianchi A., Henry M., Lux F., Le Duc G., Josserand V., et al. Nebulized gadolinium-based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization. Small 2015, 11:215-221. 10.1002/smll.201401284.
    • (2015) Small , vol.11 , pp. 215-221
    • Dufort, S.1    Bianchi, A.2    Henry, M.3    Lux, F.4    Le Duc, G.5    Josserand, V.6
  • 83
    • 84942162965 scopus 로고    scopus 로고
    • Imaging intracellular and systemic in vivo gold nanoparticles to enhance radiotherapy
    • Botchway S.W., Coulter J.A., Currell F.J. Imaging intracellular and systemic in vivo gold nanoparticles to enhance radiotherapy. Br. J. Radiol 2015, 88:20150170. 10.1259/bjr.20150170.
    • (2015) Br. J. Radiol , vol.88 , pp. 20150170
    • Botchway, S.W.1    Coulter, J.A.2    Currell, F.J.3
  • 84
    • 84920767656 scopus 로고    scopus 로고
    • Applications of nanomaterials in radiotherapy for malignant tumors
    • Wang Y., Liang R., Fang F. Applications of nanomaterials in radiotherapy for malignant tumors. J. Nanosci. Nanotechnol 2015, 15:5487-5500. 10.1166/jnn.2015.10617.
    • (2015) J. Nanosci. Nanotechnol , vol.15 , pp. 5487-5500
    • Wang, Y.1    Liang, R.2    Fang, F.3
  • 85
    • 84907486504 scopus 로고    scopus 로고
    • The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy
    • Sancey L., Lux F., Kotb S., Roux S., Dufort S., Bianchi A., et al. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br. J. Radiol 2014, 87:20140134. 10.1259/bjr.20140134.
    • (2014) Br. J. Radiol , vol.87 , pp. 20140134
    • Sancey, L.1    Lux, F.2    Kotb, S.3    Roux, S.4    Dufort, S.5    Bianchi, A.6
  • 86
    • 84907861542 scopus 로고    scopus 로고
    • Development and applications of radioactive nanoparticles for imaging of biological systems
    • Lewis M.R., Kannan R. Development and applications of radioactive nanoparticles for imaging of biological systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol 2014, 6:628-640. 10.1002/wnan.1292.
    • (2014) Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol , vol.6 , pp. 628-640
    • Lewis, M.R.1    Kannan, R.2
  • 87
    • 84923013303 scopus 로고    scopus 로고
    • A multifunctional nanoplatform for imaging, radiotherapy, and the prediction of therapeutic response
    • McQuade C., Al Zaki A., Desai Y., Vido M., Sakhuja T., Cheng Z., et al. A multifunctional nanoplatform for imaging, radiotherapy, and the prediction of therapeutic response. Small 2015, 11:834-843. 10.1002/smll.201401927.
    • (2015) Small , vol.11 , pp. 834-843
    • McQuade, C.1    Al Zaki, A.2    Desai, Y.3    Vido, M.4    Sakhuja, T.5    Cheng, Z.6
  • 89
    • 84929088300 scopus 로고    scopus 로고
    • Nab-paclitaxel in combination with weekly carboplatin with concurrent radiotherapy in stage III non-small cell lung cancer
    • Lammers P.E., Lu B., Horn L., Shyr Y., Keedy V. nab-paclitaxel in combination with weekly carboplatin with concurrent radiotherapy in stage III non-small cell lung cancer. Oncologist 2015, 20:491-492. 10.1634/theoncologist.2015-0030.
    • (2015) Oncologist , vol.20 , pp. 491-492
    • Lammers, P.E.1    Lu, B.2    Horn, L.3    Shyr, Y.4    Keedy, V.5
  • 91
  • 92
    • 77953686566 scopus 로고    scopus 로고
    • Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy
    • Zhang X.-D., Guo M.-L., Wu H.-Y., Sun Y.-M., Ding Y.-Q., Feng X., et al. Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. Int. J. Nanomedicine 2009, 4:165-173. http://dx.doi.org/10.2147/IJN.S6723.
    • (2009) Int. J. Nanomedicine , vol.4 , pp. 165-173
    • Zhang, X.-D.1    Guo, M.-L.2    Wu, H.-Y.3    Sun, Y.-M.4    Ding, Y.-Q.5    Feng, X.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.