메뉴 건너뛰기




Volumn 28, Issue 3, 2016, Pages 309-316

Cytotoxic mechanisms of immunotherapy: Harnessing complement in the action of anti-tumor monoclonal antibodies

Author keywords

Complement; Immunotherapy of Cancer; Monoclonal antibodies

Indexed keywords

COMPLEMENT; COMPLEMENT COMPONENT C1Q ANTIBODY; IMMUNOGLOBULIN M ANTIBODY; MONOCLONAL ANTIBODY; OFATUMUMAB; RITUXIMAB; TUMOR ANTIGEN;

EID: 84961219433     PISSN: 10445323     EISSN: 10963618     Source Type: Journal    
DOI: 10.1016/j.smim.2016.03.003     Document Type: Review
Times cited : (62)

References (117)
  • 1
    • 70349437186 scopus 로고    scopus 로고
    • Complement regulators and inhibitory proteins
    • [1] Zipfel, P.F., Skerka, C., Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 9 (2009), 729–740.
    • (2009) Nat. Rev. Immunol. , vol.9 , pp. 729-740
    • Zipfel, P.F.1    Skerka, C.2
  • 2
    • 73849090193 scopus 로고    scopus 로고
    • Complement and its role in innate and adaptive immune responses
    • [2] Dunkelberger, J.R., Song, W.C., Complement and its role in innate and adaptive immune responses. Cell Res. 20 (2010), 34–50.
    • (2010) Cell Res. , vol.20 , pp. 34-50
    • Dunkelberger, J.R.1    Song, W.C.2
  • 3
    • 84865389455 scopus 로고    scopus 로고
    • Regulation of humoral immunity by complement
    • [3] Carroll, M.C., Isenman, D.E., Regulation of humoral immunity by complement. Immunity 37 (2012), 199–207.
    • (2012) Immunity , vol.37 , pp. 199-207
    • Carroll, M.C.1    Isenman, D.E.2
  • 4
    • 84949497174 scopus 로고    scopus 로고
    • Complement activation, regulation, and molecular basis for complement-related diseases
    • [4] Bajic, G., et al. Complement activation, regulation, and molecular basis for complement-related diseases. EMBO J. 34 (2015), 2735–2757.
    • (2015) EMBO J. , vol.34 , pp. 2735-2757
    • Bajic, G.1
  • 5
    • 84875968524 scopus 로고    scopus 로고
    • Complement in immune and inflammatory disorders: pathophysiological mechanisms
    • [5] Ricklin, D., Lambris, J.D., Complement in immune and inflammatory disorders: pathophysiological mechanisms. J. Immunol. 190 (2013), 3831–3838.
    • (2013) J. Immunol. , vol.190 , pp. 3831-3838
    • Ricklin, D.1    Lambris, J.D.2
  • 6
    • 84875990477 scopus 로고    scopus 로고
    • Complement in immune and inflammatory disorders: therapeutic interventions
    • [6] Ricklin, D., Lambris, J.D., Complement in immune and inflammatory disorders: therapeutic interventions. J. Immunol. 190 (2013), 3839–3847.
    • (2013) J. Immunol. , vol.190 , pp. 3839-3847
    • Ricklin, D.1    Lambris, J.D.2
  • 7
    • 84930039591 scopus 로고    scopus 로고
    • Current and future pharmacologic complement inhibitors
    • [7] Risitano, A.M., Current and future pharmacologic complement inhibitors. Hematol. Oncol. Clin. North Am. 29 (2015), 561–582.
    • (2015) Hematol. Oncol. Clin. North Am. , vol.29 , pp. 561-582
    • Risitano, A.M.1
  • 8
    • 84948716605 scopus 로고    scopus 로고
    • Complement, a target for therapy in inflammatory and degenerative diseases
    • [8] Morgan, B.P., Harris, C.L., Complement, a target for therapy in inflammatory and degenerative diseases. Nat. Rev. Drug Discov. 14 (2015), 857–877.
    • (2015) Nat. Rev. Drug Discov. , vol.14 , pp. 857-877
    • Morgan, B.P.1    Harris, C.L.2
  • 9
    • 68049135726 scopus 로고    scopus 로고
    • Cancer resistance to complement-dependent cytotoxicity: Problem-oriented research and development
    • [9] Gancz, D., Fishelson, Z., Cancer resistance to complement-dependent cytotoxicity: Problem-oriented research and development. Mol. Immunol. 46 (2009), 2794–2800.
    • (2009) Mol. Immunol. , vol.46 , pp. 2794-2800
    • Gancz, D.1    Fishelson, Z.2
  • 10
    • 82355191791 scopus 로고    scopus 로고
    • Complement in cancer and cancer immunotherapy
    • [10] Kolev, M., Towner, L., Donev, R., Complement in cancer and cancer immunotherapy. Arch. Immunol. Ther. Exp. 59 (2011), 407–419.
    • (2011) Arch. Immunol. Ther. Exp. , vol.59 , pp. 407-419
    • Kolev, M.1    Towner, L.2    Donev, R.3
  • 11
    • 84865699475 scopus 로고    scopus 로고
    • Mechanism of action of therapeutic monoclonal antibodies: promises and pitfalls of in vitro and in vivo assays
    • [11] Golay, J., Introna, M., Mechanism of action of therapeutic monoclonal antibodies: promises and pitfalls of in vitro and in vivo assays. Arch. Biochem. Biophys. 526 (2012), 146–153.
    • (2012) Arch. Biochem. Biophys. , vol.526 , pp. 146-153
    • Golay, J.1    Introna, M.2
  • 12
    • 84878919900 scopus 로고    scopus 로고
    • Effector mechanisms of anti-CD20 monoclonal antibodies in B cell malignancies
    • [12] Okroj, M., Osterborg, A., Blom, A.M., Effector mechanisms of anti-CD20 monoclonal antibodies in B cell malignancies. Cancer Treat. Rev. 39 (2013), 632–639.
    • (2013) Cancer Treat. Rev. , vol.39 , pp. 632-639
    • Okroj, M.1    Osterborg, A.2    Blom, A.M.3
  • 13
    • 84913603159 scopus 로고    scopus 로고
    • Regulation of complement and modulation of its activity in monoclonal antibody therapy of cancer
    • [13] Meyer, S., Leusen, J.H.W., Boross, P., Regulation of complement and modulation of its activity in monoclonal antibody therapy of cancer. mAbs 6 (2014), 1133–1144.
    • (2014) mAbs , vol.6 , pp. 1133-1144
    • Meyer, S.1    Leusen, J.H.W.2    Boross, P.3
  • 14
    • 84900004320 scopus 로고    scopus 로고
    • Complement in antibody-based tumor therapy
    • [14] Derer, S., et al. Complement in antibody-based tumor therapy. Crit. Rev. Immunol. 34 (2014), 199–214.
    • (2014) Crit. Rev. Immunol. , vol.34 , pp. 199-214
    • Derer, S.1
  • 15
    • 84905749267 scopus 로고    scopus 로고
    • Complement in monoclonal antibody therapy of cancer
    • [15] Rogers, L.M., Veeramani, S., Weiner, G.J., Complement in monoclonal antibody therapy of cancer. Immunol. Res. 59 (2014), 203–210.
    • (2014) Immunol. Res. , vol.59 , pp. 203-210
    • Rogers, L.M.1    Veeramani, S.2    Weiner, G.J.3
  • 16
    • 84891629992 scopus 로고    scopus 로고
    • The role of complement in mAb-based therapies of cancer
    • [16] Taylor, R.P., Lindorfer, M.A., The role of complement in mAb-based therapies of cancer. Methods 65 (2014), 18–27.
    • (2014) Methods , vol.65 , pp. 18-27
    • Taylor, R.P.1    Lindorfer, M.A.2
  • 17
    • 84937504664 scopus 로고    scopus 로고
    • Complement in therapy and disease: regulating the complement system with antibody-based therapeutics
    • [17] Melis, J.P.M., et al. Complement in therapy and disease: regulating the complement system with antibody-based therapeutics. Mol. Immunol. 67 (2015), 117–130.
    • (2015) Mol. Immunol. , vol.67 , pp. 117-130
    • Melis, J.P.M.1
  • 18
    • 84995600379 scopus 로고    scopus 로고
    • The complement system in cancer: ambivalence between tumour destruction and promotion
    • [18] Mamidi, S., Hone, S., Kirschfink, M., The complement system in cancer: ambivalence between tumour destruction and promotion. Immunobiology, 2015.
    • (2015) Immunobiology
    • Mamidi, S.1    Hone, S.2    Kirschfink, M.3
  • 19
    • 0016351171 scopus 로고
    • Rosette formation of human erythrocytes on cultured cells of tumour origin and activation of complement by cell membrane
    • [19] Okada, H., Baba, T., Rosette formation of human erythrocytes on cultured cells of tumour origin and activation of complement by cell membrane. Nature 248 (1974), 521–522.
    • (1974) Nature , vol.248 , pp. 521-522
    • Okada, H.1    Baba, T.2
  • 20
    • 0016245044 scopus 로고
    • Evidence for in vivo reaction of antibody and complement to surface antigens of human cancer cells
    • [20] Irie, K., Irie, R.F., Morton, D.L., Evidence for in vivo reaction of antibody and complement to surface antigens of human cancer cells. Science 186 (1974), 454–456.
    • (1974) Science , vol.186 , pp. 454-456
    • Irie, K.1    Irie, R.F.2    Morton, D.L.3
  • 21
    • 0344327143 scopus 로고    scopus 로고
    • Therapeutic intervention with complement and β-glucan in cancer
    • [21] Ross, G.D., et al. Therapeutic intervention with complement and β-glucan in cancer. Immunopharmacology 42 (1999), 61–74.
    • (1999) Immunopharmacology , vol.42 , pp. 61-74
    • Ross, G.D.1
  • 22
    • 0033653939 scopus 로고    scopus 로고
    • Targeting of cancer cells with monoclonal antibodies specific for C3b(i)
    • [22] Sokoloff, M.H., et al. Targeting of cancer cells with monoclonal antibodies specific for C3b(i). Cancer Immunol. Immunother. 49 (2000), 551–562.
    • (2000) Cancer Immunol. Immunother. , vol.49 , pp. 551-562
    • Sokoloff, M.H.1
  • 23
    • 0028057250 scopus 로고
    • Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20
    • [23] Reff, M.E., et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83 (1994), 435–445.
    • (1994) Blood , vol.83 , pp. 435-445
    • Reff, M.E.1
  • 24
    • 1842368507 scopus 로고    scopus 로고
    • IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma
    • [24] Maloney, D.G., et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 90 (1997), 2188–2195.
    • (1997) Blood , vol.90 , pp. 2188-2195
    • Maloney, D.G.1
  • 25
    • 0034765991 scopus 로고    scopus 로고
    • The CD52 antigen and development of CAMPATH antibodies
    • [25] Hale, G., The CD52 antigen and development of CAMPATH antibodies. Cytotherapy 3 (2001), 137–143.
    • (2001) Cytotherapy , vol.3 , pp. 137-143
    • Hale, G.1
  • 26
    • 4444343395 scopus 로고    scopus 로고
    • Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin's lymphomas
    • [26] Teeling, J.L., et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin's lymphomas. Blood 104 (2004), 1793–1800.
    • (2004) Blood , vol.104 , pp. 1793-1800
    • Teeling, J.L.1
  • 27
    • 84940849273 scopus 로고    scopus 로고
    • Ofatumumab (Arzerra): A Next-generation Human Therapeutic CD20 Antibody with Potent Complement-dependent Cyt0toxicity
    • S. Dubel J.M. Reichert Wiley Blackwell Weinheim
    • [27] Lindorfer, M.A., Bakker, J.M., Parren, P.W.H.I., Taylor, R.P., Ofatumumab (Arzerra): A Next-generation Human Therapeutic CD20 Antibody with Potent Complement-dependent Cyt0toxicity. Dubel, S., Reichert, J.M., (eds.) Handbook of therapeutic antibodies, 2014, Wiley Blackwell Weinheim, 1733–1774.
    • (2014) Handbook of therapeutic antibodies , pp. 1733-1774
    • Lindorfer, M.A.1    Bakker, J.M.2    Parren, P.W.H.I.3    Taylor, R.P.4
  • 28
    • 84993720585 scopus 로고    scopus 로고
    • Obinutuzumab for the treatment of patients with previously untreated chronic lymphocytic leukemia: overview and perspective
    • [28] Owen, C.J., Stewart, D.A., Obinutuzumab for the treatment of patients with previously untreated chronic lymphocytic leukemia: overview and perspective. Ther. Adv. Hematol. 6 (2015), 161–170.
    • (2015) Ther. Adv. Hematol. , vol.6 , pp. 161-170
    • Owen, C.J.1    Stewart, D.A.2
  • 29
    • 84945471390 scopus 로고    scopus 로고
    • Obinutuzumab in hematologic malignancies: lessons learned to date
    • [29] Illidge, T., et al. Obinutuzumab in hematologic malignancies: lessons learned to date. Canc. Treat. Rev., 2015.
    • (2015) Canc. Treat. Rev.
    • Illidge, T.1
  • 30
    • 0034660092 scopus 로고    scopus 로고
    • Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement mediated cell lysis
    • [30] Golay, J., et al. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement mediated cell lysis. Blood 95 (2000), 3900–3908.
    • (2000) Blood , vol.95 , pp. 3900-3908
    • Golay, J.1
  • 31
    • 0035760902 scopus 로고    scopus 로고
    • CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59
    • [31] Golay, J., et al. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood 98 (2001), 3383–3389.
    • (2001) Blood , vol.98 , pp. 3383-3389
    • Golay, J.1
  • 32
    • 0042346042 scopus 로고    scopus 로고
    • Complement activation determines the therapeutic activity of rituximab in vivo
    • [32] Di Gaetano, N., et al. Complement activation determines the therapeutic activity of rituximab in vivo. J. Immunol. 171 (2003), 1581–1587.
    • (2003) J. Immunol. , vol.171 , pp. 1581-1587
    • Di Gaetano, N.1
  • 33
    • 84871831846 scopus 로고    scopus 로고
    • Ofatumumab is more efficient than rituximab in lysing B chronic lymphocytic leukemia cells in whole blood and in combination with chemotherapy
    • [33] Bologna, L., et al. Ofatumumab is more efficient than rituximab in lysing B chronic lymphocytic leukemia cells in whole blood and in combination with chemotherapy. J. Immunol. 190 (2013), 231–239.
    • (2013) J. Immunol. , vol.190 , pp. 231-239
    • Bologna, L.1
  • 34
    • 33746047673 scopus 로고    scopus 로고
    • Complement-induced cell death by rituximab depends on CD20 expression level and acts complementary to antibody-dependent cellular cytotoxicity
    • [34] van Meerten, T., et al. Complement-induced cell death by rituximab depends on CD20 expression level and acts complementary to antibody-dependent cellular cytotoxicity. Clin. Cancer Res. 12 (2006), 4027–4035.
    • (2006) Clin. Cancer Res. , vol.12 , pp. 4027-4035
    • van Meerten, T.1
  • 35
    • 0037306893 scopus 로고    scopus 로고
    • In vitro mechanisms of action of rituximab on primary non-Hodgkin's lymphomas
    • [35] Manches, O., et al. In vitro mechanisms of action of rituximab on primary non-Hodgkin's lymphomas. Blood 101 (2003), 949–954.
    • (2003) Blood , vol.101 , pp. 949-954
    • Manches, O.1
  • 36
    • 84859402731 scopus 로고    scopus 로고
    • Exhaustion of cytotoxic effector systems may limit monoclonal antibody-based immunotherapy in cancer patients
    • [36] Beurskens, F.J., et al. Exhaustion of cytotoxic effector systems may limit monoclonal antibody-based immunotherapy in cancer patients. J. Immunol. 188 (2012), 3532–3541.
    • (2012) J. Immunol. , vol.188 , pp. 3532-3541
    • Beurskens, F.J.1
  • 37
    • 84896716648 scopus 로고    scopus 로고
    • Induced resistance to ofatumumab-mediated cell clearance mechanisms including complement-dependent cytotoxicity, in chronic lymphocytic leukemia
    • [37] Baig, N.A., et al. Induced resistance to ofatumumab-mediated cell clearance mechanisms including complement-dependent cytotoxicity, in chronic lymphocytic leukemia. J. Immunol. 192 (2014), 1620–1629.
    • (2014) J. Immunol. , vol.192 , pp. 1620-1629
    • Baig, N.A.1
  • 38
    • 79251570884 scopus 로고    scopus 로고
    • Daratumumab a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors
    • [38] de Weers, M., et al. Daratumumab a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J. Immunol. 186 (2011), 1840–1848.
    • (2011) J. Immunol. , vol.186 , pp. 1840-1848
    • de Weers, M.1
  • 39
    • 84942436321 scopus 로고    scopus 로고
    • Targeting CD38 with daratumumab monotherapy in multiple myeloma
    • [39] Lokhorst, H.M., et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. New Engl. J. Med. 373 (2015), 1207–1219.
    • (2015) New Engl. J. Med. , vol.373 , pp. 1207-1219
    • Lokhorst, H.M.1
  • 40
    • 84988620694 scopus 로고    scopus 로고
    • Expression levels of CD38 and complement inhibitory proteins CD55 and CD59 predict response ot daratumumab in multiple myeloma
    • [40] Nijhof, I., et al. Expression levels of CD38 and complement inhibitory proteins CD55 and CD59 predict response ot daratumumab in multiple myeloma. Haematologica 100 (2015), 175–176.
    • (2015) Haematologica , vol.100 , pp. 175-176
    • Nijhof, I.1
  • 41
    • 84993709930 scopus 로고    scopus 로고
    • Daratumumab and its potential in the treatment of multiple myeloma: overview of the preclinical and clinical development
    • [41] Phipps, C., et al. Daratumumab and its potential in the treatment of multiple myeloma: overview of the preclinical and clinical development. Ther. Adv. Hematol. 6 (2015), 120–127.
    • (2015) Ther. Adv. Hematol. , vol.6 , pp. 120-127
    • Phipps, C.1
  • 42
    • 0034076307 scopus 로고    scopus 로고
    • Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets
    • [42] Clynes, R.A., et al. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat. Med. 6 (2000), 443–446.
    • (2000) Nat. Med. , vol.6 , pp. 443-446
    • Clynes, R.A.1
  • 43
    • 0037306990 scopus 로고    scopus 로고
    • An anti-C3b(i) mAb enhances complement activation, C3b(i) deposition, and killing of CD20+ cells by Rituximab
    • [43] Kennedy, A.D., et al. An anti-C3b(i) mAb enhances complement activation, C3b(i) deposition, and killing of CD20+ cells by Rituximab. Blood 101 (2003), 1071–1079.
    • (2003) Blood , vol.101 , pp. 1071-1079
    • Kennedy, A.D.1
  • 44
    • 1842507429 scopus 로고    scopus 로고
    • Alemtuzumab (CAMPATH 1H) does not kill chronic lymphocytic leukemia cells in serum free medium
    • [44] Zent, C.S., et al. Alemtuzumab (CAMPATH 1H) does not kill chronic lymphocytic leukemia cells in serum free medium. Leuk. Res. 28 (2004), 495–507.
    • (2004) Leuk. Res. , vol.28 , pp. 495-507
    • Zent, C.S.1
  • 45
    • 19744361832 scopus 로고    scopus 로고
    • Effect of alemtuzumab on neoplastic B cells
    • [45] Golay, J., et al. Effect of alemtuzumab on neoplastic B cells. Haematologica 89 (2004), 1476–1483.
    • (2004) Haematologica , vol.89 , pp. 1476-1483
    • Golay, J.1
  • 46
    • 34548221347 scopus 로고    scopus 로고
    • Mechanisms of killing by anti-CD20 monoclonal antibodies
    • [46] Glennie, M.J., et al. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol. Immunol. 44 (2007), 3823–3837.
    • (2007) Mol. Immunol. , vol.44 , pp. 3823-3837
    • Glennie, M.J.1
  • 47
    • 51649110602 scopus 로고    scopus 로고
    • Direct and complement dependent cytotoxicity in CLL cells from patients with high-risk early-intermediate stay chronic lymphoctyic leukemia (CLL) treated with alemtuzumab and rituximab
    • [47] Zent, C.S., et al. Direct and complement dependent cytotoxicity in CLL cells from patients with high-risk early-intermediate stay chronic lymphoctyic leukemia (CLL) treated with alemtuzumab and rituximab. Leuk. Res. 32 (2008), 1849–1856.
    • (2008) Leuk. Res. , vol.32 , pp. 1849-1856
    • Zent, C.S.1
  • 48
    • 84890087376 scopus 로고    scopus 로고
    • The mechanism of anti-CD20-mediated B cell depletion revealed by intravital imaging
    • [48] Montalvao, F., et al. The mechanism of anti-CD20-mediated B cell depletion revealed by intravital imaging. J. Clin. Invest. 123 (2013), 5098–5103.
    • (2013) J. Clin. Invest. , vol.123 , pp. 5098-5103
    • Montalvao, F.1
  • 49
    • 84907435331 scopus 로고    scopus 로고
    • Analyses of CD20 monoclonal antibody-mediated tumor cell killing mechanisms: rational design of dosing strategies
    • [49] Taylor, R.P., Lindorfer, M.A., Analyses of CD20 monoclonal antibody-mediated tumor cell killing mechanisms: rational design of dosing strategies. Mol. Pharm. 86 (2014), 485–491.
    • (2014) Mol. Pharm. , vol.86 , pp. 485-491
    • Taylor, R.P.1    Lindorfer, M.A.2
  • 50
    • 82855172184 scopus 로고    scopus 로고
    • The in vivo mechanism of action of CD20 monoclonal antibodies depends on local tumor burden
    • [50] Boross, P., et al. The in vivo mechanism of action of CD20 monoclonal antibodies depends on local tumor burden. Haematologica 96 (2011), 1822–1830.
    • (2011) Haematologica , vol.96 , pp. 1822-1830
    • Boross, P.1
  • 51
    • 1342282157 scopus 로고    scopus 로고
    • Rituximab infusion promotes rapid complement depletion and acute CD20 loss in chronic lymphocytic leukemia
    • [51] Kennedy, A.D., et al. Rituximab infusion promotes rapid complement depletion and acute CD20 loss in chronic lymphocytic leukemia. J. Immunol. 172 (2004), 3280–3288.
    • (2004) J. Immunol. , vol.172 , pp. 3280-3288
    • Kennedy, A.D.1
  • 52
    • 0002481443 scopus 로고
    • The Classical Pathway
    • G.D. Ross Academic Press Orlando
    • [52] Hughes-Jones, N.C., The Classical Pathway. Ross, G.D., (eds.) Immunobiology of the complement system, 1986, Academic Press Orlando, 21–44.
    • (1986) Immunobiology of the complement system , pp. 21-44
    • Hughes-Jones, N.C.1
  • 53
    • 84881096011 scopus 로고    scopus 로고
    • Activation of complement by monoclonal antibodies that target cell-associated β2-microglobulin: implications for cancer immunotherapy
    • [53] Pokrass, M.J., et al. Activation of complement by monoclonal antibodies that target cell-associated β2-microglobulin: implications for cancer immunotherapy. Mol. Immunol. 56 (2013), 549–560.
    • (2013) Mol. Immunol. , vol.56 , pp. 549-560
    • Pokrass, M.J.1
  • 54
    • 0023691376 scopus 로고
    • Importance of antigen specificity for complement-mediated lysis by monoclonal antibodies
    • [54] Bindon, C.I., Hale, G., Waldmann, H., Importance of antigen specificity for complement-mediated lysis by monoclonal antibodies. Eur. J. Immunol. 18 (1988), 1507–1514.
    • (1988) Eur. J. Immunol. , vol.18 , pp. 1507-1514
    • Bindon, C.I.1    Hale, G.2    Waldmann, H.3
  • 55
    • 70449483876 scopus 로고    scopus 로고
    • Neutrophils express CD52 and exhibit complement-mediated lysis in the presence of alemtuzumab
    • [55] Ambrose, L.R., Morel, A.-S., Warrens, A.N., Neutrophils express CD52 and exhibit complement-mediated lysis in the presence of alemtuzumab. Blood 114 (2009), 3052–3055.
    • (2009) Blood , vol.114 , pp. 3052-3055
    • Ambrose, L.R.1    Morel, A.-S.2    Warrens, A.N.3
  • 56
    • 47949095894 scopus 로고    scopus 로고
    • Complement activation on B lymphocytes opsonized with rituximab or ofatumumab produces substantial changes in membrane structure preceding cell lysis
    • [56] Beum, P.V., et al. Complement activation on B lymphocytes opsonized with rituximab or ofatumumab produces substantial changes in membrane structure preceding cell lysis. J. Immunol. 181 (2008), 822–832.
    • (2008) J. Immunol. , vol.181 , pp. 822-832
    • Beum, P.V.1
  • 57
    • 79960744744 scopus 로고    scopus 로고
    • Penetration of antibody-opsonized cells by the membrane attack complex of complement promotes Ca2+ influx and induces streamers
    • [57] Beum, P.V., et al. Penetration of antibody-opsonized cells by the membrane attack complex of complement promotes Ca2+ influx and induces streamers. Eur. J. Immunol. 41 (2011), 2436–2446.
    • (2011) Eur. J. Immunol. , vol.41 , pp. 2436-2446
    • Beum, P.V.1
  • 58
    • 84896055730 scopus 로고    scopus 로고
    • Complement is activated by IgG hexamers assembled at the cell surface
    • [58] Diebolder, C.A., et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 343 (2014), 1260–1263.
    • (2014) Science , vol.343 , pp. 1260-1263
    • Diebolder, C.A.1
  • 59
    • 84956718998 scopus 로고    scopus 로고
    • A novel platform for the potentiation of therapeutic antibodies based on antigen-dependent formation of IgG hexamers at the cell surface
    • [59] de Jong, R.N., et al. A novel platform for the potentiation of therapeutic antibodies based on antigen-dependent formation of IgG hexamers at the cell surface. PLoS Biol., 14, 2015, e1001244.
    • (2015) PLoS Biol. , vol.14 , pp. e1001244
    • de Jong, R.N.1
  • 60
    • 84878107502 scopus 로고    scopus 로고
    • Lipoplex mediated silencing of membrane regulators (CD46, CD55 and CD59) enhances complement-dependent anti-tumor activity of trastuzumab and pertuzumab
    • [60] Mamidi, S., et al. Lipoplex mediated silencing of membrane regulators (CD46, CD55 and CD59) enhances complement-dependent anti-tumor activity of trastuzumab and pertuzumab. Mol. Oncol. 7 (2013), 580–594.
    • (2013) Mol. Oncol. , vol.7 , pp. 580-594
    • Mamidi, S.1
  • 61
    • 84940889441 scopus 로고    scopus 로고
    • Targeted delivery of siRNA using transferrin-conjugated lipoplexes specifically sensitizes CD71 high expressing malignant cells to antibody-mediated complement attack
    • [61] Cinci, M., et al. Targeted delivery of siRNA using transferrin-conjugated lipoplexes specifically sensitizes CD71 high expressing malignant cells to antibody-mediated complement attack. Targeted Oncol. 10 (2015), 405–413.
    • (2015) Targeted Oncol. , vol.10 , pp. 405-413
    • Cinci, M.1
  • 62
    • 32944455120 scopus 로고    scopus 로고
    • Blockade of bulky lymphoma-associated CD55 expression by RNA interference overcomes resistance to complement-dependent cytotoxicity with rituximab
    • [62] Terui, Y., et al. Blockade of bulky lymphoma-associated CD55 expression by RNA interference overcomes resistance to complement-dependent cytotoxicity with rituximab. Cancer Sci. 97 (2006), 72–79.
    • (2006) Cancer Sci. , vol.97 , pp. 72-79
    • Terui, Y.1
  • 63
    • 84862833647 scopus 로고    scopus 로고
    • Inhibition of membrane complement inhibitor expression (CD46, CD55CD59) by siRNA snesitizes tumor cells to complement attack in vitro
    • [63] Geis, N., et al. Inhibition of membrane complement inhibitor expression (CD46, CD55CD59) by siRNA snesitizes tumor cells to complement attack in vitro. Curr. Cancer Drug Targets 10 (2010), 922–931.
    • (2010) Curr. Cancer Drug Targets , vol.10 , pp. 922-931
    • Geis, N.1
  • 64
    • 36049050637 scopus 로고    scopus 로고
    • Down-regulation of CD55 and CD46 expression by anti-sense phosphorothioate oligonucleotides (S-ODNs) sensitizes tumour cells to complement attack
    • [64] Zell, S., et al. Down-regulation of CD55 and CD46 expression by anti-sense phosphorothioate oligonucleotides (S-ODNs) sensitizes tumour cells to complement attack. Clin. Exp. Immunol. 150 (2007), 576–584.
    • (2007) Clin. Exp. Immunol. , vol.150 , pp. 576-584
    • Zell, S.1
  • 65
    • 67649987713 scopus 로고    scopus 로고
    • Neutralization of complement regulatory proteins CD55 and CD59 augments therapeutic effect of herceptin against lung carcinoma cells
    • [65] Zhao, W.P., et al. Neutralization of complement regulatory proteins CD55 and CD59 augments therapeutic effect of herceptin against lung carcinoma cells. Oncol. Rep. 21 (2009), 1405–1411.
    • (2009) Oncol. Rep. , vol.21 , pp. 1405-1411
    • Zhao, W.P.1
  • 66
    • 80455162357 scopus 로고    scopus 로고
    • rILYd4 a human CD59 inhibitor, enhances complement-dependent cytotoxicity of ofatumumab against rituximab-resistant B-cell lymphoma cells and chronic lymphocytic leukemia
    • [66] Ge, X., et al. rILYd4 a human CD59 inhibitor, enhances complement-dependent cytotoxicity of ofatumumab against rituximab-resistant B-cell lymphoma cells and chronic lymphocytic leukemia. Clin. Canc. Res. 17 (2011), 6702–6711.
    • (2011) Clin. Canc. Res. , vol.17 , pp. 6702-6711
    • Ge, X.1
  • 67
    • 79952759542 scopus 로고    scopus 로고
    • Human CD59 inhibitor sensitizes rituximab-resistant lymphoma cells to complement-mediated cytolysis
    • [67] Hu, W., et al. Human CD59 inhibitor sensitizes rituximab-resistant lymphoma cells to complement-mediated cytolysis. Canc. Res. 71 (2011), 2298–2307.
    • (2011) Canc. Res. , vol.71 , pp. 2298-2307
    • Hu, W.1
  • 68
    • 84913587067 scopus 로고    scopus 로고
    • CD20 mAb-mediated complement dependent cytotoxicity of tumor cells is enhanced by blocking the action of factor I
    • [68] Lindorfer, M.A., Beum, P.V., Taylor, R.P., CD20 mAb-mediated complement dependent cytotoxicity of tumor cells is enhanced by blocking the action of factor I. Antibodies 2 (2013), 598–616.
    • (2013) Antibodies , vol.2 , pp. 598-616
    • Lindorfer, M.A.1    Beum, P.V.2    Taylor, R.P.3
  • 69
    • 84889808921 scopus 로고    scopus 로고
    • Complement factor H-derived short consensus repeat 18–20 enhanced complement-dependent cytotoxicity of ofatumumab on chronic lymphocytic leukemia cells
    • [69] Horl, S., et al. Complement factor H-derived short consensus repeat 18–20 enhanced complement-dependent cytotoxicity of ofatumumab on chronic lymphocytic leukemia cells. Haematologica 98 (2013), 1939–1947.
    • (2013) Haematologica , vol.98 , pp. 1939-1947
    • Horl, S.1
  • 70
    • 84887321596 scopus 로고    scopus 로고
    • Reduction of complement factor H binding to CLL cells improves the induction of rituximab-mediated complement-dependent cytotoxicity
    • [70] Horl, S., et al. Reduction of complement factor H binding to CLL cells improves the induction of rituximab-mediated complement-dependent cytotoxicity. Leukemia 27 (2013), 2200–2208.
    • (2013) Leukemia , vol.27 , pp. 2200-2208
    • Horl, S.1
  • 71
    • 84958598311 scopus 로고    scopus 로고
    • A complement-optimized EGFR antibody improves cytoxic functions of polymorphonuclear cells against tumor cells
    • [71] Derer, S., et al. A complement-optimized EGFR antibody improves cytoxic functions of polymorphonuclear cells against tumor cells. J. Immunol. 195 (2015), 5077–5087.
    • (2015) J. Immunol. , vol.195 , pp. 5077-5087
    • Derer, S.1
  • 72
    • 84927171007 scopus 로고    scopus 로고
    • Bispecific antibodies targeting tumor-associated antigens and neutralizing complement regulators increase the efficacy of antibody-based immunotherapy in mice
    • [72] Macor, P., et al. Bispecific antibodies targeting tumor-associated antigens and neutralizing complement regulators increase the efficacy of antibody-based immunotherapy in mice. Leukemia 29 (2015), 406–414.
    • (2015) Leukemia , vol.29 , pp. 406-414
    • Macor, P.1
  • 73
    • 84862733696 scopus 로고    scopus 로고
    • A targeted complement-dependent strategy to improve the outcome of mAb therapy, and characterization in a murine model of metastatic cancer
    • [73] Elvington, M., et al. A targeted complement-dependent strategy to improve the outcome of mAb therapy, and characterization in a murine model of metastatic cancer. Blood 119 (2012), 6043–6051.
    • (2012) Blood , vol.119 , pp. 6043-6051
    • Elvington, M.1
  • 74
    • 48549098958 scopus 로고    scopus 로고
    • Complement-dependent tumor cell lysis triggered by combinations of epidermal growth factor receptor antibodies
    • [74] Dechant, M., et al. Complement-dependent tumor cell lysis triggered by combinations of epidermal growth factor receptor antibodies. Cancer Res. 68 (2008), 4998–5003.
    • (2008) Cancer Res. , vol.68 , pp. 4998-5003
    • Dechant, M.1
  • 75
    • 80053386362 scopus 로고    scopus 로고
    • Complement-mediated tumor-specific cell lysis by antibody combinations targeting epidermal growth factor receptor (EGFR) and its variant III (EGFRvIII)
    • [75] Klausz, K., et al. Complement-mediated tumor-specific cell lysis by antibody combinations targeting epidermal growth factor receptor (EGFR) and its variant III (EGFRvIII). Cancer Sci. 102 (2011), 1761–1768.
    • (2011) Cancer Sci. , vol.102 , pp. 1761-1768
    • Klausz, K.1
  • 76
    • 84884990167 scopus 로고    scopus 로고
    • Combination of two anti-CD5 monoclonal antibodies synergistically induces complement-dependent cytotoxicity of chronic lymphocytic leukaemia cells
    • [76] Klitgaard, J.L., et al. Combination of two anti-CD5 monoclonal antibodies synergistically induces complement-dependent cytotoxicity of chronic lymphocytic leukaemia cells. Br. J. Hematol. 163 (2013), 182–193.
    • (2013) Br. J. Hematol. , vol.163 , pp. 182-193
    • Klitgaard, J.L.1
  • 77
    • 33947491459 scopus 로고    scopus 로고
    • Addition of fresh frozen plasma as a source of complement to rituximab in advanced chronic lymphocytic leukemia
    • [77] Klepfish, A., et al. Addition of fresh frozen plasma as a source of complement to rituximab in advanced chronic lymphocytic leukemia. Lancet Oncol. 8 (2007), 361–362.
    • (2007) Lancet Oncol. , vol.8 , pp. 361-362
    • Klepfish, A.1
  • 78
    • 79952462585 scopus 로고    scopus 로고
    • Enhancing the action of rituximab by adding fresh frozen plasma for the treatment of fludarabine refractory chronic lymphocytic leukemia
    • [78] Xu, W., et al. Enhancing the action of rituximab by adding fresh frozen plasma for the treatment of fludarabine refractory chronic lymphocytic leukemia. Int. J. Canc. 128 (2011), 2192–2201.
    • (2011) Int. J. Canc. , vol.128 , pp. 2192-2201
    • Xu, W.1
  • 79
    • 84991820508 scopus 로고    scopus 로고
    • Ofatumumab capacity to deplete B cells from chronic lymphocytic leukemia is affected by C4 complement exhaustion
    • [79] Tempescul, A., et al. Ofatumumab capacity to deplete B cells from chronic lymphocytic leukemia is affected by C4 complement exhaustion. Eur. J. Haematol., 2015.
    • (2015) Eur. J. Haematol.
    • Tempescul, A.1
  • 80
    • 84920699926 scopus 로고    scopus 로고
    • Complement deficiences limit CD20 monoclonal antibody treatment efficacy in CLL
    • [80] Middleton, O., et al. Complement deficiences limit CD20 monoclonal antibody treatment efficacy in CLL. Leukemia 29 (2015), 107–114.
    • (2015) Leukemia , vol.29 , pp. 107-114
    • Middleton, O.1
  • 81
    • 84880983195 scopus 로고    scopus 로고
    • Monoclonal antibody (mAb)-based cancer therapy: is it time to reevaluate dosing strategies?
    • [81] Lindorfer, M.A., et al. Monoclonal antibody (mAb)-based cancer therapy: is it time to reevaluate dosing strategies?. Oncoimmunology 1 (2012), 959–961.
    • (2012) Oncoimmunology , vol.1 , pp. 959-961
    • Lindorfer, M.A.1
  • 82
    • 76549133909 scopus 로고    scopus 로고
    • Fractionated subcutaneous rituximab is well tolerated and preserves CD20 expression on tumor cells in patients with chronic lymphocytic leukemia
    • [82] Aue, G., et al. Fractionated subcutaneous rituximab is well tolerated and preserves CD20 expression on tumor cells in patients with chronic lymphocytic leukemia. Haematologica 95 (2010), 329–332.
    • (2010) Haematologica , vol.95 , pp. 329-332
    • Aue, G.1
  • 83
    • 84867178829 scopus 로고    scopus 로고
    • Complement dependent cytotoxicity (CDC) in chronic lymphocytic leukemia (CLL): Ofatumumab enhances alemtuzumab CDC and reveals cells resistant to activated complement
    • [83] Baig, N.A., et al. Complement dependent cytotoxicity (CDC) in chronic lymphocytic leukemia (CLL): Ofatumumab enhances alemtuzumab CDC and reveals cells resistant to activated complement. Leuk. Lymph. 53 (2012), 2218–2227.
    • (2012) Leuk. Lymph. , vol.53 , pp. 2218-2227
    • Baig, N.A.1
  • 84
    • 84902831336 scopus 로고    scopus 로고
    • Chemoimmunotherapy for relapsed/refractory and progressive 17p13 deleted chronic lymphocytic leukemia (CLL) combining pentostatin alemtuzumab, and low Dose rituximab is effective and tolerable and limits loss of CD20 expression by circulating CLL cells
    • [84] Zent, C.S., et al. Chemoimmunotherapy for relapsed/refractory and progressive 17p13 deleted chronic lymphocytic leukemia (CLL) combining pentostatin alemtuzumab, and low Dose rituximab is effective and tolerable and limits loss of CD20 expression by circulating CLL cells. Am. J. Hematol. 89 (2014), 757–765.
    • (2014) Am. J. Hematol. , vol.89 , pp. 757-765
    • Zent, C.S.1
  • 85
    • 0015310970 scopus 로고
    • Role of antibody and complement in the immune clearance and destruction of erythrocytes. II. Molecular nature of IgG and IgM complement-fixing sites and effects of their interaction with serum
    • [85] Schreiber, A.D., Frank, M.M., Role of antibody and complement in the immune clearance and destruction of erythrocytes. II. Molecular nature of IgG and IgM complement-fixing sites and effects of their interaction with serum. J. Clin. Invest. 51 (1972), 583–589.
    • (1972) J. Clin. Invest. , vol.51 , pp. 583-589
    • Schreiber, A.D.1    Frank, M.M.2
  • 86
    • 0015310969 scopus 로고
    • Role of antibody and complement in the immune clearance and destruction of erythrocytes: i. In vivo effects of IgG and IgM complement fixing sites
    • [86] Schreiber, A.D., Frank, M.M., Role of antibody and complement in the immune clearance and destruction of erythrocytes: i. In vivo effects of IgG and IgM complement fixing sites. J. Clin. Invest. 51 (1972), 575–582.
    • (1972) J. Clin. Invest. , vol.51 , pp. 575-582
    • Schreiber, A.D.1    Frank, M.M.2
  • 87
    • 84896702806 scopus 로고    scopus 로고
    • Interactions Between the Complement System and Fcγ Receptors
    • M.E. Ackerman F. Nimmerjahn Elsevier Philadelphia, PA
    • [87] Lindorfer, M.A., Kohl, J., Taylor, R.P., Interactions Between the Complement System and Fcγ Receptors. Ackerman, M.E., Nimmerjahn, F., (eds.) Antibody Fc: Linking Adaptive and Innate Immunity, 2014, Elsevier, Philadelphia, PA, 49–74.
    • (2014) Antibody Fc: Linking Adaptive and Innate Immunity , pp. 49-74
    • Lindorfer, M.A.1    Kohl, J.2    Taylor, R.P.3
  • 88
    • 0033562981 scopus 로고    scopus 로고
    • Cutting Edge: fc receptor Type I for IgG macrophages and complement mediate the inflammatory response in immune complex peritonitis
    • [88] Heller, T., et al. Cutting Edge: fc receptor Type I for IgG macrophages and complement mediate the inflammatory response in immune complex peritonitis. J. Immunol. 162 (1999), 5657–5661.
    • (1999) J. Immunol. , vol.162 , pp. 5657-5661
    • Heller, T.1
  • 89
    • 24344435166 scopus 로고    scopus 로고
    • Fc receptors and their interaction with complement in autoimmunity
    • [89] Schmidt, R.E., Gessner, J.E., Fc receptors and their interaction with complement in autoimmunity. Immunol. Lett. 100 (2005), 56–67.
    • (2005) Immunol. Lett. , vol.100 , pp. 56-67
    • Schmidt, R.E.1    Gessner, J.E.2
  • 90
    • 38949121647 scopus 로고    scopus 로고
    • NK cell activation and antibody dependent cellular cytotoxicity induced by Rituximab-coated target cells is inhibited by the C3b component of complement
    • [90] Wang, S.Y., et al. NK cell activation and antibody dependent cellular cytotoxicity induced by Rituximab-coated target cells is inhibited by the C3b component of complement. Blood 111 (2008), 1456–1463.
    • (2008) Blood , vol.111 , pp. 1456-1463
    • Wang, S.Y.1
  • 91
    • 84883264834 scopus 로고    scopus 로고
    • GA101 induces NK-cell activation and antibody-dependent cellular cytotoxicity more effectively than rituximab when complement is present
    • [91] Kern, D.J., et al. GA101 induces NK-cell activation and antibody-dependent cellular cytotoxicity more effectively than rituximab when complement is present. Leuk. Lymph., 2013.
    • (2013) Leuk. Lymph.
    • Kern, D.J.1
  • 92
    • 84929885314 scopus 로고    scopus 로고
    • Building better monoclonal antibody-based therapeutics
    • [92] Weiner, G.J., Building better monoclonal antibody-based therapeutics. Nat. Rev. Cancer 15 (2015), 361–370.
    • (2015) Nat. Rev. Cancer , vol.15 , pp. 361-370
    • Weiner, G.J.1
  • 93
    • 80053211245 scopus 로고    scopus 로고
    • Rituximab infusion induces NK activation in lymphoma patients with the high-affinity CD16 polymorphism
    • [93] Veermani, S., et al. Rituximab infusion induces NK activation in lymphoma patients with the high-affinity CD16 polymorphism. Blood 118 (2011), 3347–3349.
    • (2011) Blood , vol.118 , pp. 3347-3349
    • Veermani, S.1
  • 94
    • 84925541793 scopus 로고    scopus 로고
    • Local expression of complement factor I in breast cancer cells correlates with poor survival and recurrence
    • [94] Okroj, M., et al. Local expression of complement factor I in breast cancer cells correlates with poor survival and recurrence. Cancer Immunol. Immunother. 64 (2015), 467–478.
    • (2015) Cancer Immunol. Immunother. , vol.64 , pp. 467-478
    • Okroj, M.1
  • 95
    • 84867919350 scopus 로고    scopus 로고
    • Anaphylatoxin C5a creates a favorable microenviornment for lung cancer progression
    • [95] Corrales, L.A.D., et al. Anaphylatoxin C5a creates a favorable microenviornment for lung cancer progression. J. Immunol. 189 (2012), 4674–4683.
    • (2012) J. Immunol. , vol.189 , pp. 4674-4683
    • Corrales, L.A.D.1
  • 96
    • 54549109936 scopus 로고    scopus 로고
    • Modulation of the antitumor immune response by complement
    • [96] Markiewski, M.M., et al. Modulation of the antitumor immune response by complement. Nat. Immunol. 9 (2008), 1225–1235.
    • (2008) Nat. Immunol. , vol.9 , pp. 1225-1235
    • Markiewski, M.M.1
  • 97
    • 64149086047 scopus 로고    scopus 로고
    • Complement-mediated tumour growth: implications for cancer nanotechnology and nanomedicines
    • [97] Moghimi, S.M., Andersen, T.L., Complement-mediated tumour growth: implications for cancer nanotechnology and nanomedicines. Mol. Immunol. 46 (2009), 1571–1572.
    • (2009) Mol. Immunol. , vol.46 , pp. 1571-1572
    • Moghimi, S.M.1    Andersen, T.L.2
  • 99
    • 78649647356 scopus 로고    scopus 로고
    • Cancer and the complement cascade
    • [99] Rutkowski, M.J., et al. Cancer and the complement cascade. Mol. Canc. Res. 8 (2010), 1453–1465.
    • (2010) Mol. Canc. Res. , vol.8 , pp. 1453-1465
    • Rutkowski, M.J.1
  • 100
    • 84920921429 scopus 로고    scopus 로고
    • Complement activation in Glioblastoma Multiforme pathophysiology: evidence from serum levels and presence of complement activation products in tumor tissue
    • [100] Bouwens, T.A.M., et al. Complement activation in Glioblastoma Multiforme pathophysiology: evidence from serum levels and presence of complement activation products in tumor tissue. J. Neuroimmunol. 278 (2015), 271–276.
    • (2015) J. Neuroimmunol. , vol.278 , pp. 271-276
    • Bouwens, T.A.M.1
  • 101
    • 33751327802 scopus 로고    scopus 로고
    • Quantitative analysis of protein co-localization on B cells opsonized with rituximab and complement using the ImageStream multispectral imaging flow cytometer
    • [101] Beum, P.V., et al. Quantitative analysis of protein co-localization on B cells opsonized with rituximab and complement using the ImageStream multispectral imaging flow cytometer. J. Immunol. Methods 317 (2006), 90–99.
    • (2006) J. Immunol. Methods , vol.317 , pp. 90-99
    • Beum, P.V.1
  • 102
    • 33745324686 scopus 로고    scopus 로고
    • The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20
    • [102] Teeling, J.L., et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J. Immunol. 177 (2006), 362–371.
    • (2006) J. Immunol. , vol.177 , pp. 362-371
    • Teeling, J.L.1
  • 103
    • 33750816429 scopus 로고    scopus 로고
    • Thrice-weekly low-dose rituximab decreases CD20 loss via shaving and promotes enhanced targeting in chronic lymphocytic leukemia
    • [103] Williams, M.E., et al. Thrice-weekly low-dose rituximab decreases CD20 loss via shaving and promotes enhanced targeting in chronic lymphocytic leukemia. J. Immunol. 177 (2006), 7435–7443.
    • (2006) J. Immunol. , vol.177 , pp. 7435-7443
    • Williams, M.E.1
  • 104
    • 0024566393 scopus 로고
    • Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype
    • [104] Dyer, M.J.S., et al. Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood 73 (1989), 1431–1439.
    • (1989) Blood , vol.73 , pp. 1431-1439
    • Dyer, M.J.S.1
  • 105
    • 84949633856 scopus 로고    scopus 로고
    • Real-time analysis of the detailed sequence of cellular events in mAb-mediated complement-dependent cytotoxicity of B-cell lines and of chronic lymphocytic leukemia B-cells
    • [105] Lindorfer, M.A., et al. Real-time analysis of the detailed sequence of cellular events in mAb-mediated complement-dependent cytotoxicity of B-cell lines and of chronic lymphocytic leukemia B-cells. Mol. Immunol. 70 (2016), 13–23.
    • (2016) Mol. Immunol. , vol.70 , pp. 13-23
    • Lindorfer, M.A.1
  • 106
    • 78649813499 scopus 로고    scopus 로고
    • HuMab-7D8 a monoclonal antibody directed against the membrane-proximal small loop epitope of CD20, can effectively eliminate CD20 low expressing tumor cells that resist rituximab mediated lysis
    • [106] van Meerten, T., et al. HuMab-7D8 a monoclonal antibody directed against the membrane-proximal small loop epitope of CD20, can effectively eliminate CD20 low expressing tumor cells that resist rituximab mediated lysis. Haematologica 95 (2010), 2063–2071.
    • (2010) Haematologica , vol.95 , pp. 2063-2071
    • van Meerten, T.1
  • 107
    • 68949129063 scopus 로고    scopus 로고
    • Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX
    • [107] Pawluczkowycz, A.W., et al. Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX. J. Immunol. 183 (2009), 749–758.
    • (2009) J. Immunol. , vol.183 , pp. 749-758
    • Pawluczkowycz, A.W.1
  • 108
    • 0023765625 scopus 로고
    • Human monoclonal IgG isotypes differ in complement activating function at the level of C4 as well as C1q
    • [108] Bindon, C.I., et al. Human monoclonal IgG isotypes differ in complement activating function at the level of C4 as well as C1q. J. Exp. Med. 168 (1988), 127–142.
    • (1988) J. Exp. Med. , vol.168 , pp. 127-142
    • Bindon, C.I.1
  • 109
    • 0018636340 scopus 로고
    • Calcium dependence of toxic cell death: a final common pathway
    • [109] Schanne, F.A.X., et al. Calcium dependence of toxic cell death: a final common pathway. Science 206 (1979), 700–702.
    • (1979) Science , vol.206 , pp. 700-702
    • Schanne, F.A.X.1
  • 110
    • 84889831910 scopus 로고    scopus 로고
    • Production of stable bispecific IgG1 by controlled Fab-arm exchange: scalability from bench to large-scale manufacturing by application of standard approaches
    • [110] Gramer, M.J., et al. Production of stable bispecific IgG1 by controlled Fab-arm exchange: scalability from bench to large-scale manufacturing by application of standard approaches. mAbs 55 (2013), 962–973.
    • (2013) mAbs , vol.55 , pp. 962-973
    • Gramer, M.J.1
  • 111
    • 84875542050 scopus 로고    scopus 로고
    • Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange
    • [111] Labrijn, A.F., et al. Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 5145–5150.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 5145-5150
    • Labrijn, A.F.1
  • 112
    • 35948989248 scopus 로고    scopus 로고
    • In vivo targeting of human neutralizing antibodies against CD55 and CD59 to lymphoma cells increases the antitumor activity of rituximab
    • [112] Macor, P., et al. In vivo targeting of human neutralizing antibodies against CD55 and CD59 to lymphoma cells increases the antitumor activity of rituximab. Cancer Res. 67 (2007), 10556–10563.
    • (2007) Cancer Res. , vol.67 , pp. 10556-10563
    • Macor, P.1
  • 113
    • 38049049866 scopus 로고    scopus 로고
    • Rapid conditional targeted ablation of cells expressing human CD59 in transgenic mice by intermedilysin
    • [113] Hu, W., et al. Rapid conditional targeted ablation of cells expressing human CD59 in transgenic mice by intermedilysin. Nat. Med. 14 (2008), 98–103.
    • (2008) Nat. Med. , vol.14 , pp. 98-103
    • Hu, W.1
  • 114
    • 84921745242 scopus 로고    scopus 로고
    • Fcγ-receptor-mediated trogocytosis impacts mAb-based therapies: historical precedence and recent developments
    • [114] Taylor, R.P., Lindorfer, M.A., Fcγ-receptor-mediated trogocytosis impacts mAb-based therapies: historical precedence and recent developments. Blood 125 (2015), 762–766.
    • (2015) Blood , vol.125 , pp. 762-766
    • Taylor, R.P.1    Lindorfer, M.A.2
  • 115
    • 84959096243 scopus 로고    scopus 로고
    • A Phase II randomized trial comparing standard and low Dose rituximab combined with alemtuzumab as initial treatment of progressive chronic lymphocytic leukemia in older patients: a trial of the ECOG-ACRIN Cancer Research Group (E1908)
    • [115] Zent, C.S., et al. A Phase II randomized trial comparing standard and low Dose rituximab combined with alemtuzumab as initial treatment of progressive chronic lymphocytic leukemia in older patients: a trial of the ECOG-ACRIN Cancer Research Group (E1908). Am. J. Hematol., 2016.
    • (2016) Am. J. Hematol.
    • Zent, C.S.1
  • 116
    • 0001321260 scopus 로고
    • Complement fixation on cell surfaces by 19S and 7S antibodies
    • [116] Borsos, T., Rapp, H.J., Complement fixation on cell surfaces by 19S and 7S antibodies. Science 150 (1965), 505–506.
    • (1965) Science , vol.150 , pp. 505-506
    • Borsos, T.1    Rapp, H.J.2
  • 117
    • 84901424236 scopus 로고    scopus 로고
    • Mortalin/GRP75 binds to complement C9 and plays a role in resistance to complement-dependent cytotoxicity
    • [117] Saar Ray, M., et al. Mortalin/GRP75 binds to complement C9 and plays a role in resistance to complement-dependent cytotoxicity. J. Biol. Chem. 289 (2014), 15014–15022.
    • (2014) J. Biol. Chem. , vol.289 , pp. 15014-15022
    • Saar Ray, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.