메뉴 건너뛰기




Volumn 25, Issue 1, 2018, Pages 256-270

Bayesian latent variable models for the analysis of experimental psychology data

Author keywords

Bayesian statistics; Decision making

Indexed keywords

BAYES THEOREM; DECISION MAKING; FACTOR ANALYSIS; HUMAN; PSYCHOLOGY; RISK; STATISTICAL MODEL; THEORETICAL MODEL;

EID: 84961207292     PISSN: 10699384     EISSN: 15315320     Source Type: Journal    
DOI: 10.3758/s13423-016-1016-7     Document Type: Article
Times cited : (20)

References (79)
  • 1
    • 0000418254 scopus 로고
    • On the use of structural equation models in experimental designs
    • Bagozzi, R. P., & Yi, Y. (1989). On the use of structural equation models in experimental designs. Journal of Marketing Research, 26, 271–284.
    • (1989) Journal of Marketing Research , vol.26 , pp. 271-284
    • Bagozzi, R.P.1    Yi, Y.2
  • 2
    • 0034557223 scopus 로고    scopus 로고
    • Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage
    • Barnard, J., McCulloch, R., & Meng, X. L. (2000). Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Statistica Sinica, 10, 1281–1311.
    • (2000) Statistica Sinica , vol.10 , pp. 1281-1311
    • Barnard, J.1    McCulloch, R.2    Meng, X.L.3
  • 6
    • 0035590060 scopus 로고    scopus 로고
    • An overview of analytic rotation in exploratory factor analysis
    • Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111–150.
    • (2001) Multivariate Behavioral Research , vol.36 , pp. 111-150
    • Browne, M.W.1
  • 7
    • 0000911137 scopus 로고    scopus 로고
    • Analysis of multivariate probit models
    • Chib, S., & Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika, 85, 347–361.
    • (1998) Biometrika , vol.85 , pp. 347-361
    • Chib, S.1    Greenberg, E.2
  • 10
    • 84862593521 scopus 로고    scopus 로고
    • BUGS code for item response theory
    • Curtis, S. M. (2010). BUGS code for item response theory. Journal of Statistical Software, 36, 1–34.
    • (2010) Journal of Statistical Software , vol.36 , pp. 1-34
    • Curtis, S.M.1
  • 11
    • 0000769831 scopus 로고
    • The weighted likelihood ratio, sharp hypotheses about chances, the order of a Markov chain
    • Dickey, J. M., & Lientz, B. P. (1970). The weighted likelihood ratio, sharp hypotheses about chances, the order of a Markov chain. The Annals of Mathematical Statistics, 41, 214–226.
    • (1970) The Annals of Mathematical Statistics , vol.41 , pp. 214-226
    • Dickey, J.M.1    Lientz, B.P.2
  • 12
    • 0141514390 scopus 로고    scopus 로고
    • General linear contrasts on latent variable means: Structural equation hypothesis tests for multivariate clinical trials
    • PID: 12953287
    • Donaldson, G. W. (2003). General linear contrasts on latent variable means: Structural equation hypothesis tests for multivariate clinical trials. Statistics in Medicine, 22, 2893–2917.
    • (2003) Statistics in Medicine , vol.22 , pp. 2893-2917
    • Donaldson, G.W.1
  • 13
    • 84878975708 scopus 로고    scopus 로고
    • Bayes model selection with path sampling: Factor models and other examples
    • Dutta, R., & Ghosh, J. K. (2013). Bayes model selection with path sampling: Factor models and other examples. Statistical Science, 28, 95–115.
    • (2013) Statistical Science , vol.28 , pp. 95-115
    • Dutta, R.1    Ghosh, J.K.2
  • 15
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 3, 515–534.
    • (2006) Bayesian Analysis , vol.3 , pp. 515-534
    • Gelman, A.1
  • 17
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
    • Meng, X. L. (1998). Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science, 13, 163–185.
    • (1998) Statistical Science , vol.13 , pp. 163-185
    • Meng, X.L.1
  • 18
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statistical Science, 7, 457–511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 19
    • 72649086818 scopus 로고    scopus 로고
    • Default prior distributions and efficient posterior computation in Bayesian factor analysis
    • PID: 23997568
    • Ghosh, J., & Dunson, D. B. (2009). Default prior distributions and efficient posterior computation in Bayesian factor analysis. Journal of Computational and Graphical Statistics, 18, 306–320.
    • (2009) Journal of Computational and Graphical Statistics , vol.18 , pp. 306-320
    • Ghosh, J.1    Dunson, D.B.2
  • 20
    • 33749832015 scopus 로고    scopus 로고
    • Determining the number of factors in exploratory and confirmatory factor analysis
    • In, Kaplan, D. Ed. Thousand Oaks, CA, Sage
    • Hoyle, R. H., & Duvall, J. L. (2004). Determining the number of factors in exploratory and confirmatory factor analysis. In Kaplan, D. (Ed.), The Sage handbook of quantitative methodology for the social sciences (pp. 301–316). Thousand Oaks, CA: Sage.
    • (2004) The Sage handbook of quantitative methodology for the social sciences , pp. 301-316
    • Hoyle, R.H.1    Duvall, J.L.2
  • 21
    • 0002541945 scopus 로고
    • Ockham’s razor and Bayesian analysis
    • Jefferys, W., & Berger, J. O. (1992). Ockham’s razor and Bayesian analysis. American Scientist, 80, 64–72.
    • (1992) American Scientist , vol.80 , pp. 64-72
    • Jefferys, W.1    Berger, J.O.2
  • 22
    • 34250481868 scopus 로고
    • A general approach to confirmatory maximum likelihood factor analysis
    • Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183–202.
    • (1969) Psychometrika , vol.34 , pp. 183-202
    • Jöreskog, K.G.1
  • 25
    • 0034559665 scopus 로고    scopus 로고
    • Maximum likelihood estimation of latent interaction effects with the LMS method
    • Klein, A., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65, 457–474.
    • (2000) Psychometrika , vol.65 , pp. 457-474
    • Klein, A.1    Moosbrugger, H.2
  • 26
    • 54949124739 scopus 로고    scopus 로고
    • Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects
    • Klein, A., & Muthén, B. O. (2007). Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects. Multivariate Behavioral Research, 42, 647–673.
    • (2007) Multivariate Behavioral Research , vol.42 , pp. 647-673
    • Klein, A.1    Muthén, B.O.2
  • 28
    • 0002603162 scopus 로고
    • A Bayesian approach to confirmatory factor analysis
    • Lee, S. Y. (1981). A Bayesian approach to confirmatory factor analysis. Psychometrika, 46, 153–160.
    • (1981) Psychometrika , vol.46 , pp. 153-160
    • Lee, S.Y.1
  • 30
    • 2242448298 scopus 로고    scopus 로고
    • Bayesian selection on the number of factors in a factor analysis model
    • Lee, S. Y., & Song, X. Y. (2002). Bayesian selection on the number of factors in a factor analysis model. Behaviormetrika, 29, 23–39.
    • (2002) Behaviormetrika , vol.29 , pp. 23-39
    • Lee, S.Y.1    Song, X.Y.2
  • 31
    • 34548063939 scopus 로고    scopus 로고
    • Bayesian methods for analyzing structural equation models with covariates, interaction, and quadratic latent variables
    • Lee, S. Y., Song, X. Y., & Tang, N. S. (2007). Bayesian methods for analyzing structural equation models with covariates, interaction, and quadratic latent variables. Structural Equation Modeling, 14, 404–434.
    • (2007) Structural Equation Modeling , vol.14 , pp. 404-434
    • Lee, S.Y.1    Song, X.Y.2    Tang, N.S.3
  • 32
    • 0031514994 scopus 로고    scopus 로고
    • Estimating Bayes factors via posterior simulation with the Laplace-Metropolis estimator
    • Lewis, S. M., & Raftery, A. E. (1997). Estimating Bayes factors via posterior simulation with the Laplace-Metropolis estimator. Journal of the American Statistical Association, 92, 648–655.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 648-655
    • Lewis, S.M.1    Raftery, A.E.2
  • 33
    • 56549109467 scopus 로고    scopus 로고
    • Bayes factors: Prior sensitivity and model generalizability
    • Liu, C. C., & Aitkin, M. (2008). Bayes factors: Prior sensitivity and model generalizability. Journal of Mathematical Psychology, 52, 362–375.
    • (2008) Journal of Mathematical Psychology , vol.52 , pp. 362-375
    • Liu, C.C.1    Aitkin, M.2
  • 34
    • 1842539381 scopus 로고    scopus 로고
    • Bayesian model assessment in factor analysis
    • Lopes, H. F., & West, M. (2004). Bayesian model assessment in factor analysis. Statistica Sinica, 14, 41–67.
    • (2004) Statistica Sinica , vol.14 , pp. 41-67
    • Lopes, H.F.1    West, M.2
  • 36
    • 84874392393 scopus 로고    scopus 로고
    • Hopes and cautions in implementing Bayesian structural equation modeling
    • PID: 22962888
    • MacCallum, R. C., Edwards, M. C., & Cai, L. (2012). Hopes and cautions in implementing Bayesian structural equation modeling. Psychological Methods, 17, 340–345.
    • (2012) Psychological Methods , vol.17 , pp. 340-345
    • MacCallum, R.C.1    Edwards, M.C.2    Cai, L.3
  • 37
    • 84895154325 scopus 로고    scopus 로고
    • Structural equation models of latent interaction and quadratic effects
    • In, Hancock, G R, Mueller, R O, (Eds. Information Age Publishing
    • Marsh, H. W., Wen, Z., Hau, K. T., & Nagengast, B. (2013). Structural equation models of latent interaction and quadratic effects. In Hancock, G R, & Mueller, R O (Eds.), Structural equation modeling: A second course, 2nd edn. (pp. 267–308). Information Age Publishing.
    • (2013) Structural equation modeling: A second course, 2nd edn. (267–308)
    • Marsh, H.W.1    Wen, Z.2    Hau, K.T.3    Nagengast, B.4
  • 38
    • 0000237150 scopus 로고
    • Bayesian estimation in unrestricted factor analysis: A treatment for Heywood cases
    • Martin, J. K., & McDonald, R. P. (1975). Bayesian estimation in unrestricted factor analysis: A treatment for Heywood cases. Psychometrika, 40, 505–517.
    • (1975) Psychometrika , vol.40 , pp. 505-517
    • Martin, J.K.1    McDonald, R.P.2
  • 39
    • 79955057550 scopus 로고    scopus 로고
    • A comparison of imputation methods for Bayesian factor analysis models
    • Merkle, E. C. (2011). A comparison of imputation methods for Bayesian factor analysis models. Journal of Educational and Behavioral Statistics, 36, 257–276.
    • (2011) Journal of Educational and Behavioral Statistics , vol.36 , pp. 257-276
    • Merkle, E.C.1
  • 42
    • 0034242442 scopus 로고    scopus 로고
    • The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis
    • PID: 10945922
    • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.
    • (2000) Cognitive Psychology , vol.41 , pp. 49-100
    • Miyake, A.1    Friedman, N.P.2    Emerson, M.J.3    Witzki, A.H.4    Howerter, A.5
  • 43
    • 84873047637 scopus 로고    scopus 로고
    • Bayesian structural equation modeling: A more flexible representation of substantive theory
    • PID: 22962886
    • Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17, 313–335.
    • (2012) Psychological Methods , vol.17 , pp. 313-335
    • Muthén, B.1    Asparouhov, T.2
  • 45
    • 84926459494 scopus 로고    scopus 로고
    • Individual differencesin attention influence perceptual decision making
    • Nunez, M. D., Srinivasan, R., & Vandekerckhove, J. (2015). Individual differencesin attention influence perceptual decision making. Frontiers in Psychology, 8(18), 1–13.
    • (2015) Frontiers in Psychology , vol.8 , Issue.18 , pp. 1-13
    • Nunez, M.D.1    Srinivasan, R.2    Vandekerckhove, J.3
  • 48
    • 84858445409 scopus 로고    scopus 로고
    • Rotational uniquenessconditions under oblique factor correlation metric
    • Peeters, C. F. W. (2012b). Rotational uniquenessconditions under oblique factor correlation metric. Psychometrika, 77, 288–292.
    • (2012) Psychometrika , vol.77 , pp. 288-292
    • Peeters, C.F.W.1
  • 49
    • 84926308887 scopus 로고    scopus 로고
    • Pathophysiological domains underlying the metabolic syndrome: An alternative factor analyticstrategy
    • PID: 25238942
    • Peeters, C. F. W., Dziura, J., & van Wesel, F. (2014). Pathophysiological domains underlying the metabolic syndrome: An alternative factor analyticstrategy. Annals of Epidemiology, 24, 762–770.
    • (2014) Annals of Epidemiology , vol.24 , pp. 762-770
    • Peeters, C.F.W.1    Dziura, J.2    van Wesel, F.3
  • 50
    • 69049086361 scopus 로고    scopus 로고
    • Dissecting the risky-choice framing effect: Numeracy as an individual-difference factor inweighting risky and riskless options
    • Peters, E., & Levin, I. P. (2008). Dissecting the risky-choice framing effect: Numeracy as an individual-difference factor inweighting risky and riskless options. Judgment and Decision Making, 3, 435–448.
    • (2008) Judgment and Decision Making , vol.3 , pp. 435-448
    • Peters, E.1    Levin, I.P.2
  • 53
  • 56
    • 0002884680 scopus 로고
    • Bayesian model selection in structuralequation models
    • In, Bollen, K. A. Long, J. S. Eds. Beverly Hills, CA, Sage
    • Raftery, A. E. (1993). Bayesian model selection in structuralequation models. In Bollen, K. A., & Long, J. S. (Eds.), Testing structural equation models (pp. 163–180). Beverly Hills, CA: Sage.
    • (1993) Testing structural equation models , pp. 163-180
    • Raftery, A.E.1
  • 57
    • 21844489614 scopus 로고
    • A necessary and sufficient identification rule for structural models estimated in practice
    • PID: 26789940
    • Rigdon, E. E. (1995). A necessary and sufficient identification rule for structural models estimated in practice. Multivariate Behavioral Research, 30(3), 359–383.
    • (1995) Multivariate Behavioral Research , vol.30 , Issue.3 , pp. 359-383
    • Rigdon, E.E.1
  • 59
    • 84872533686 scopus 로고    scopus 로고
    • Default Bayes factors for model selection in regression
    • PID: 26735007
    • Rouder, J. N., & Morey, R. D. (2012). Default Bayes factors for model selection in regression. Multivariate Behavioral Research, 47, 877–903.
    • (2012) Multivariate Behavioral Research , vol.47 , pp. 877-903
    • Rouder, J.N.1    Morey, R.D.2
  • 61
    • 0001859710 scopus 로고    scopus 로고
    • Analyzing data from experimental studies: A latent variable structural equation modelingapproach
    • Russell, D. W., Kahn, J. H., Spoth, R., & Altmaier, E. M. (1998). Analyzing data from experimental studies: A latent variable structural equation modelingapproach. Journal of Counseling Psychology, 45, 18–29.
    • (1998) Journal of Counseling Psychology , vol.45 , pp. 18-29
    • Russell, D.W.1    Kahn, J.H.2    Spoth, R.3    Altmaier, E.M.4
  • 62
    • 0033247467 scopus 로고    scopus 로고
    • Bayesian estimation and testing ofstructural equation models
    • Scheines, R., Hoijtink, H., & Boomsma, A. (1999). Bayesian estimation and testing ofstructural equation models. Psychometrika, 64, 37–52.
    • (1999) Psychometrika , vol.64 , pp. 37-52
    • Scheines, R.1    Hoijtink, H.2    Boomsma, A.3
  • 64
    • 84862609398 scopus 로고    scopus 로고
    • A tutorial on the Bayesian approach for analyzing structural equation models
    • Song, X. Y., & Lee, S. Y. (2012b). A tutorial on the Bayesian approach for analyzing structural equation models. Journal of Mathematical Psychology, 56, 135–148.
    • (2012) Journal of Mathematical Psychology , vol.56 , pp. 135-148
    • Song, X.Y.1    Lee, S.Y.2
  • 65
    • 0000458172 scopus 로고
    • Bayes factors for linear and log-linear models with vague prior information. Journal of the Royal Statistical Society B, 44, 377–387
    • Spiegelhalter, D. J., & Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information. Journal of the Royal Statistical Society B, 44, 377–387. Journal of the Royal Statistical Society B, 44, 377–387.
    • (1982) Journal of the Royal Statistical Society B , vol.44 , pp. 377-387
    • Spiegelhalter, D.J.1    Smith, A.F.M.2
  • 70
    • 33646425038 scopus 로고    scopus 로고
    • Two interpretations of the discrimination parameter
    • Tuerlinckx, F., & De Boeck, P. (2005). Two interpretations of the discrimination parameter. Psychometrika, 70, 629–650.
    • (2005) Psychometrika , vol.70 , pp. 629-650
    • Tuerlinckx, F.1    De Boeck, P.2
  • 72
    • 84926337058 scopus 로고    scopus 로고
    • Informing cognitive abstractions through neuroimaging: The neural drift diffusionmodel
    • PID: 25844875
    • Turner, B. M., van Maanen, L., & Forstmann, B. U. (2015). Informing cognitive abstractions through neuroimaging: The neural drift diffusionmodel. Psychological Review, 122, 312–336.
    • (2015) Psychological Review , vol.122 , pp. 312-336
    • Turner, B.M.1    van Maanen, L.2    Forstmann, B.U.3
  • 73
    • 0019392722 scopus 로고
    • The framing of decisions and the psychology of choice
    • PID: 7455683
    • Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211, 453–458.
    • (1981) Science , vol.211 , pp. 453-458
    • Tversky, A.1    Kahneman, D.2
  • 74
    • 79955004063 scopus 로고    scopus 로고
    • Cognitive psychology meets psychometric theory: On the relation between process models for decision making and latent variable models for individual differences
    • PID: 21401290
    • van der Maas, H. L. J., Molenaar, D., Maris, G., Kievit, R. A., & Borsboom, D. (2011). Cognitive psychology meets psychometric theory: On the relation between process models for decision making and latent variable models for individual differences. Psychological Review, 118, 339–356.
    • (2011) Psychological Review , vol.118 , pp. 339-356
    • van der Maas, H.L.J.1    Molenaar, D.2    Maris, G.3    Kievit, R.A.4    Borsboom, D.5
  • 75
    • 84904256369 scopus 로고    scopus 로고
    • A cognitive latent variable model for the simultaneous analysis of behavioral and personality data
    • Vandekerckhove, J. (2014). A cognitive latent variable model for the simultaneous analysis of behavioral and personality data. Journal of Mathematical Psychology, 60, 58–71.
    • (2014) Journal of Mathematical Psychology , vol.60 , pp. 58-71
    • Vandekerckhove, J.1
  • 76
    • 78149409945 scopus 로고    scopus 로고
    • Prior sensitivity intheory testing: An apologia for the Bayes factor
    • Vanpaemel, W. (2010). Prior sensitivity intheory testing: An apologia for the Bayes factor. Journal of Mathematical Psychology, 54, 491–498.
    • (2010) Journal of Mathematical Psychology , vol.54 , pp. 491-498
    • Vanpaemel, W.1
  • 78
    • 77649192250 scopus 로고    scopus 로고
    • Bayesian hypothesis testing for psychologists: A tutorial on the Savage-Dickeymethod
    • PID: 20064637
    • Wagenmakers, E. J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis testing for psychologists: A tutorial on the Savage-Dickeymethod. Cognitive Psychology, 60, 158–189.
    • (2010) Cognitive Psychology , vol.60 , pp. 158-189
    • Wagenmakers, E.J.1    Lodewyckx, T.2    Kuriyal, H.3    Grasman, R.4
  • 79
    • 32644464671 scopus 로고    scopus 로고
    • Stereotype threat and group differences in test performance: A question of measurement invariance
    • PID: 16351363
    • Wicherts, J. M., Dolan, C. V., & Hessen, D. J. (2005). Stereotype threat and group differences in test performance: A question of measurement invariance. Journal of Personality and Social Psychology, 89(5), 696–716.
    • (2005) Journal of Personality and Social Psychology , vol.89 , Issue.5 , pp. 696-716
    • Wicherts, J.M.1    Dolan, C.V.2    Hessen, D.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.