메뉴 건너뛰기




Volumn 56, Issue 3, 2012, Pages 135-148

A tutorial on the Bayesian approach for analyzing structural equation models

Author keywords

Bayesian analysis; Markov chain Monte Carlo (MCMC) methods; Structural equation models

Indexed keywords


EID: 84862609398     PISSN: 00222496     EISSN: 10960880     Source Type: Journal    
DOI: 10.1016/j.jmp.2012.02.001     Document Type: Article
Times cited : (59)

References (47)
  • 1
    • 0034557673 scopus 로고    scopus 로고
    • Bayesian factor analysis for multilevel binary observations
    • Ansari A., Jedidi K. Bayesian factor analysis for multilevel binary observations. Psychometrika 2000, 65:475-498.
    • (2000) Psychometrika , vol.65 , pp. 475-498
    • Ansari, A.1    Jedidi, K.2
  • 2
    • 0034257394 scopus 로고    scopus 로고
    • A hierarchical Bayesian methodology for treating heterogeneity in structural equation models
    • Ansari A., Jedidi K., Jagpal S. A hierarchical Bayesian methodology for treating heterogeneity in structural equation models. Marketing Science 2000, 19:328-347.
    • (2000) Marketing Science , vol.19 , pp. 328-347
    • Ansari, A.1    Jedidi, K.2    Jagpal, S.3
  • 5
    • 0032329779 scopus 로고    scopus 로고
    • A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm
    • Arminger G., Muthen B. A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm. Psychometrika 1998, 63:271-300.
    • (1998) Psychometrika , vol.63 , pp. 271-300
    • Arminger, G.1    Muthen, B.2
  • 7
    • 84950900304 scopus 로고
    • Testing a point null hypothesis: irreconcilability of p values and evidence
    • Berger J.O., Sellke T. Testing a point null hypothesis: irreconcilability of p values and evidence. Journal of American Statistical Association 1987, 82:112-122.
    • (1987) Journal of American Statistical Association , vol.82 , pp. 112-122
    • Berger, J.O.1    Sellke, T.2
  • 14
    • 0242595643 scopus 로고    scopus 로고
    • Dynamic latent trait models for multidimensional longitudinal data
    • Dunson D.B. Dynamic latent trait models for multidimensional longitudinal data. Journal of American Statistical Association 2003, 98:555-563.
    • (2003) Journal of American Statistical Association , vol.98 , pp. 555-563
    • Dunson, D.B.1
  • 15
    • 21644435901 scopus 로고    scopus 로고
    • Bayesian latent variable models for mixed discrete outcomes
    • Dunson D.B., Herring A. Bayesian latent variable models for mixed discrete outcomes. Biostatistics 2005, 6:11-25.
    • (2005) Biostatistics , vol.6 , pp. 11-25
    • Dunson, D.B.1    Herring, A.2
  • 17
    • 0001582213 scopus 로고    scopus 로고
    • Inference and monitoring convergence
    • Chapman and Hall, London, W.R. Gilks, S. Richardson, D.J. Spiegelhalter (Eds.)
    • Gelman A. Inference and monitoring convergence. Markov chain Monte Carlo in practice 1996, 131-144. Chapman and Hall, London. W.R. Gilks, S. Richardson, D.J. Spiegelhalter (Eds.).
    • (1996) Markov chain Monte Carlo in practice , pp. 131-144
    • Gelman, A.1
  • 19
    • 53549120837 scopus 로고    scopus 로고
    • Simulating normalizing constant: from importance sampling to bridge sampling to path sampling
    • Gelman A., Meng L. Simulating normalizing constant: from importance sampling to bridge sampling to path sampling. Statistical Science 1998, 6:733-759.
    • (1998) Statistical Science , vol.6 , pp. 733-759
    • Gelman, A.1    Meng, L.2
  • 20
    • 25444484077 scopus 로고    scopus 로고
    • Posterior predictive assessment of model fitness via realized discrepancies
    • Gelman A., Meng S.L., Stern H. Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica 1996, 6:733-759.
    • (1996) Statistica Sinica , vol.6 , pp. 733-759
    • Gelman, A.1    Meng, S.L.2    Stern, H.3
  • 22
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their application
    • Hastings W.K. Monte Carlo sampling methods using Markov chains and their application. Biometrika 1970, 57:97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 23
    • 58749111814 scopus 로고    scopus 로고
    • Bayesian structural equation modeling method for hierarchical model validation
    • Jiang X., Mahadevan S. Bayesian structural equation modeling method for hierarchical model validation. Reliability Engineering and System Safety 2009, 94:796-809.
    • (2009) Reliability Engineering and System Safety , vol.94 , pp. 796-809
    • Jiang, X.1    Mahadevan, S.2
  • 27
    • 0038810230 scopus 로고    scopus 로고
    • Model comparison of nonlinear structural equation models with fixed covariates
    • Lee S.Y., Song X.Y. Model comparison of nonlinear structural equation models with fixed covariates. Psychometrika 2003, 68:27-47.
    • (2003) Psychometrika , vol.68 , pp. 27-47
    • Lee, S.Y.1    Song, X.Y.2
  • 28
    • 19844369721 scopus 로고    scopus 로고
    • Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes
    • Lee S.Y., Song X.Y. Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behavioral Research 2004, 39:653-686.
    • (2004) Multivariate Behavioral Research , vol.39 , pp. 653-686
    • Lee, S.Y.1    Song, X.Y.2
  • 31
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility
    • Lunn D.J., Thomas A., Best N.G., Spiegelhalter D.J. WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 2000, 10:325-337.
    • (2000) Statistics and Computing , vol.10 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.G.3    Spiegelhalter, D.J.4
  • 32
    • 21444451325 scopus 로고    scopus 로고
    • Simulating ratios of normalizing constants via a simple identity: a theoretical exploration
    • Meng X.L., Wong W.H. Simulating ratios of normalizing constants via a simple identity: a theoretical exploration. Statistica Sinica 1996, 6:831-860.
    • (1996) Statistica Sinica , vol.6 , pp. 831-860
    • Meng, X.L.1    Wong, W.H.2
  • 35
    • 0035998146 scopus 로고    scopus 로고
    • Analysis of structural equation model with ignorable missing continuous and polytomous data
    • Song X.Y., Lee S.Y. Analysis of structural equation model with ignorable missing continuous and polytomous data. Psychometrika 2002, 67:261-288.
    • (2002) Psychometrika , vol.67 , pp. 261-288
    • Song, X.Y.1    Lee, S.Y.2
  • 36
    • 2642526972 scopus 로고    scopus 로고
    • Bayesian analysis of two-level nonlinear structural equation models with continuous and polytomous data
    • Song X.Y., Lee S.Y. Bayesian analysis of two-level nonlinear structural equation models with continuous and polytomous data. British Journal of Mathematical and Statistical Psychology 2004, 57:29-52.
    • (2004) British Journal of Mathematical and Statistical Psychology , vol.57 , pp. 29-52
    • Song, X.Y.1    Lee, S.Y.2
  • 37
    • 67650663213 scopus 로고    scopus 로고
    • Phenotype-genotype interactions on renal function in type 2 diabetes-an analysis using structural equation modeling
    • Song X.Y., Lee S.Y., Ma R.C.W., So W.Y., Cai J.H., Ying W., et al. Phenotype-genotype interactions on renal function in type 2 diabetes-an analysis using structural equation modeling. Diabetologia 2009, 52:1543-1553.
    • (2009) Diabetologia , vol.52 , pp. 1543-1553
    • Song, X.Y.1    Lee, S.Y.2    Ma, R.C.W.3    So, W.Y.4    Cai, J.H.5    Ying, W.6
  • 38
    • 69949095876 scopus 로고    scopus 로고
    • Bayesian semiparametric analysis of structural equation models with mixed continuous and unordered categorical variables
    • Song X.Y., Xia Y.M., Lee S.Y. Bayesian semiparametric analysis of structural equation models with mixed continuous and unordered categorical variables. Statistics in Medicine 2009, 28:2253-2276.
    • (2009) Statistics in Medicine , vol.28 , pp. 2253-2276
    • Song, X.Y.1    Xia, Y.M.2    Lee, S.Y.3
  • 41
    • 84862616102 scopus 로고    scopus 로고
    • WinBUGS user manual. Version 1.4. Cambridge, England: MRC Biostatistics Unit.
    • Spiegelhalter, D. J., Thomas, A., Best, N. G., Lunn, D., (2003). WinBUGS user manual. Version 1.4. Cambridge, England: MRC Biostatistics Unit.
    • (2003)
    • Spiegelhalter, D.J.1    Thomas, A.2    Best, N.G.3    Lunn, D.4
  • 42
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • Tanner M.A., Wong W.H. The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association 1987, 82:528-550.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 43
    • 0037001878 scopus 로고    scopus 로고
    • Bayesian estimation and model selection in ordered latent class models for polytomous items
    • van Onna M.J.H. Bayesian estimation and model selection in ordered latent class models for polytomous items. Psychometrika 2002, 67:519-538.
    • (2002) Psychometrika , vol.67 , pp. 519-538
    • van Onna, M.J.H.1
  • 44
    • 74349107933 scopus 로고    scopus 로고
    • Bayesian structural equation models for inferring relationships between phenotypes: a review of methodology, identifiability, and applications
    • Wu X.L., Heringstad B., Gianola D. Bayesian structural equation models for inferring relationships between phenotypes: a review of methodology, identifiability, and applications. Journal of Animal Breeding and Genetics 2010, 127:3-15.
    • (2010) Journal of Animal Breeding and Genetics , vol.127 , pp. 3-15
    • Wu, X.L.1    Heringstad, B.2    Gianola, D.3
  • 45
    • 78649524562 scopus 로고    scopus 로고
    • Bayesian semiparametric structural equation models with latent variables
    • Yang M.G., Dunson D.B. Bayesian semiparametric structural equation models with latent variables. Psychometrika 2010, 75:675-693.
    • (2010) Psychometrika , vol.75 , pp. 675-693
    • Yang, M.G.1    Dunson, D.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.