메뉴 건너뛰기




Volumn 14, Issue 3, 2007, Pages 404-434

Bayesian methods for analyzing structural equation models with covariates, interaction, and quadratic latent variables

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; BEHAVIORAL RESEARCH; MAXIMUM LIKELIHOOD; NONLINEAR EQUATIONS; TELECOMMUNICATION SERVICES;

EID: 34548063939     PISSN: 10705511     EISSN: None     Source Type: Journal    
DOI: 10.1080/10705510701301511     Document Type: Article
Times cited : (63)

References (49)
  • 2
    • 0032329779 scopus 로고    scopus 로고
    • A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm
    • Arminger, G., & Muthén, B. O. (1998). A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm. Psychometrica, 63, 271-300.
    • (1998) Psychometrica , vol.63 , pp. 271-300
    • Arminger, G.1    Muthén, B.O.2
  • 3
    • 32944465536 scopus 로고    scopus 로고
    • A semiparametric approach to modeling nonlinear relations among latent variables
    • Baner, D. J. (2005). A semiparametric approach to modeling nonlinear relations among latent variables. Structural Equation Modeling, 12, 513-535.
    • (2005) Structural Equation Modeling , vol.12 , pp. 513-535
    • Baner, D.J.1
  • 5
    • 34247547748 scopus 로고    scopus 로고
    • On fitting nonlinear latent curve models to multiple variables measured longitudinally
    • Blozis, S. A. (2007). On fitting nonlinear latent curve models to multiple variables measured longitudinally. Structural Equation Modeling, 14, 179-201.
    • (2007) Structural Equation Modeling , vol.14 , pp. 179-201
    • Blozis, S.A.1
  • 6
    • 0006803728 scopus 로고    scopus 로고
    • Interactions of latent variables in structural equation models
    • Bollen, K. A., & Paxton, P. (1998). Interactions of latent variables in structural equation models. Structural Equation Modeling, 5, 267-293.
    • (1998) Structural Equation Modeling , vol.5 , pp. 267-293
    • Bollen, K.A.1    Paxton, P.2
  • 10
  • 11
    • 24944456035 scopus 로고    scopus 로고
    • Sensitivity of fit indices to misspecified structural or measurement model components: Rationale of two-index strategy revisited
    • Fan, X., & Sivo, S. A. (2005). Sensitivity of fit indices to misspecified structural or measurement model components: Rationale of two-index strategy revisited. Structural Equation Modeling, 12, 343-367.
    • (2005) Structural Equation Modeling , vol.12 , pp. 343-367
    • Fan, X.1    Sivo, S.A.2
  • 12
    • 0035534930 scopus 로고    scopus 로고
    • Bayesian estimation of a multilevel IRT model using Gibbs sampling
    • Fox, J. P., & Glas, C. A. W. (2001). Bayesian estimation of a multilevel IRT model using Gibbs sampling. Psychometrika, 66, 271-288.
    • (2001) Psychometrika , vol.66 , pp. 271-288
    • Fox, J.P.1    Glas, C.A.W.2
  • 15
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their application
    • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their application. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 16
    • 0003460083 scopus 로고
    • A study in factor analysis: The stabilities of a bifactor solution
    • Chicago: University of Chicago Press
    • Holzinger, K., & Swineford, F. (1939). A study in factor analysis: The stabilities of a bifactor solution (Supplementary Education Monograph No. 48). Chicago: University of Chicago Press.
    • (1939) Supplementary Education Monograph , vol.48
    • Holzinger, K.1    Swineford, F.2
  • 17
    • 11944261983 scopus 로고    scopus 로고
    • Measurement error in the analysis of interaction effects between continuous predictors using multiple regression: Multiple indicator and structural equation approaches
    • Jaccard, J., & Wan, C. K. (1996). Measurement error in the analysis of interaction effects between continuous predictors using multiple regression: Multiple indicator and structural equation approaches. Psychological Bulletin, 117, 348-357.
    • (1996) Psychological Bulletin , vol.117 , pp. 348-357
    • Jaccard, J.1    Wan, C.K.2
  • 19
    • 84876597663 scopus 로고    scopus 로고
    • Jöreskog, K. G., & Yang, F. (1996). Nonlinear structural equation models: The Kenny-Judd model with interaction effects. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling techniques (pp. 57-88). Hillsdale, NJ: Lawrence Erlbaum Associates.
    • Jöreskog, K. G., & Yang, F. (1996). Nonlinear structural equation models: The Kenny-Judd model with interaction effects. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling techniques (pp. 57-88). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • 21
    • 0000456985 scopus 로고
    • Estimating the nonlinear and interactive effects of latent variables
    • Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96, 201-210.
    • (1984) Psychological Bulletin , vol.96 , pp. 201-210
    • Kenny, D.A.1    Judd, C.M.2
  • 22
    • 24944586514 scopus 로고    scopus 로고
    • The relation among fit indexes, power, and sample size in structural equation modeling
    • Kim, K. H. (2005). The relation among fit indexes, power, and sample size in structural equation modeling. Structural Equation Modeling, 12, 368-390.
    • (2005) Structural Equation Modeling , vol.12 , pp. 368-390
    • Kim, K.H.1
  • 23
    • 0034559665 scopus 로고    scopus 로고
    • Maximum likelihood estimation of latent interaction effects with the LMS method
    • Klein, A., & Moosbrugger, M. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65, 457-474.
    • (2000) Psychometrika , vol.65 , pp. 457-474
    • Klein, A.1    Moosbrugger, M.2
  • 26
    • 2242425810 scopus 로고    scopus 로고
    • Bayesian analysis of structural equation model with fixed covariates
    • Lee, S. Y., & Shi, J. Q. (2000). Bayesian analysis of structural equation model with fixed covariates. Structural Equation Modeling, 7, 411-430.
    • (2000) Structural Equation Modeling , vol.7 , pp. 411-430
    • Lee, S.Y.1    Shi, J.Q.2
  • 27
    • 0038457409 scopus 로고    scopus 로고
    • Bayesian model selection for mixtures of structural equation models with an unknown number of components
    • Lee, S. Y., & Song, X. Y. (2003a). Bayesian model selection for mixtures of structural equation models with an unknown number of components. British Journal of Mathematical and Statistical Psychology, 56, 145-165.
    • (2003) British Journal of Mathematical and Statistical Psychology , vol.56 , pp. 145-165
    • Lee, S.Y.1    Song, X.Y.2
  • 28
    • 0038810230 scopus 로고    scopus 로고
    • Model comparison of a nonlinear structural equation model with fixed covariates
    • Lee, S. Y., & Song, X. Y. (2003b). Model comparison of a nonlinear structural equation model with fixed covariates. Psychometrika, 68, 27-47.
    • (2003) Psychometrika , vol.68 , pp. 27-47
    • Lee, S.Y.1    Song, X.Y.2
  • 29
    • 19844369721 scopus 로고    scopus 로고
    • Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes
    • Lee, S. Y., & Song, X. Y. (2004). Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behavioral Research, 39, 653-686.
    • (2004) Multivariate Behavioral Research , vol.39 , pp. 653-686
    • Lee, S.Y.1    Song, X.Y.2
  • 30
    • 0035998148 scopus 로고    scopus 로고
    • Maximum likelihood estimation of nonlinear structural equation models
    • Lee, S. Y., & Zhu, H. T. (2002). Maximum likelihood estimation of nonlinear structural equation models. Psychometrika, 67, 189-210.
    • (2002) Psychometrika , vol.67 , pp. 189-210
    • Lee, S.Y.1    Zhu, H.T.2
  • 31
    • 3042735142 scopus 로고    scopus 로고
    • Comparison of approaches in estimating interaction and quadratic effects of latent variables
    • Lee, S. Y., Song, X. Y., & Poon W. Y. (2004). Comparison of approaches in estimating interaction and quadratic effects of latent variables. Multivariate Behavioral Research, 39, 37-67.
    • (2004) Multivariate Behavioral Research , vol.39 , pp. 37-67
    • Lee, S.Y.1    Song, X.Y.2    Poon, W.Y.3
  • 34
    • 33750342687 scopus 로고    scopus 로고
    • On the merits of orthogonalizing powered and product terms: Implications for modeling latent variable interactions
    • Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered and product terms: Implications for modeling latent variable interactions. Structural Equation Modeling, 13, 479-519.
    • (2006) Structural Equation Modeling , vol.13 , pp. 479-519
    • Little, T.D.1    Bovaird, J.A.2    Widaman, K.F.3
  • 35
    • 4344623799 scopus 로고    scopus 로고
    • Structural equation models of latent interaction: Evaluation of alternative estimation strategies and indicator construction
    • Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interaction: Evaluation of alternative estimation strategies and indicator construction. Psychological Methods, 9, 275-300.
    • (2004) Psychological Methods , vol.9 , pp. 275-300
    • Marsh, H.W.1    Wen, Z.2    Hau, K.T.3
  • 37
    • 0242635662 scopus 로고    scopus 로고
    • A general class of latent variable methods for ordinal manifest variables with covariate effects on the manifest and latent variables
    • Moustaki, I. (2003). A general class of latent variable methods for ordinal manifest variables with covariate effects on the manifest and latent variables. British Journal of Mathematical & Statistical Psychology, 56, 337-357.
    • (2003) British Journal of Mathematical & Statistical Psychology , vol.56 , pp. 337-357
    • Moustaki, I.1
  • 39
    • 85069310588 scopus 로고    scopus 로고
    • A comparative review of interaction and nonlinear modeling
    • R. E. Schumacker & G. A. Marcoulides Eds, Mahwah, NJ: Lawrence Erlbaum Associates
    • Rigdon, E. E., Schumacker, R. E., & Wothke, W. (1998). A comparative review of interaction and nonlinear modeling. In R. E. Schumacker & G. A. Marcoulides (Eds.), Interaction and nonlinear effects in structural equation modeling (pp. 1-16). Mahwah, NJ: Lawrence Erlbaum Associates.
    • (1998) Interaction and nonlinear effects in structural equation modeling , pp. 1-16
    • Rigdon, E.E.1    Schumacker, R.E.2    Wothke, W.3
  • 40
    • 0033247467 scopus 로고    scopus 로고
    • Bayesian estimation and testing of structural equation models
    • Scheines, R., Hoijtink, H., & Boomsma, A. (1999). Bayesian estimation and testing of structural equation models. Psychometrika, 64, 37-52.
    • (1999) Psychometrika , vol.64 , pp. 37-52
    • Scheines, R.1    Hoijtink, H.2    Boomsma, A.3
  • 41
    • 0003700984 scopus 로고    scopus 로고
    • Schumacker, R. E, & Marcoulides, G. A, Eds, Hillsdale, NJ: Lawrence Erlbaum Associates
    • Schumacker, R. E., & Marcoulides, G. A. (Eds.). (1998). Interaction and nonlinear effects in structural equation modeling. Hillsdale, NJ: Lawrence Erlbaum Associates.
    • (1998) Interaction and nonlinear effects in structural equation modeling
  • 42
    • 0035998146 scopus 로고    scopus 로고
    • Analysis of structural equation model with ignorable missing continuous and polytomous data
    • Song, X. Y., & Lee S. Y. (2002). Analysis of structural equation model with ignorable missing continuous and polytomous data. Psychometrika, 67, 261-288.
    • (2002) Psychometrika , vol.67 , pp. 261-288
    • Song, X.Y.1    Lee, S.Y.2
  • 43
    • 33846403783 scopus 로고    scopus 로고
    • Bayesian analysis of latent variable models with non-ignorable missing outcomes from exponential family
    • Song, X. Y., & Lee, S. Y. (2007). Bayesian analysis of latent variable models with non-ignorable missing outcomes from exponential family. Statistics in Medicine, 26, 681-693.
    • (2007) Statistics in Medicine , vol.26 , pp. 681-693
    • Song, X.Y.1    Lee, S.Y.2
  • 44
    • 34248364041 scopus 로고    scopus 로고
    • Bayesian analysis of structural equation models with multinomial variable and an application to type 2 diabetic nephropathy
    • Song, X. Y., Lee, S. Y., Ng, M. C. Y., So, W. Y., & Chan, J. C. N. (2007). Bayesian analysis of structural equation models with multinomial variable and an application to type 2 diabetic nephropathy. Statistics in Medicine, 26, 2348-2369.
    • (2007) Statistics in Medicine , vol.26 , pp. 2348-2369
    • Song, X.Y.1    Lee, S.Y.2    Ng, M.C.Y.3    So, W.Y.4    Chan, J.C.N.5
  • 47
    • 0038334179 scopus 로고    scopus 로고
    • A method of moments technique for fitting interaction effects in structural equation models
    • Wall, M. M., & Amemiya, Y. (2003). A method of moments technique for fitting interaction effects in structural equation models. British Journal of Mathematical & Statistical Psychology, 56, 47-63.
    • (2003) British Journal of Mathematical & Statistical Psychology , vol.56 , pp. 47-63
    • Wall, M.M.1    Amemiya, Y.2
  • 48
    • 25444473930 scopus 로고    scopus 로고
    • Fit indices versus test statistics
    • Yuan, K. H. (2005). Fit indices versus test statistics. Multivariate Behavioral Research, 40, 115-148.
    • (2005) Multivariate Behavioral Research , vol.40 , pp. 115-148
    • Yuan, K.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.