메뉴 건너뛰기




Volumn 94, Issue 3, 2016, Pages 256-265

Processing, visualising and reconstructing network models from single-cell data

Author keywords

[No Author keywords available]

Indexed keywords

CYTOMETRY; GENE EXPRESSION; GENE EXPRESSION PROFILING; GENE REGULATORY NETWORK; IMMUNOLOGY; MODEL; POLYMERASE CHAIN REACTION; PROTEOMICS; PUBLICATION; QUANTITATIVE STUDY; RNA SEQUENCE; ANIMAL; BAYES THEOREM; BIOLOGY; CLUSTER ANALYSIS; GENOMICS; HIGH THROUGHPUT SEQUENCING; HUMAN; PRINCIPAL COMPONENT ANALYSIS; PROCEDURES; SINGLE CELL ANALYSIS;

EID: 84961151515     PISSN: 08189641     EISSN: 14401711     Source Type: Journal    
DOI: 10.1038/icb.2015.102     Document Type: Review
Times cited : (17)

References (68)
  • 1
    • 84896714251 scopus 로고    scopus 로고
    • Transcriptional mechanisms of cell fate decisions revealed by single cell expression profiling
    • Moignard V, Gottgens B. Transcriptional mechanisms of cell fate decisions revealed by single cell expression profiling. Bioessays 2014; 36: 419-426.
    • (2014) Bioessays , vol.36 , pp. 419-426
    • Moignard, V.1    Gottgens, B.2
  • 3
    • 84866369892 scopus 로고    scopus 로고
    • Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase
    • Buganim Y, Faddah DA, Cheng AW, Itskovich E, Markoulaki S, Ganz K, et al.. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 2012; 150: 1209-1222.
    • (2012) Cell , vol.150 , pp. 1209-1222
    • Buganim, Y.1    Faddah, D.A.2    Cheng, A.W.3    Itskovich, E.4    Markoulaki, S.5    Ganz, K.6
  • 4
    • 84876471008 scopus 로고    scopus 로고
    • Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis
    • Moignard V, Macaulay IC, Swiers G, Buettner F, Schütte J, Calero-Nieto FJ, et al. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat Cell Biol 2013; 15: 363-372.
    • (2013) Nat Cell Biol , vol.15 , pp. 363-372
    • Moignard, V.1    Macaulay, I.C.2    Swiers, G.3    Buettner, F.4    Schütte, J.5    Calero-Nieto, F.J.6
  • 5
    • 84880280631 scopus 로고    scopus 로고
    • ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
    • Amir ED, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 2013; 31: 545-552.
    • (2013) Nat Biotechnol , vol.31 , pp. 545-552
    • Amir, E.D.1    Davis, K.L.2    Tadmor, M.D.3    Simonds, E.F.4    Levine, J.H.5    Bendall, S.C.6
  • 6
    • 84940446838 scopus 로고    scopus 로고
    • Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations
    • Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto F, et al. Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations. Cell Stem Cell 2015; 16: 712-724.
    • (2015) Cell Stem Cell , vol.16 , pp. 712-724
    • Wilson, N.K.1    Kent, D.G.2    Buettner, F.3    Shehata, M.4    Macaulay, I.C.5    Calero-Nieto, F.6
  • 7
    • 84893905629 scopus 로고    scopus 로고
    • Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
    • Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 2014; 343: 776-779.
    • (2014) Science , vol.343 , pp. 776-779
    • Jaitin, D.A.1    Kenigsberg, E.2    Keren-Shaul, H.3    Elefant, N.4    Paul, F.5    Zaretsky, I.6
  • 8
    • 84941201582 scopus 로고    scopus 로고
    • Single-cell messenger RNA sequencing reveals rare intestinal cell types
    • Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 2015; 525: 251-255.
    • (2015) Nature , vol.525 , pp. 251-255
    • Grün, D.1    Lyubimova, A.2    Kester, L.3    Wiebrands, K.4    Basak, O.5    Sasaki, N.6
  • 9
    • 84901188210 scopus 로고    scopus 로고
    • Sequencing reveals T helper cells synthesizing steroids de Novo to contribute to immune homeostasis
    • Mahata B, Zhang X, Kolodziejczyk AA, Proserpio V, Haim-Vilmovsky L, Taylor AE, et al. Sequencing Reveals T Helper Cells Synthesizing Steroids De Novo to Contribute to Immune Homeostasis. Cell Rep 2014; 7: 1130-1142.
    • (2014) Cell Rep , vol.7 , pp. 1130-1142
    • Mahata, B.1    Zhang, X.2    Kolodziejczyk, A.A.3    Proserpio, V.4    Haim-Vilmovsky, L.5    Taylor, A.E.6
  • 11
    • 84903185013 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
    • Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 2014; 510: 363-369.
    • (2014) Nature , vol.510 , pp. 363-369
    • Shalek, A.K.1    Satija, R.2    Shuga, J.3    Trombetta, J.J.4    Gennert, D.5    Lu, D.6
  • 13
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014; 32: 381-386.
    • (2014) Nat Biotechnol , vol.32 , pp. 381-386
    • Trapnell, C.1    Cacchiarelli, D.2    Grimsby, J.3    Pokharel, P.4    Li, S.5    Morse, M.6
  • 14
    • 84899574465 scopus 로고    scopus 로고
    • Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
    • Bendall SC, Davis KL, Amir ED, Tadmor MD, Simonds EF, Tiffany JC, et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 2014; 157: 714-725.
    • (2014) Cell , vol.157 , pp. 714-725
    • Bendall, S.C.1    Davis, K.L.2    Amir, E.D.3    Tadmor, M.D.4    Simonds, E.F.5    Tiffany, J.C.6
  • 15
    • 84924353105 scopus 로고    scopus 로고
    • Decoding the regulatory network of early blood development from single-cell gene expression measurements
    • Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol 2015; 33: 269-276.
    • (2015) Nat Biotechnol , vol.33 , pp. 269-276
    • Moignard, V.1    Woodhouse, S.2    Haghverdi, L.3    Lilly, A.J.4    Tanaka, Y.5    Wilkinson, A.C.6
  • 16
    • 84872195205 scopus 로고    scopus 로고
    • Methods for qPCR gene expression profiling applied to 1440 lymphoblastoid single cells
    • Livak KJ, Wills QF, Tipping AJ, Datta K, Mittal R, Goldson AJ, et al. Methods for qPCR gene expression profiling applied to 1440 lymphoblastoid single cells. Methods 2013; 59: 71-79.
    • (2013) Methods , vol.59 , pp. 71-79
    • Livak, K.J.1    Wills, Q.F.2    Tipping, A.J.3    Datta, K.4    Mittal, R.5    Goldson, A.J.6
  • 20
    • 77951912210 scopus 로고    scopus 로고
    • Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst
    • Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 2010; 18: 675-685.
    • (2010) Dev Cell , vol.18 , pp. 675-685
    • Guo, G.1    Huss, M.2    Tong, G.Q.3    Wang, C.4    Li Sun, L.5    Clarke, N.D.6
  • 21
    • 84890649933 scopus 로고    scopus 로고
    • Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level
    • Swiers G, Baumann C, ORourke J, Giannoulatou E, Taylor S, Joshi A, et al. Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level. Nat Commun 2013; 4: 2924.
    • (2013) Nat Commun , vol.4 , pp. 2924
    • Swiers, G.1    Baumann, C.2    Orourke, J.3    Giannoulatou, E.4    Taylor, S.5    Joshi, A.6
  • 22
    • 84885172419 scopus 로고    scopus 로고
    • Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire
    • Guo G, Luc S, Marco E, Lin TW, Peng C, Kerenyi MA, et al. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell Stem Cell 2013; 13: 492-505.
    • (2013) Cell Stem Cell , vol.13 , pp. 492-505
    • Guo, G.1    Luc, S.2    Marco, E.3    Lin, T.W.4    Peng, C.5    Kerenyi, M.A.6
  • 23
    • 79952323055 scopus 로고    scopus 로고
    • Defining cell populations with single-cell gene expression profiling: Correlations and identification of astrocyte subpopulations
    • StAhlberg A, Andersson D, Aurelius J, Faiz M, Pekna M, Kubista M, et al. Defining cell populations with single-cell gene expression profiling: correlations and identification of astrocyte subpopulations. Nucleic Acids Res 2011; 39: e24.
    • (2011) Nucleic Acids Res , vol.39 , pp. e24
    • StAhlberg, A.1    Andersson, D.2    Aurelius, J.3    Faiz, M.4    Pekna, M.5    Kubista, M.6
  • 24
    • 84896739948 scopus 로고    scopus 로고
    • Single cell genomics: Advances and future perspectives
    • Macaulay IC, Voet T. Single cell genomics: advances and future perspectives. PLoS Genet 2014; 10: e1004126.
    • (2014) PLoS Genet , vol.10 , pp. e1004126
    • Macaulay, I.C.1    Voet, T.2
  • 25
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in singlecell transcriptomics
    • Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in singlecell transcriptomics. Nat Rev Genet 2015; 16: 133-145.
    • (2015) Nat Rev Genet , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 26
    • 84866953427 scopus 로고    scopus 로고
    • CEL-Seq: Single-cell RNA-Seq by multiplexed linear amplification
    • Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2012; 2: 666-673.
    • (2012) Cell Rep , vol.2 , pp. 666-673
    • Hashimshony, T.1    Wagner, F.2    Sher, N.3    Yanai, I.4
  • 27
    • 79959403670 scopus 로고    scopus 로고
    • Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
    • Islam S, Kjallquist U, Moliner A, Zajac P, Fan JB, Lonnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 2011; 21: 1160-1167.
    • (2011) Genome Res , vol.21 , pp. 1160-1167
    • Islam, S.1    Kjallquist, U.2    Moliner, A.3    Zajac, P.4    Fan, J.B.5    Lonnerberg, P.6
  • 32
  • 33
    • 65449136284 scopus 로고    scopus 로고
    • TopHat: Discovering splice junctions with RNA-Seq
    • Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25: 1105-1111.
    • (2009) Bioinformatics , vol.25 , pp. 1105-1111
    • Trapnell, C.1    Pachter, L.2    Salzberg, S.L.3
  • 35
    • 77951820899 scopus 로고    scopus 로고
    • Fast and SNP-tolerant detection of complex variants and splicing in short reads
    • Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 2010; 26: 873-881.
    • (2010) Bioinformatics , vol.26 , pp. 873-881
    • Wu, T.D.1    Nacu, S.2
  • 36
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq - A Python framework to work with high-throughput sequencing data
    • Anders S, Pyl PT, Huber W. HTSeq - A Python framework to work with high-throughput sequencing data. Bioinformatics 2015; 31: 166-169.
    • (2015) Bioinformatics , vol.31 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 44
    • 84941201582 scopus 로고    scopus 로고
    • Single-cell messenger RNA sequencing reveals rare intestinal cell types
    • Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 2015; 525: 251-255.
    • (2015) Nature , vol.525 , pp. 251-255
    • Grün, D.1    Lyubimova, A.2    Kester, L.3    Wiebrands, K.4    Basak, O.5    Sasaki, N.6
  • 45
  • 47
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf B, Smola A, Müller KR. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 1998; 10: 1299-1319.
    • (1998) Neural Comput , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Müller, K.R.3
  • 48
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing high-dimensional data using t-SNE
    • van der Maaten LPJ, Hinton GE. Visualizing high-dimensional data using t-SNE. J Mach Learn Res 2008; 9: 2579-2605.
    • (2008) J Mach Learn Res , vol.9 , pp. 2579-2605
    • Van Der Maaten, L.P.J.1    Hinton, G.E.2
  • 49
    • 19644394100 scopus 로고    scopus 로고
    • Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps
    • Coifman RR, Lafon S, Lee AB, Maggioni M, Nadler B, Warner F, et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proc Natl Acad Sci USA 2005; 102: 7426-7431.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 7426-7431
    • Coifman, R.R.1    Lafon, S.2    Lee, A.B.3    Maggioni, M.4    Nadler, B.5    Warner, F.6
  • 50
    • 77952984416 scopus 로고    scopus 로고
    • Diffusion maps - A probabilistic interpretation for spectral embedding and clustering algorithms
    • Gorban AN, Kegl B, Wunsch DC, Zinovyev A (eds) Springer: Berlin, Germany
    • Nadler B, Lafon S, Coifman R, Kevrekidis IG. Diffusion maps - a probabilistic interpretation for spectral embedding and clustering algorithms. In: Gorban AN, Kegl B, Wunsch DC, Zinovyev A (eds). Principal Manifolds for Data Visualization and Dimension Reduction. Springer: Berlin, Germany, 2008; pp 238-260.
    • (2008) Principal Manifolds for Data Visualization and Dimension Reduction , pp. 238-260
    • Nadler, B.1    Lafon, S.2    Coifman, R.3    Kevrekidis, I.G.4
  • 51
    • 33847047461 scopus 로고    scopus 로고
    • Epigenetics: A landscape takes shape
    • Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell 2007; 128: 635-638.
    • (2007) Cell , vol.128 , pp. 635-638
    • Goldberg, A.D.1    Allis, C.D.2    Bernstein, E.3
  • 52
    • 84919775831 scopus 로고    scopus 로고
    • Accelerating t-SNE using Tree-Based Algorithms
    • van der Maaten LPJ. Accelerating t-SNE using Tree-Based Algorithms. J Mach Learn Res 2014; 15: 3221-3245.
    • (2014) J Mach Learn Res , vol.15 , pp. 3221-3245
    • Van Der Maaten, L.P.J.1
  • 53
    • 84941753288 scopus 로고    scopus 로고
    • Diffusion maps for high-dimensional single-cell analysis of differentiation data
    • Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 2015; 31: 2989-2998.
    • (2015) Bioinformatics , vol.31 , pp. 2989-2998
    • Haghverdi, L.1    Buettner, F.2    Theis, F.J.3
  • 54
    • 84961834762 scopus 로고    scopus 로고
    • A geometric viewpoint of manifold learning
    • Lin B, He X, Ye J. A geometric viewpoint of manifold learning. Appl Inform 2015; 2: 3.
    • (2015) Appl Inform , vol.2 , pp. 3
    • Lin, B.1    He, X.2    Ye, J.3
  • 55
    • 84934442835 scopus 로고    scopus 로고
    • Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
    • Levine JH, Simonds EF, Bendall SC, Davis KL, Amir ED, Tadmor MD, et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 2015; 162: 184-197.
    • (2015) Cell , vol.162 , pp. 184-197
    • Levine, J.H.1    Simonds, E.F.2    Bendall, S.C.3    Davis, K.L.4    Amir, E.D.5    Tadmor, M.D.6
  • 56
    • 33646351332 scopus 로고    scopus 로고
    • Relevance networks: A first step toward finding genetic regulatory networks within microarray data
    • Parmigiani G, Garett ES, Irizarry RA, Zeger SL (eds) Springer: Berlin, Germany
    • Butte AJ, Kohane IS. Relevance networks: a first step toward finding genetic regulatory networks within microarray data. In: Parmigiani G, Garett ES, Irizarry RA, Zeger SL (eds).The Analysis of Gene Expression Data. Springer: Berlin, Germany, 2003; pp 1-45.
    • (2003) The Analysis of Gene Expression Data , pp. 1-45
    • Butte, A.J.1    Kohane, I.S.2
  • 57
    • 84937641068 scopus 로고    scopus 로고
    • Single-cell network analysis identifies DDIT3 as a nodal lineage regulator in hematopoiesis
    • Pina C, Teles J, Fugazza C, May G, Wang D, Guo Y, et al. Single-cell network analysis identifies DDIT3 as a nodal lineage regulator in hematopoiesis. Cell Rep 2015; 11: 1503-1510.
    • (2015) Cell Rep , vol.11 , pp. 1503-1510
    • Pina, C.1    Teles, J.2    Fugazza, C.3    May, G.4    Wang, D.5    Guo, Y.6
  • 58
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 2010; 5: e12776.
    • (2010) PLoS ONE , vol.5 , pp. e12776
    • Huynh-Thu, V.A.1    Irrthum, A.2    Wehenkel, L.3    Geurts, P.4
  • 60
    • 84931084251 scopus 로고    scopus 로고
    • Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data
    • Ocone A, Haghverdi L, Mueller NS, Theis FJ. Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data. Bioinformatics 2015; 31: i89-i96.
    • (2015) Bioinformatics , vol.31 , pp. i89-i96
    • Ocone, A.1    Haghverdi, L.2    Mueller, N.S.3    Theis, F.J.4
  • 63
  • 64
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP. Causal protein-signaling networks derived from multiparameter single-cell data. Science 2005; 308: 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'Er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.