메뉴 건너뛰기




Volumn 60, Issue , 2016, Pages 615-630

A knowledge discovery in databases approach for industrial microgrid planning

Author keywords

Data Mining; Energy ManagementSystems; Knowledgediscoveryindatabases; Machine Learning; Microgrid planning; Sustainability

Indexed keywords

DATA MINING; DIGITAL STORAGE; ELECTRIC POWER SYSTEMS; ENERGY EFFICIENCY; ENERGY UTILIZATION; ENVIRONMENTAL IMPACT; INFORMATION MANAGEMENT; LEARNING SYSTEMS; MANUFACTURE;

EID: 84961115864     PISSN: 13640321     EISSN: 18790690     Source Type: Journal    
DOI: 10.1016/j.rser.2016.01.091     Document Type: Review
Times cited : (35)

References (137)
  • 1
    • 84977931873 scopus 로고    scopus 로고
    • How much information? 2010: Report on enterprise server information
    • Short J, Bohn R, Baru C. How much information? 2010: Report on enterprise server information. UCSD Glob Inf Ind Cent 2011. p. 1-38
    • (2011) UCSD Glob Inf Ind Cent , pp. 1-38
    • Short, J.1    Bohn, R.2    Baru, C.3
  • 3
    • 78650853231 scopus 로고    scopus 로고
    • The Internet of nano-things
    • I. Akyildiz, and J. Jornet The Internet of nano-things IEEE Wirel Commun 17 2010 58 63 10.1109/MWC.2010.5675779
    • (2010) IEEE Wirel Commun , vol.17 , pp. 58-63
    • Akyildiz, I.1    Jornet, J.2
  • 4
    • 85006184584 scopus 로고    scopus 로고
    • A survey on internet of things from industrial market perspective
    • C. Perera, C.H. Liu, S. Jayawardena, and M. Chen A survey on internet of things from industrial market perspective IEEE Access 2 2014 1660 1679 10.1109/ACCESS.2015.2389854
    • (2014) IEEE Access , vol.2 , pp. 1660-1679
    • Perera, C.1    Liu, C.H.2    Jayawardena, S.3    Chen, M.4
  • 5
    • 79953281019 scopus 로고    scopus 로고
    • The world's technological capacity to store, communicate, and compute information
    • M. Hilbert, and P. López The world's technological capacity to store, communicate, and compute information Science 332 2011 60 65 10.1126/science.1200970
    • (2011) Science , vol.332 , pp. 60-65
    • Hilbert, M.1    López, P.2
  • 6
    • 17044440165 scopus 로고    scopus 로고
    • Toward intelligent assistance for a data mining process: An ontology-based approach for cost-sensitive classification
    • A. Bernstein, F. Provost, and S. Hill Toward intelligent assistance for a data mining process: an ontology-based approach for cost-sensitive classification IEEE Trans Knowl Data Eng 17 2005 503 518 10.1109/TKDE.2005.67
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , pp. 503-518
    • Bernstein, A.1    Provost, F.2    Hill, S.3
  • 9
    • 0027886518 scopus 로고
    • Framework for knowledge discovery and evolution in databases
    • J.P. Yoon, and L. Kerschberg Framework for knowledge discovery and evolution in databases IEEE Trans Knowl Data Eng 5 1993 973 979 10.1109/69.250080
    • (1993) IEEE Trans Knowl Data Eng , vol.5 , pp. 973-979
    • Yoon, J.P.1    Kerschberg, L.2
  • 10
    • 0002283033 scopus 로고    scopus 로고
    • From data mining to knowledge discovery in databases
    • U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth From data mining to knowledge discovery in databases AI Mag 17 1996 37 53 10.1609/aimag.v17i3.1230
    • (1996) AI Mag , vol.17 , pp. 37-53
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 12
    • 78649672225 scopus 로고    scopus 로고
    • A review on time series data mining
    • T.C. Fu A review on time series data mining Eng Appl Artif Intell 24 2011 164 181 10.1016/j.engappai.2010.09.007
    • (2011) Eng Appl Artif Intell , vol.24 , pp. 164-181
    • Fu, T.C.1
  • 13
    • 33745822446 scopus 로고    scopus 로고
    • A survey of knowledge discovery and data mining process models
    • L. a Kurgan, and P. Musilek A survey of knowledge discovery and data mining process models Knowl Eng Rev 21 2006 1 10.1017/S0269888906000737
    • (2006) Knowl Eng Rev , vol.21 , pp. 1
    • Kurgan, L.A.1    Musilek, P.2
  • 14
    • 84919389514 scopus 로고    scopus 로고
    • Beyond the hype: Big data concepts, methods, and analytics
    • A. Gandomi, and M. Haider Beyond the hype: big data concepts, methods, and analytics Int J Inf Manag 35 2015 137 144 10.1016/j.ijinfomgt.2014.10.007
    • (2015) Int J Inf Manag , vol.35 , pp. 137-144
    • Gandomi, A.1    Haider, M.2
  • 15
    • 84908689180 scopus 로고    scopus 로고
    • What can big data and text analytics tell us about hotel guest experience and satisfaction?
    • Z. Xiang, Z. Schwartz, J.H. Gerdes, and M. Uysal What can big data and text analytics tell us about hotel guest experience and satisfaction? Int J Hosp Manag 44 2015 120 130 10.1016/j.ijhm.2014.10.013
    • (2015) Int J Hosp Manag , vol.44 , pp. 120-130
    • Xiang, Z.1    Schwartz, Z.2    Gerdes, J.H.3    Uysal, M.4
  • 16
    • 0001977981 scopus 로고    scopus 로고
    • Data mining: An industrial research perspective
    • C. Apte Data mining: an industrial research perspective IEEE Comput Sci Eng 4 1997 6 9 10.1109/99.609825
    • (1997) IEEE Comput Sci Eng , vol.4 , pp. 6-9
    • Apte, C.1
  • 17
    • 33644650161 scopus 로고    scopus 로고
    • On optimal rule discovery
    • J. Li On optimal rule discovery IEEE Trans Knowl Data Eng 18 2006 460 471 10.1109/TKDE.2006.1599385
    • (2006) IEEE Trans Knowl Data Eng , vol.18 , pp. 460-471
    • Li, J.1
  • 18
    • 77249174228 scopus 로고    scopus 로고
    • A survey on the application of genetic programming to classification
    • P.G. Espejo, S. Ventura, and F. Herrera A survey on the application of genetic programming to classification IEEE Trans Syst Man Cybern Part C Appl Rev 40 2010 121 144 10.1109/TSMCC.2009.2033566
    • (2010) IEEE Trans Syst Man Cybern Part C Appl Rev , vol.40 , pp. 121-144
    • Espejo, P.G.1    Ventura, S.2    Herrera, F.3
  • 19
    • 18344406127 scopus 로고    scopus 로고
    • Applying knowledge discovery to predict water-supply consumption
    • A. An, C. Chan, H. Shan, N. Cercone, and W. Ziarko Applying knowledge discovery to predict water-supply consumption IEEE Expert Syst Their Appl 12 1997 72 78 10.1109/64.608199
    • (1997) IEEE Expert Syst Their Appl , vol.12 , pp. 72-78
    • An, A.1    Chan, C.2    Shan, H.3    Cercone, N.4    Ziarko, W.5
  • 20
    • 0034187374 scopus 로고    scopus 로고
    • A hybrid approach of neural network and memory-based learning to data mining
    • C.K. Shin, U.T. Yun, H.K. Kim, and S.C. Park A hybrid approach of neural network and memory-based learning to data mining IEEE Trans Neural Netw 11 2000 637 646 10.1109/CDC.2014.7039892
    • (2000) IEEE Trans Neural Netw , vol.11 , pp. 637-646
    • Shin, C.K.1    Yun, U.T.2    Kim, H.K.3    Park, S.C.4
  • 26
    • 85152015403 scopus 로고    scopus 로고
    • European Commision. Factories of the Future. Web Page n.d. [accessed 1.02.15]
    • European Commision. Factories of the Future. Web Page n.d. (http://ec.europa.eu/research/industrial-technologies/factories-of-the-future-en.html) [accessed 1.02.15].
  • 27
    • 84900826011 scopus 로고    scopus 로고
    • Internet of things for enterprise systems of modern manufacturing
    • Z. Bi, L. Xu, and C. Da, Wang Internet of things for enterprise systems of modern manufacturing IEEE Trans Ind Inform 10 2014 1537 1546 10.1109/TII.2014.2300338
    • (2014) IEEE Trans Ind Inform , vol.10 , pp. 1537-1546
    • Bi, Z.1    Xu, L.2    Da Wang, C.3
  • 28
    • 84904001583 scopus 로고    scopus 로고
    • Towards internet of things: Survey and future vision
    • O. Said, and M. Masud Towards internet of things: survey and future vision Int J Comput Netw (IJCN) 5 2013 1 17
    • (2013) Int J Comput Netw (IJCN) , vol.5 , pp. 1-17
    • Said, O.1    Masud, M.2
  • 29
    • 70349647888 scopus 로고    scopus 로고
    • Monitoring system for farming operations with wearable devices utilized sensor networks
    • T. Fukatsu, and T. Nanseki Monitoring system for farming operations with wearable devices utilized sensor networks Sensors (Basel) 9 2009 6171 6184 10.3390/s90806171
    • (2009) Sensors (Basel) , vol.9 , pp. 6171-6184
    • Fukatsu, T.1    Nanseki, T.2
  • 30
    • 84906834039 scopus 로고    scopus 로고
    • Internet of things in industries: A survey
    • L. Xu, W. He, and S. Li Internet of things in industries: a survey IEEE Trans Ind Inform 2014 1 11 10.1109/TII.2014.2300753
    • (2014) IEEE Trans Ind Inform , pp. 1-11
    • Xu, L.1    He, W.2    Li, S.3
  • 32
    • 84929507264 scopus 로고    scopus 로고
    • Managing a big data project: The case of Ramco Cements limited
    • D. Dutta, and I. Bose Managing a big data project: the case of Ramco Cements limited Int J Prod Econ 2014 10.1016/j.ijpe.2014.12.032
    • (2014) Int J Prod Econ
    • Dutta, D.1    Bose, I.2
  • 33
    • 27744543735 scopus 로고    scopus 로고
    • Capitalizing on knowledge: A novel approach to crucial-knowledge determination
    • T.L. Tseng, and C.C. Huang Capitalizing on knowledge: a novel approach to crucial-knowledge determination IEEE Trans Syst Man Cybern Part A Syst Hum 35 2005 919 931 10.1109/TSMCA.2005.851294
    • (2005) IEEE Trans Syst Man Cybern Part A Syst Hum , vol.35 , pp. 919-931
    • Tseng, T.L.1    Huang, C.C.2
  • 34
    • 0002169158 scopus 로고
    • Knowledge discovery in databases: An overview
    • W.J. Frawley, G. Piatetsky-shapiro, and C.J. Matheus Knowledge discovery in databases: an overview AI Mag 13 1992 57 70 10.1609/aimag.v13i3.1011
    • (1992) AI Mag , vol.13 , pp. 57-70
    • Frawley, W.J.1    Piatetsky-Shapiro, G.2    Matheus, C.J.3
  • 35
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • S.J. Pan, and Q. Yang A survey on transfer learning IEEE Trans Knowl Data Eng 22 2010 1345 1359 10.1109/TKDE.2009.191
    • (2010) IEEE Trans Knowl Data Eng , vol.22 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 36
    • 79955661948 scopus 로고    scopus 로고
    • Cycle-time key factor identification and prediction in semiconductor manufacturing using machine learning and data mining
    • Y. Meidan, B. Lerner, G. Rabinowitz, and M. Hassoun Cycle-time key factor identification and prediction in semiconductor manufacturing using machine learning and data mining IEEE Trans Semicond Manuf 24 2011 237 248 10.1109/TSM.2011.2118775
    • (2011) IEEE Trans Semicond Manuf , vol.24 , pp. 237-248
    • Meidan, Y.1    Lerner, B.2    Rabinowitz, G.3    Hassoun, M.4
  • 37
    • 72449130980 scopus 로고    scopus 로고
    • Data mining in manufacturing: A review based on the kind of knowledge
    • a K. Choudhary, J. a Harding, and M.K. Tiwari Data mining in manufacturing: a review based on the kind of knowledge J Intell Manuf 20 2009 501 521 10.1007/s10845-008-0145-x
    • (2009) J Intell Manuf , vol.20 , pp. 501-521
    • Choudhary, A.K.1    Harding, J.A.2    Tiwari, M.K.3
  • 40
    • 84861200365 scopus 로고    scopus 로고
    • Data mining techniques and applications - A decade review from 2000 to 2011
    • S.H. Liao, P.H. Chu, and P.Y. Hsiao Data mining techniques and applications - A decade review from 2000 to 2011 Expert Syst Appl 39 2012 11303 11311 10.1016/j.eswa.2012.02.063
    • (2012) Expert Syst Appl , vol.39 , pp. 11303-11311
    • Liao, S.H.1    Chu, P.H.2    Hsiao, P.Y.3
  • 41
    • 77954414254 scopus 로고    scopus 로고
    • Data mining for the optimization in manufacturing process
    • He T. Data mining for the optimization in manufacturing process. In: Proc - 2010 2nd int work intell syst appl ISA 2010: 2010: p. 5-8. http://dx.doi.org/10.1109/IWISA.2010.5473459.
    • (2010) Proc - 2010 2nd Int Work Intell Syst Appl ISA 2010 , pp. 5-8
    • He, T.1
  • 42
    • 84858407804 scopus 로고    scopus 로고
    • Discovering correlated parameters in semiconductor manufacturing processes: A data mining approach
    • A. Casali, and C. Ernst Discovering correlated parameters in semiconductor manufacturing processes: a data mining approach IEEE Trans Semicond Manuf 25 2012 118 127 10.1109/TSM.2011.2171375
    • (2012) IEEE Trans Semicond Manuf , vol.25 , pp. 118-127
    • Casali, A.1    Ernst, C.2
  • 43
    • 84858395597 scopus 로고    scopus 로고
    • GA guided cluster based fuzzy decision tree for reactive ion etching modeling: A data mining approach
    • S.K. Shukla, and M.K. Tiwari GA guided cluster based fuzzy decision tree for reactive ion etching modeling: a data mining approach IEEE Trans Semicond Manuf 25 2012 45 56 10.1109/TSM.2011.2173372
    • (2012) IEEE Trans Semicond Manuf , vol.25 , pp. 45-56
    • Shukla, S.K.1    Tiwari, M.K.2
  • 44
    • 1542376003 scopus 로고    scopus 로고
    • Data-mining approach to production control in the computer-integrated testing cell
    • C. Kwak, and Y. Yih Data-mining approach to production control in the computer-integrated testing cell IEEE Trans Robot Autom 20 2004 107 116 10.1109/TRA.2003.819595
    • (2004) IEEE Trans Robot Autom , vol.20 , pp. 107-116
    • Kwak, C.1    Yih, Y.2
  • 45
    • 34547779924 scopus 로고    scopus 로고
    • Improvement of photolithography process by second generation data mining
    • H. Tsuda, and H. Shirai Improvement of photolithography process by second generation data mining IEEE Trans Semicond Manuf 20 2007 239 244 10.1109/TSM.2007.901839
    • (2007) IEEE Trans Semicond Manuf , vol.20 , pp. 239-244
    • Tsuda, H.1    Shirai, H.2
  • 47
    • 84910637207 scopus 로고    scopus 로고
    • A framework for root cause detection of sub-batch processing system for semiconductor manufacturing big data analytics
    • C. Chien, and S. Chuang A framework for root cause detection of sub-batch processing system for semiconductor manufacturing big data analytics IEEE Trans Semicond Manuf 27 2014 475 488 10.1109/TSM.2014.2356555
    • (2014) IEEE Trans Semicond Manuf , vol.27 , pp. 475-488
    • Chien, C.1    Chuang, S.2
  • 48
    • 0344465007 scopus 로고    scopus 로고
    • On the use of decision tree induction for discovery of interactions in a photolithographic process
    • D. Braha, and A. Shmilovici On the use of decision tree induction for discovery of interactions in a photolithographic process IEEE Trans Semicond Manuf 16 2003 644 652 10.1109/TSM.2003.818959
    • (2003) IEEE Trans Semicond Manuf , vol.16 , pp. 644-652
    • Braha, D.1    Shmilovici, A.2
  • 49
    • 79957992809 scopus 로고    scopus 로고
    • A review of data mining applications for quality improvement in manufacturing industry
    • G. Köksal, I. Batmaz, and M.C. Testik A review of data mining applications for quality improvement in manufacturing industry Expert Syst Appl 38 2011 13448 13467 10.1016/j.eswa.2011.04.063
    • (2011) Expert Syst Appl , vol.38 , pp. 13448-13467
    • Köksal, G.1    Batmaz, I.2    Testik, M.C.3
  • 51
    • 84871034176 scopus 로고    scopus 로고
    • Development pattern recognition model for the classification of circuit probe wafer maps on semiconductors
    • C.W. Chang, T.M. Chao, J.T. Horng, C.F. Lu, and R.H. Yeh Development pattern recognition model for the classification of circuit probe wafer maps on semiconductors IEEE Trans Compon Packag Manuf Technol 2 2012 2089 2097 10.1109/TCPMT.2012.2215327
    • (2012) IEEE Trans Compon Packag Manuf Technol , vol.2 , pp. 2089-2097
    • Chang, C.W.1    Chao, T.M.2    Horng, J.T.3    Lu, C.F.4    Yeh, R.H.5
  • 53
    • 84905867283 scopus 로고    scopus 로고
    • Data mining for significance in yield-defect correlation analysis
    • U. Hessinger, W.K. Chan, and B.T. Schafman Data mining for significance in yield-defect correlation analysis IEEE Trans Semicond Manuf 27 2014 347 356 10.1109/TSM.2014.2337251
    • (2014) IEEE Trans Semicond Manuf , vol.27 , pp. 347-356
    • Hessinger, U.1    Chan, W.K.2    Schafman, B.T.3
  • 55
    • 80052116583 scopus 로고    scopus 로고
    • A data mining approach for improving manufacturing processes quality control
    • Kamal AMM. A data mining approach for improving manufacturing processes quality control. In: Proc 2nd int conf, next gener inf technol (ICNIT): 2011; p. 207-12.
    • (2011) Proc 2nd Int Conf, Next Gener Inf Technol (ICNIT) , pp. 207-212
    • Kamal, A.M.M.1
  • 56
    • 66149183123 scopus 로고    scopus 로고
    • Detection of faulty products using data mining
    • Karim MA, Russ G, Islam A. Detection of faulty products using data mining. In: Proc 11th int conf comput inf technol: 2008;00. p. 101-7. (doi:10.1109/ICCITECHN.2008.4803116).
    • (2008) Proc 11th Int Conf Comput Inf Technol , pp. 101-107
    • Ma, K.1    Russ, G.2    Islam, A.3
  • 57
    • 84888864132 scopus 로고    scopus 로고
    • Mining multi-class industrial data with evolutionary fuzzy rules
    • Krömer P, Platos J, Snášel V. Mining multi-class industrial data with evolutionary fuzzy rules. In: Proc IEEE int conf cybern CYBCONF: 2013. p. 191-6. (doi:10.1109/CYBConf.2013.6617453).
    • (2013) Proc IEEE Int Conf Cybern CYBCONF , pp. 191-196
    • Krömer, P.1    Platos, J.2    Snášel, V.3
  • 58
    • 0034290324 scopus 로고    scopus 로고
    • Decomposition in data mining: An industrial case study
    • a Kusiak Decomposition in data mining: an industrial case study IEEE Trans Electron Packag Manuf 23 2000 345 353 10.1109/6104.895081
    • (2000) IEEE Trans Electron Packag Manuf , vol.23 , pp. 345-353
    • Kusiak, A.1
  • 60
    • 0035401598 scopus 로고    scopus 로고
    • An intelligent data mining system for drop test analysis of electronic products
    • P.C. Nelson, T.M. Tirpak, and S. a Lane An intelligent data mining system for drop test analysis of electronic products IEEE Trans Electron Packag Manuf 24 2001 222 231 10.1109/6104.956808
    • (2001) IEEE Trans Electron Packag Manuf , vol.24 , pp. 222-231
    • Nelson, P.C.1    Tirpak, T.M.2    Lane, S.A.3
  • 62
    • 65349111410 scopus 로고    scopus 로고
    • A data mining based approach to electronic part obsolescence forecasting
    • P. a Sandborn, F. Mauro, and R. Knox A data mining based approach to electronic part obsolescence forecasting IEEE Trans Components Packag Technol 30 2007 397 401 10.1109/TCAPT.2007.900058
    • (2007) IEEE Trans Components Packag Technol , vol.30 , pp. 397-401
    • Sandborn, P.A.1    Mauro, F.2    Knox, R.3
  • 63
    • 35348925422 scopus 로고    scopus 로고
    • A data mining algorithm for monitoring PCB assembly quality
    • F. Zhang, and T. Luk A data mining algorithm for monitoring PCB assembly quality IEEE Trans Electron Packag Manuf 30 2007 299 305 10.1109/TEPM.2007.907576
    • (2007) IEEE Trans Electron Packag Manuf , vol.30 , pp. 299-305
    • Zhang, F.1    Luk, T.2
  • 64
    • 33646486523 scopus 로고    scopus 로고
    • Explication and sharing of design knowledge through a novel product design approach
    • C.C. Huang, and W.Y. Liang Explication and sharing of design knowledge through a novel product design approach IEEE Trans Syst Man Cybern Part C Appl Rev 36 2006 426 438 10.1016/j.jvs.2005.12.031
    • (2006) IEEE Trans Syst Man Cybern Part C Appl Rev , vol.36 , pp. 426-438
    • Huang, C.C.1    Liang, W.Y.2
  • 66
    • 33747401950 scopus 로고    scopus 로고
    • Combustion efficiency optimization and virtual testing: A data-mining approach
    • A. Kusiak, and Z. Song Combustion efficiency optimization and virtual testing: a data-mining approach IEEE Trans Ind Inform 2 2006 176 184 10.1109/TII.2006.873598
    • (2006) IEEE Trans Ind Inform , vol.2 , pp. 176-184
    • Kusiak, A.1    Song, Z.2
  • 67
    • 33847764068 scopus 로고    scopus 로고
    • Constraint-based control of boiler efficiency: A data-mining approach
    • Z. Song, and A. Kusiak Constraint-based control of boiler efficiency: a data-mining approach IEEE Trans Ind Inform 3 2007 73 83 10.1109/TII.2006.890530
    • (2007) IEEE Trans Ind Inform , vol.3 , pp. 73-83
    • Song, Z.1    Kusiak, A.2
  • 68
    • 44349159091 scopus 로고    scopus 로고
    • Clustering-based performance optimization of the boiler-turbine system
    • a Kusiak, and Song Zhe Clustering-based performance optimization of the boiler-turbine system IEEE Trans Energy Convers 23 2008 651 658 10.1109/TEC.2007.914183
    • (2008) IEEE Trans Energy Convers , vol.23 , pp. 651-658
    • Kusiak, A.1    Zhe, S.2
  • 71
    • 79851484933 scopus 로고    scopus 로고
    • Industrial energy audit web application using data mining model
    • Maricar NM. Industrial energy audit web application using data mining model. In: Proc IEEE, GCC Conf (GCC): 2006. p. 1-6. (doi:10.1109/IEEEGCC.2006.5686199).
    • (2006) Proc IEEE, GCC Conf (GCC) , pp. 1-6
    • Maricar, N.M.1
  • 72
    • 0036571557 scopus 로고    scopus 로고
    • Unlocking the power of the grid
    • R. Dettmer Unlocking the power of the grid IEE Rev 48 2002 9 10.1049/ir:20020301
    • (2002) IEE Rev , vol.48 , pp. 9
    • Dettmer, R.1
  • 73
    • 84864426623 scopus 로고    scopus 로고
    • The internet of energy: A web-enabled smart grid system
    • N. Bui, A.P. Castellani, P. Casari, and M. Zorzi The internet of energy: a web-enabled smart grid system IEEE Netw 26 2012 39 45 10.1109/MNET.2012.6246751
    • (2012) IEEE Netw , vol.26 , pp. 39-45
    • Bui, N.1    Castellani, A.P.2    Casari, P.3    Zorzi, M.4
  • 76
    • 84888593478 scopus 로고    scopus 로고
    • Cloud-based software platform for big data analytics in smart grids
    • Y. Simmhan, S. Aman, A. Kumbhare, R. Liu, S. Stevens, Q. Zhou, and et al. Cloud-based software platform for big data analytics in smart grids Comput Sci Eng 15 2013 38 47 10.1109/MCSE.2013.39
    • (2013) Comput Sci Eng , vol.15 , pp. 38-47
    • Simmhan, Y.1    Aman, S.2    Kumbhare, A.3    Liu, R.4    Stevens, S.5    Zhou, Q.6
  • 77
    • 77957997865 scopus 로고    scopus 로고
    • Research on the architecture and key technology of internet of things (loT) applied on smart grid
    • Yun M, Yuxin B. Research on the architecture and key technology of internet of things (loT) applied on smart grid. In: Proc int conf adv energy eng (ICAEE): 2010. p. 69-72. (doi:10.1109/ICAEE.2010.5557611).
    • (2010) Proc Int Conf Adv Energy Eng (ICAEE) , pp. 69-72
    • Yun, M.1    Yuxin, B.2
  • 79
    • 76249119983 scopus 로고    scopus 로고
    • State-of-The-art overview on data mining in power systems
    • Mori H. State-of-the-art overview on data mining in power systems. In: Proc Power Syst Conf Expo 2006 PSCE '06 2006 IEEE PES: 2006. p. 33-4. (doi:10.1109/PSCE.2006.296245).
    • (2006) Proc Power Syst Conf Expo 2006 PSCE '06 2006 IEEE PES , pp. 33-34
    • Mori, H.1
  • 81
    • 84900511469 scopus 로고    scopus 로고
    • Literature review on the applications of data mining in power systems
    • Kazerooni M, Zhu H, Overbye TJ. Literature review on the applications of data mining in power systems. In: Proc Power Energy Conf Illinois: 2014. p. 1-8. 10.1109/PECI.2014.6804567
    • (2014) Proc Power Energy Conf Illinois , pp. 1-8
    • Kazerooni, M.1    Zhu, H.2    Overbye, T.J.3
  • 82
    • 84921377943 scopus 로고    scopus 로고
    • Microgrid state estimation and control for smart grid and internet of things communication network
    • M.M. Rana, and L. Li Microgrid state estimation and control for smart grid and internet of things communication network Electron Lett 51 2015 149 151 10.1049/el.2014.3635
    • (2015) Electron Lett , vol.51 , pp. 149-151
    • Rana, M.M.1    Li, L.2
  • 83
    • 80051783978 scopus 로고    scopus 로고
    • A data mining framework for electricity consumption analysis from meter data
    • D. Silva, and X. De, Yu A data mining framework for electricity consumption analysis from meter data IEEE Trans Ind Inform 7 2011 399 407 10.1109/TII.2011.2158844
    • (2011) IEEE Trans Ind Inform , vol.7 , pp. 399-407
    • Silva, D.1    De Yu, X.2
  • 85
    • 13844309981 scopus 로고    scopus 로고
    • Implications of on-site distributed generation for commercial/industrial facilities
    • M. Pipattanasomporn, M. Willingham, and S. Rahman Implications of on-site distributed generation for commercial/industrial facilities IEEE Trans Power Syst 20 2005 206 212 10.1109/TPWRS.2004.841233
    • (2005) IEEE Trans Power Syst , vol.20 , pp. 206-212
    • Pipattanasomporn, M.1    Willingham, M.2    Rahman, S.3
  • 86
    • 84893089036 scopus 로고    scopus 로고
    • A powerful visualization technique for electricity supply and demand at industrial sites with combined heat and power and wind generation
    • B. Leif Hanrahan, G. Lightbody, L. Staudt, and P.G. Leahy A powerful visualization technique for electricity supply and demand at industrial sites with combined heat and power and wind generation Renew Sustain Energy Rev 31 2014 860 869 10.1016/j.rser.2013.12.016
    • (2014) Renew Sustain Energy Rev , vol.31 , pp. 860-869
    • Leif Hanrahan, B.1    Lightbody, G.2    Staudt, L.3    Leahy, P.G.4
  • 87
    • 84891482146 scopus 로고    scopus 로고
    • A mathematical model for the optimal operation of the university of genoa smart polygeneration microgrid: Evaluation of technical, economic and environmental performance indicators
    • S. Bracco, F. Delfino, F. Pampararo, M. Robba, and M. Rossi A mathematical model for the optimal operation of the university of genoa smart polygeneration microgrid: evaluation of technical, economic and environmental performance indicators Energy 64 2014 912 922 10.1016/j.energy.2013.10.039
    • (2014) Energy , vol.64 , pp. 912-922
    • Bracco, S.1    Delfino, F.2    Pampararo, F.3    Robba, M.4    Rossi, M.5
  • 88
    • 84906498281 scopus 로고    scopus 로고
    • Application of a microgrid with renewables for a water treatment plant
    • M. Soshinskaya, W.H.J. Crijns-graus, Meer J. Van Der, and J.M. Guerrero Application of a microgrid with renewables for a water treatment plant Appl Energy 134 2014 20 34 10.1016/j.apenergy.2014.07.097
    • (2014) Appl Energy , vol.134 , pp. 20-34
    • Soshinskaya, M.1    Crijns-Graus, W.H.J.2    Van Der, M.J.3    Guerrero, J.M.4
  • 89
    • 84922224753 scopus 로고    scopus 로고
    • Design criteria for a power management system for microgrids with renewable sources
    • P. Pinceti, M. Vanti, C. Brocca, M. Carnesecchi, and G.P. Macera Design criteria for a power management system for microgrids with renewable sources Electr Power Syst Res 122 2015 168 179 10.1016/j.epsr.2015.01.010
    • (2015) Electr Power Syst Res , vol.122 , pp. 168-179
    • Pinceti, P.1    Vanti, M.2    Brocca, C.3    Carnesecchi, M.4    Macera, G.P.5
  • 90
    • 84928635897 scopus 로고    scopus 로고
    • Computational optimization techniques applied to microgrids planning: A review
    • C. Gamarra, and J.M. Guerrero Computational optimization techniques applied to microgrids planning: a review Renew Sustain Energy Rev 48 2015 413 424 10.1016/j.rser.2015.04.025
    • (2015) Renew Sustain Energy Rev , vol.48 , pp. 413-424
    • Gamarra, C.1    Guerrero, J.M.2
  • 92
    • 84880209189 scopus 로고    scopus 로고
    • Microgrids for fun and profit: The economics of installation investments and operations
    • F. Farzan, S. Lahiri, M. Kleinberg, K. Gharieh, F. Farzan, and M. Jafari Microgrids for fun and profit: the economics of installation investments and operations IEEE Power Energy Mag 11 2013 52 58 10.1109/MPE.2013.2258282
    • (2013) IEEE Power Energy Mag , vol.11 , pp. 52-58
    • Farzan, F.1    Lahiri, S.2    Kleinberg, M.3    Gharieh, K.4    Farzan, F.5    Jafari, M.6
  • 94
    • 84870583898 scopus 로고    scopus 로고
    • Evaluation of the costs and benefits of microgrids with consideration of services beyond energy supply
    • doi:10.1109/PESGM.2012.6345380
    • Morris GY, Abbey C, Wong S, Joos G. Evaluation of the costs and benefits of microgrids with consideration of services beyond energy supply. In: Proc IEEE power energy soc gen meet: 2012. p. 1-9. doi:10.1109/PESGM.2012.6345380
    • (2012) Proc IEEE Power Energy Soc Gen Meet , pp. 1-9
    • Morris, G.Y.1    Abbey, C.2    Wong, S.3    Joos, G.4
  • 96
    • 84920131908 scopus 로고    scopus 로고
    • Holistic measures for evaluating prediction models in smart grids
    • S. Aman, S. Member, Y. Simmhan, and S. Member Holistic measures for evaluating prediction models in smart grids IEEE Trans Knowl Data Eng 27 2015 1 15 10.1109/TKDE.2014.2327022
    • (2015) IEEE Trans Knowl Data Eng , vol.27 , pp. 1-15
    • Aman, S.1    Member, S.2    Simmhan, Y.3    Member, S.4
  • 97
    • 84857654563 scopus 로고    scopus 로고
    • On the accuracy versus transparency trade-off of data-mining models for fast-response PMU-based catastrophe predictors
    • I. Kamwa, S.R. Samantaray, and G. Joós On the accuracy versus transparency trade-off of data-mining models for fast-response PMU-based catastrophe predictors IEEE Trans Smart Grid 3 2012 152 161 10.1109/TSG.2011.2164948
    • (2012) IEEE Trans Smart Grid , vol.3 , pp. 152-161
    • Kamwa, I.1    Samantaray, S.R.2    Joós, G.3
  • 98
    • 0036577946 scopus 로고    scopus 로고
    • A data mining approach for spatial modeling in small area load forecast
    • Hung-Chih Wu, and Chan-Nan Lu A data mining approach for spatial modeling in small area load forecast IEEE Trans Power Syst 17 2002 516 521 10.1109/TPWRS.2002.1007927
    • (2002) IEEE Trans Power Syst , vol.17 , pp. 516-521
    • Wu, H.-C.1    Lu, C.-N.2
  • 99
    • 79955386301 scopus 로고    scopus 로고
    • A data-mining-based methodology for transmission expansion planning
    • J. Ferreira, S. Ramos, Z. Vale, and J. Soares A data-mining-based methodology for transmission expansion planning IEEE Intell Syst 26 2011 28 37 10.1109/MIS.2011.4
    • (2011) IEEE Intell Syst , vol.26 , pp. 28-37
    • Ferreira, J.1    Ramos, S.2    Vale, Z.3    Soares, J.4
  • 100
    • 33244458425 scopus 로고    scopus 로고
    • Neural-network-based signature recognition for harmonic source identification
    • D. Srinivasan, W.S. Ng, and a C. Liew Neural-network-based signature recognition for harmonic source identification IEEE Trans Power Deliv 21 2006 398 405 10.1109/TPWRD.2005.852370
    • (2006) IEEE Trans Power Deliv , vol.21 , pp. 398-405
    • Srinivasan, D.1    Ng, W.S.2    Liew, A.C.3
  • 101
    • 84961738551 scopus 로고    scopus 로고
    • Online algorithm for optimal real-time energy distribution in the smart grid
    • Y. Wang, S. Mao, and R.M. Nelms Online algorithm for optimal real-time energy distribution in the smart grid IEEE Trans Emerg Top Comput 1 2013 10 21 10.1109/TETC.2013.2273218
    • (2013) IEEE Trans Emerg Top Comput , vol.1 , pp. 10-21
    • Wang, Y.1    Mao, S.2    Nelms, R.M.3
  • 103
    • 84880273710 scopus 로고    scopus 로고
    • Using data-mining approaches for wind turbine power curve monitoring: A comparative study
    • M. Schlechtingen, I.F. Santos, and S. Achiche Using data-mining approaches for wind turbine power curve monitoring: a comparative study IEEE Trans Sustain Energy 4 2013 671 679 10.1109/TSTE.2013.2241797
    • (2013) IEEE Trans Sustain Energy , vol.4 , pp. 671-679
    • Schlechtingen, M.1    Santos, I.F.2    Achiche, S.3
  • 104
    • 84896852562 scopus 로고    scopus 로고
    • Optimal voltage control by wind farms using data mining techniques
    • I. Egido, E. Sáiz-Marín, and E. Lobato Optimal voltage control by wind farms using data mining techniques IET Renew Power Gener 2013 141 150 10.1049/iet-rpg.2013.0025
    • (2013) IET Renew Power Gener , pp. 141-150
    • Egido, I.1    Sáiz-Marín, E.2    Lobato, E.3
  • 105
    • 80155188460 scopus 로고    scopus 로고
    • Multiple classifier system for short term load forecast of Microgrid
    • Chan PPK, Chen WC, Ng WWY, Yeung DS. Multiple classifier system for short term load forecast of Microgrid. In: Proc int conf mach learn cybern: 2011;3. p. 1268-73. (doi:10.1109/ICMLC.2011.6016936).
    • (2011) Proc Int Conf Mach Learn Cybern , vol.3 , pp. 1268-1273
    • Chan, P.P.K.1    Chen, W.C.2    Ng, W.W.Y.3    Yeung, D.S.4
  • 106
    • 84870550979 scopus 로고    scopus 로고
    • Multiobjective intelligent energy management for a microgrid
    • A. Chaouachi, R.M. Kamel, R. Andoulsi, and K. Nagasaka Multiobjective intelligent energy management for a microgrid IEEE Trans Ind Electron 60 2013 1688 1699 10.1109/TIE.2012.2188873
    • (2013) IEEE Trans Ind Electron , vol.60 , pp. 1688-1699
    • Chaouachi, A.1    Kamel, R.M.2    Andoulsi, R.3    Nagasaka, K.4
  • 107
    • 0032655839 scopus 로고    scopus 로고
    • Short term load forecasting using a self-supervised adaptive neural network
    • H. Yoo, and R.L. Pimmel Short term load forecasting using a self-supervised adaptive neural network IEEE Trans Power Syst 14 1999 779 784 10.1109/59.761912
    • (1999) IEEE Trans Power Syst , vol.14 , pp. 779-784
    • Yoo, H.1    Pimmel, R.L.2
  • 108
    • 61649090211 scopus 로고    scopus 로고
    • Short-term prediction of wind farm power: A data mining approach
    • A. Kusiak, H. Zheng, and Z. Song Short-term prediction of wind farm power: a data mining approach IEEE Trans Energy Convers 24 2009 125 136 10.1109/TEC.2008.2006552
    • (2009) IEEE Trans Energy Convers , vol.24 , pp. 125-136
    • Kusiak, A.1    Zheng, H.2    Song, Z.3
  • 109
    • 80053945829 scopus 로고    scopus 로고
    • Energy sufficiency kaizen achieving zero energy cost and variance with sufficiency-inclusive private energy portfolios
    • M.C. Overturf, W.M. Chrosny, and R. Stine Energy sufficiency kaizen achieving zero energy cost and variance with sufficiency-inclusive private energy portfolios Distrib Gener Altern Energy J 26 2011 36 56 10.1080/21563306.2011.10462203
    • (2011) Distrib Gener Altern Energy J , vol.26 , pp. 36-56
    • Overturf, M.C.1    Chrosny, W.M.2    Stine, R.3
  • 110
    • 84861865242 scopus 로고    scopus 로고
    • Data mining for electricity price classification and the application to demand-side management
    • D. Huang, H. Zareipour, W.D. Rosehart, and N. Amjady Data mining for electricity price classification and the application to demand-side management IEEE Trans Smart Grid 3 2012 808 817 10.1109/TSG.2011.2177870
    • (2012) IEEE Trans Smart Grid , vol.3 , pp. 808-817
    • Huang, D.1    Zareipour, H.2    Rosehart, W.D.3    Amjady, N.4
  • 111
    • 33947308438 scopus 로고    scopus 로고
    • A framework for electricity price spike analysis with advanced data mining methods
    • J.H. Zhao, Z.Y. Dong, X. Li, and K.P. Wong A framework for electricity price spike analysis with advanced data mining methods IEEE Trans Power Syst 22 2007 376 385 10.1109/TPWRS.2006.889139
    • (2007) IEEE Trans Power Syst , vol.22 , pp. 376-385
    • Zhao, J.H.1    Dong, Z.Y.2    Li, X.3    Wong, K.P.4
  • 112
    • 32144446774 scopus 로고    scopus 로고
    • Forecasting system imbalance volumes in competitive electricity markets
    • M.P. Garcia, and D.S. Kirschen Forecasting system imbalance volumes in competitive electricity markets IEEE Trans Power Syst 21 2006 240 248 10.1109/TPWRS.2005.860924
    • (2006) IEEE Trans Power Syst , vol.21 , pp. 240-248
    • Garcia, M.P.1    Kirschen, D.S.2
  • 113
    • 84904746194 scopus 로고    scopus 로고
    • Integrated scheduling of renewable generation and demand response programs in a microgrid
    • M. Mazidi, A. Zakariazadeh, S. Jadid, and P. Siano Integrated scheduling of renewable generation and demand response programs in a microgrid Energy Convers Manag 86 2014 1118 1127 10.1016/j.enconman.2014.06.078
    • (2014) Energy Convers Manag , vol.86 , pp. 1118-1127
    • Mazidi, M.1    Zakariazadeh, A.2    Jadid, S.3    Siano, P.4
  • 114
    • 84904195838 scopus 로고    scopus 로고
    • Smart microgrid energy and reserve scheduling with demand response using stochastic optimization
    • A. Zakariazadeh, S. Jadid, and P. Siano Smart microgrid energy and reserve scheduling with demand response using stochastic optimization Int J Electr Power Energy Syst 63 2014 523 533 10.1016/j.ijepes.2014.06.037
    • (2014) Int J Electr Power Energy Syst , vol.63 , pp. 523-533
    • Zakariazadeh, A.1    Jadid, S.2    Siano, P.3
  • 115
    • 0031234529 scopus 로고    scopus 로고
    • Machine learning approaches to power-system security assessment
    • L. Wehenkel Machine learning approaches to power-system security assessment IEEE Expert 1997 12 10.1109/64.621229
    • (1997) IEEE Expert , pp. 12
    • Wehenkel, L.1
  • 116
    • 84886102463 scopus 로고    scopus 로고
    • Robust online dynamic security assessment using adaptive ensemble decision-tree learning
    • M. He, J. Zhang, and V. Vittal Robust online dynamic security assessment using adaptive ensemble decision-tree learning IEEE Trans Power Syst 28 2013 4089 4098 10.1109/TPWRS.2013.2266617
    • (2013) IEEE Trans Power Syst , vol.28 , pp. 4089-4098
    • He, M.1    Zhang, J.2    Vittal, V.3
  • 117
    • 1442313494 scopus 로고    scopus 로고
    • Enhancement of anomalous data mining in power system predicting-aided state estimation
    • S.J. Huang, and J.M. Lin Enhancement of anomalous data mining in power system predicting-aided state estimation IEEE Trans Power Syst 19 2004 610 619 10.1109/TPWRS.2003.818726
    • (2004) IEEE Trans Power Syst , vol.19 , pp. 610-619
    • Huang, S.J.1    Lin, J.M.2
  • 118
    • 84908298926 scopus 로고    scopus 로고
    • Synchrophasor data baselining and mining for online monitoring of dynamic security limits
    • A. Kaci, I. Kamwa, L. a Dessaint, and S. Guillon Synchrophasor data baselining and mining for online monitoring of dynamic security limits IEEE Trans Power Syst 29 2014 2681 2695 10.1109/TPWRS.2014.2312418
    • (2014) IEEE Trans Power Syst , vol.29 , pp. 2681-2695
    • Kaci, A.1    Kamwa, I.2    Dessaint, L.A.3    Guillon, S.4
  • 119
    • 84959498649 scopus 로고    scopus 로고
    • Developing a hybrid intrusion detection system using data mining for power systems
    • S. Pan, T. Morris, and U. Adhikari Developing a hybrid intrusion detection system using data mining for power systems IEEE Trans Smart Grid 2015 10.1109/TSG.2015.2409775
    • (2015) IEEE Trans Smart Grid
    • Pan, S.1    Morris, T.2    Adhikari, U.3
  • 120
    • 1442288870 scopus 로고    scopus 로고
    • Data mining for detection of sensitive buses and influential buses in a power system subjected to disturbances
    • S.K. Tso, J.K. Lin, H.K. Ho, C.M. Mak, K.M. Yung, and Y.K. Ho Data mining for detection of sensitive buses and influential buses in a power system subjected to disturbances IEEE Trans Power Syst 19 2004 563 568 10.1109/TPWRS.2003.821479
    • (2004) IEEE Trans Power Syst , vol.19 , pp. 563-568
    • Tso, S.K.1    Lin, J.K.2    Ho, H.K.3    Mak, C.M.4    Yung, K.M.5    Ho, Y.K.6
  • 121
    • 77956986293 scopus 로고    scopus 로고
    • Knowledge discovery in distance relay event report: A comparative data-mining strategy of rough set theory with decision tree
    • M.L. Othman, I. Aris, S.M. Abdullah, M.L. Ali, and M.R. Othman Knowledge discovery in distance relay event report: a comparative data-mining strategy of rough set theory with decision tree IEEE Trans Power Deliv 25 2010 2264 2287 10.1109/TPWRD.2010.2055587
    • (2010) IEEE Trans Power Deliv , vol.25 , pp. 2264-2287
    • Othman, M.L.1    Aris, I.2    Abdullah, S.M.3    Ali, M.L.4    Othman, M.R.5
  • 122
    • 0036650438 scopus 로고    scopus 로고
    • Pattern recognition applications for power system disturbance classification
    • a M. Gaouda, S.H. Kanoun, M.M. a Salama, and a Y. Chikhani Pattern recognition applications for power system disturbance classification IEEE Trans Power Deliv 17 2002 677 683 10.1109/TPWRD.2002.1022786
    • (2002) IEEE Trans Power Deliv , vol.17 , pp. 677-683
    • Gaouda, A.M.1    Kanoun, S.H.2    Salama, M.M.A.3    Chikhani, A.Y.4
  • 123
    • 84880385233 scopus 로고    scopus 로고
    • Data mining approach to fault detection for isolated inverter-based microgrids
    • H.H. Zeineldin, N.H. Kan'an, E. Casagrande, and W.L. Woon Data mining approach to fault detection for isolated inverter-based microgrids IET Gener Transm Distrib 7 2013 745 754 10.1049/iet-gtd.2012.0518
    • (2013) IET Gener Transm Distrib , vol.7 , pp. 745-754
    • Zeineldin, H.H.1    Kan'An, N.H.2    Casagrande, E.3    Woon, W.L.4
  • 124
    • 80155211344 scopus 로고    scopus 로고
    • Using the data mining based fuzzy classification algorithm for power distribution fault cause identification with imbalanced data
    • Xu LX Le, Chow M-YCM-Y, Taylor LS. Using the data mining based fuzzy classification algorithm for power distribution fault cause identification with imbalanced data. In: Proc IEEE PES power syst conf expo: 2006;22. p. 164-171. (doi:10.1109/PSCE.2006.296482).
    • (2006) Proc IEEE PES Power Syst Conf Expo , vol.22 , pp. 164-171
    • Le X.Lx1    M-Ycm-Y, C.2    Taylor, L.S.3
  • 125
    • 84655166988 scopus 로고    scopus 로고
    • Methodology for a security/dependability adaptive protection scheme based on data mining
    • E.E. Bernabeu, J.S. Thorp, and V. Centeno Methodology for a security/dependability adaptive protection scheme based on data mining IEEE Trans Power Deliv 27 2012 104 111 10.1109/TPWRD.2011.2168831
    • (2012) IEEE Trans Power Deliv , vol.27 , pp. 104-111
    • Bernabeu, E.E.1    Thorp, J.S.2    Centeno, V.3
  • 126
    • 33750142607 scopus 로고    scopus 로고
    • Unsupervised event extraction within substations using rough classification
    • C.L. Hor, and P. a Crossley Unsupervised event extraction within substations using rough classification IEEE Trans Power Deliv 21 2006 1809 1816 10.1109/TPWRD.2006.874670
    • (2006) IEEE Trans Power Deliv , vol.21 , pp. 1809-1816
    • Hor, C.L.1    Crossley, P.A.2
  • 127
    • 34147152235 scopus 로고    scopus 로고
    • Providing decision support for the condition-based maintenance of circuit breakers through data mining of trip coil current signatures
    • S.M. Strachan, S.D.J. McArthur, B. Stephen, J.R. McDonald, and A. Campbell Providing decision support for the condition-based maintenance of circuit breakers through data mining of trip coil current signatures IEEE Trans Power Deliv 22 2007 178 186 10.1109/TPWRD.2006.883001
    • (2007) IEEE Trans Power Deliv , vol.22 , pp. 178-186
    • Strachan, S.M.1    McArthur, S.D.J.2    Stephen, B.3    McDonald, J.R.4    Campbell, A.5
  • 128
    • 85152044893 scopus 로고    scopus 로고
    • Enhancement of power system data debugging using gap statistic algorithm-based data mining technique
    • S.J. Huang, and J.M. Lin Enhancement of power system data debugging using gap statistic algorithm-based data mining technique IEEE Power Eng Rev 22 2002 10.1109/MPER.2002.4311742
    • (2002) IEEE Power Eng Rev , vol.22
    • Huang, S.J.1    Lin, J.M.2
  • 129
    • 82855181106 scopus 로고    scopus 로고
    • Locating major harmonic current contributors by layered knowledge discovery in database
    • So MK, Lau WH, Norman CFT, Tsang KF, Leung MC. Locating major harmonic current contributors by layered knowledge discovery in database. In: Proc IEEE power energy soc gen meet: 2011. p. 1-5. http://dx.doi.org/10.1109/PES.2011.6039139
    • (2011) Proc IEEE Power Energy Soc Gen Meet , pp. 1-5
    • So, M.K.1    Lau, W.H.2    Cft, N.3    Tsang, K.F.4    Leung, M.C.5
  • 130
    • 58249132223 scopus 로고    scopus 로고
    • Analyzing harmonic monitoring data using supervised and unsupervised learning
    • A. Asheibi, D. Stirling, and D. Sutanto Analyzing harmonic monitoring data using supervised and unsupervised learning IEEE Trans Power Deliv 24 2009 293 301 10.1109/TPWRD.2008.2002654
    • (2009) IEEE Trans Power Deliv , vol.24 , pp. 293-301
    • Asheibi, A.1    Stirling, D.2    Sutanto, D.3
  • 131
    • 34147182800 scopus 로고    scopus 로고
    • Intelligent-based approach to islanding detection in distributed generation
    • K. El-arroudi, G. Joós, and I. Kamwa Intelligent-based approach to islanding detection in distributed generation IEEE Trans Power Deliv 22 2007 828 835
    • (2007) IEEE Trans Power Deliv , vol.22 , pp. 828-835
    • El-Arroudi, K.1    Joós, G.2    Kamwa, I.3
  • 133
    • 84891556289 scopus 로고    scopus 로고
    • Probabilistic framework for assessing the accuracy of data mining tool for online prediction of transient stability
    • T. Guo, and J.V. Milanovic Probabilistic framework for assessing the accuracy of data mining tool for online prediction of transient stability IEEE Trans Power Syst 29 2014 377 385 10.1109/TPWRS.2013.2281118
    • (2014) IEEE Trans Power Syst , vol.29 , pp. 377-385
    • Guo, T.1    Milanovic, J.V.2
  • 134
    • 84892567656 scopus 로고    scopus 로고
    • A differential sequence component protection scheme for microgrids with inverter-based distributed generators
    • E. Casagrande, W.L. Woon, H.H. Zeineldin, and D. Svetinovic A differential sequence component protection scheme for microgrids with inverter-based distributed generators IEEE Trans Smart Grid 5 2014 29 37 10.1109/TSG.2013.2251017
    • (2014) IEEE Trans Smart Grid , vol.5 , pp. 29-37
    • Casagrande, E.1    Woon, W.L.2    Zeineldin, H.H.3    Svetinovic, D.4
  • 135
    • 85027447260 scopus 로고    scopus 로고
    • Data-mining model based intelligent differential microgrid protection scheme
    • S. Kar, S.R. Samantaray, and M.D. Zadeh Data-mining model based intelligent differential microgrid protection scheme IEEE Syst J 2015 1 9 10.1109/JSYST.2014.2380432
    • (2015) IEEE Syst J , pp. 1-9
    • Kar, S.1    Samantaray, S.R.2    Zadeh, M.D.3
  • 136
    • 84906739663 scopus 로고    scopus 로고
    • Combined S-transform and data-mining based intelligent micro-grid protection scheme
    • Kar S, Samantaray SR. Combined S-transform and data-mining based intelligent micro-grid protection scheme. In: Proc students conf. eng. syst.: 2014, p. 1-5. (doi:10.1109/SCES.2014.6880053).
    • (2014) Proc Students Conf. Eng. Syst. , pp. 1-5
    • Kar, S.1    Samantaray, S.R.2
  • 137
    • 49249135950 scopus 로고    scopus 로고
    • Power utility nontechnical loss analysis with extreme learning machine method
    • A.H. Nizar, Z.Y. Dong, and Y. Wang Power utility nontechnical loss analysis with extreme learning machine method IEEE Trans Power Syst 23 2008 946 955 10.1109/TPWRS.2008.926431
    • (2008) IEEE Trans Power Syst , vol.23 , pp. 946-955
    • Nizar, A.H.1    Dong, Z.Y.2    Wang, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.