메뉴 건너뛰기




Volumn 48, Issue 9, 2012, Pages

An intelligent agent for optimal river-reservoir system management

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE BEHAVIOR; CALIFORNIA; DROUGHT PERIODS; DYNAMIC DISPLAYS; FISH SPECIES; HYDROLOGIC SYSTEMS; LEARNING METHODS; LEARNING PROCESS; MARKOV DECISION PROCESSES; OPERATIONAL POLICY; OPTIMAL MANAGEMENT; PROBABILISTIC MODELS; QUALITY ENHANCEMENT; STOCHASTIC OPTIMIZATIONS; STREAMFLOW AUGMENTATION; SYSTEM MANAGEMENT; WATER TEMPERATURES;

EID: 84867226614     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2012WR011958     Document Type: Article
Times cited : (24)

References (48)
  • 1
    • 33750953806 scopus 로고    scopus 로고
    • Water allocation improvement in river basin using Adaptive Neural Fuzzy Reinforcement Learning approach
    • DOI 10.1016/j.asoc.2005.02.007, PII S1568494605000682
    • Abolpour, B. (2007), Water allocation improvement in river basin using adaptive neural fuzzy reinforcement learning approach, Appl. Soft Com-put., 7(1), 265-285. (Pubitemid 44739432)
    • (2007) Applied Soft Computing Journal , vol.7 , Issue.1 , pp. 265-285
    • Abolpour, B.1    Javan, M.2    Karamouz, M.3
  • 4
    • 0032277442 scopus 로고    scopus 로고
    • A reinforcement learning model for the operation of conjunctive use schemes
    • edited by W. Blaine Comput. Mech., Southampton, U. K
    • Bouchart, F. (1998), A reinforcement learning model for the operation of conjunctive use schemes, in Hydraulic Engineering Software VII, edited by W. Blaine, pp. 319-329, Comput. Mech., Southampton, U. K.
    • (1998) Hydraulic Engineering Software VII , pp. 319-329
    • Bouchart, F.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman, L. (2001), Random forests, Mach. Learn., 45(1), 5-32. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 58349108008 scopus 로고    scopus 로고
    • Reinforcement learning in the operational management of a water system
    • edited by A. Sano, S. Nishioka, and H., Tamura Pergamon, Oxford, U. K
    • Castelletti, A. (2002), Reinforcement learning in the operational management of a water system, in Modeling and Control in Environmental Issues, edited by A. Sano, S. Nishioka, and H., Tamura, pp. 303-308, Pergamon, Oxford, U. K.
    • (2002) Modeling and Control in Environmental Issues , pp. 303-308
    • Castelletti, A.1
  • 9
    • 77956510727 scopus 로고    scopus 로고
    • Tree-based reinforcement learning for optimal water reservoir operation
    • doi:10.1029/2009WR008898
    • Castelletti, A., S. Galelli, M. Restelli, and R. Soncini-Sessa (2010), Tree-based reinforcement learning for optimal water reservoir operation, Water Resour. Res., 46, W09507, doi:10.1029/2009WR008898.
    • (2010) Water Resour. Res. , vol.46
    • Castelletti, A.1    Galelli, S.2    Restelli, M.3    Soncini-Sessa, R.4
  • 10
    • 0035973156 scopus 로고    scopus 로고
    • Intelligent control for modelling of real-time reservoir operation
    • Chang, L. C., and F. J. Chang (2001), Intelligent control for modelling of real-time reservoir operation, Hydrol. Processes, 15(9), 1621-1634.
    • (2001) Hydrol. Processes , vol.15 , Issue.9 , pp. 1621-1634
    • Chang, L.C.1    Chang, F.J.2
  • 11
    • 17844370548 scopus 로고    scopus 로고
    • Intelligent control for modeling of real time reservoir operation: Part II ANN with operating curves
    • Chang, Y. T., L. C. Chang, and F. J. Chang (2005), Intelligent control for modeling of real time reservoir operation: Part II ANN with operating curves, Hydrol. Processes, 19(7), 1431-1444.
    • (2005) Hydrol. Processes , vol.19 , Issue.7 , pp. 1431-1444
    • Chang, Y.T.1    Chang, L.C.2    Chang, F.J.3
  • 12
    • 84867194298 scopus 로고    scopus 로고
    • City of Reno, City of Sparks, County of Washoe, U.S. Department of the Interior, U.S. Department of Justice, U.S. Environmental Protection Agency, Nevada Division of Environmental Protection, and Pyramid Lake Paiute Tribe
    • City of Reno, City of Sparks, County of Washoe, U.S. Department of the Interior, U.S. Department of Justice, U.S. Environmental Protection Agency, Nevada Division of Environmental Protection, and Pyramid Lake Paiute Tribe (1996), Truckee River water quality settlement agreement.
    • (1996) Truckee River Water Quality Settlement Agreement
  • 13
    • 84867210959 scopus 로고    scopus 로고
    • Simulating operations in the Truckee-Carson RiverWare modeling system
    • Coors, S. (2006), Simulating operations in the Truckee-Carson RiverWare modeling system, J. Nev. Water Resour. Assoc., 3(1), 23-32.
    • (2006) J. Nev. Water Resour. Assoc. , vol.3 , Issue.1 , pp. 23-32
    • Coors, S.1
  • 15
    • 0345062531 scopus 로고    scopus 로고
    • Multidimensional triangulation and interpolation for reinforcement learning
    • edited by M. Mozer, M. Jordan, and T. Petsche MIT Press, Cambridge, Mass
    • Davies, S. (1997), Multidimensional triangulation and interpolation for reinforcement learning, in Advances in Neural Information Processing Systems, edited by M. Mozer, M. Jordan, and T. Petsche, 9, 1005-1011, MIT Press, Cambridge, Mass.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 1005-1011
    • Davies, S.1
  • 20
    • 1842686887 scopus 로고    scopus 로고
    • Optimal operation of multireservoir systems: State-of-the-art review
    • DOI 10.1061/(ASCE)0733-9496(2004)130:2(93)
    • Labadie, J. (2004), Optimal operation of multireservoir systems: State-of-the-art review, J. Water Resour. Plann. Manage., 130(2), 93-111. (Pubitemid 38459486)
    • (2004) Journal of Water Resources Planning and Management , vol.130 , Issue.2 , pp. 93-111
    • Labadie, J.W.1
  • 21
    • 37549024571 scopus 로고    scopus 로고
    • Stochastic optimization of multireservoir systems via reinforcement learning
    • doi:10.1029/2006WR005627
    • Lee, J. H., and J. W. Labadie (2007), Stochastic optimization of multireservoir systems via reinforcement learning, Water Resour. Res., 43, W11408, doi:10.1029/2006WR005627.
    • (2007) Water Resour. Res. , vol.43
    • Lee, J.H.1    Labadie, J.W.2
  • 24
    • 0041813270 scopus 로고    scopus 로고
    • Regression model for daily maximum stream temperature
    • DOI 10.1061/(ASCE)0733-9372(2003)129:7(667)
    • Neumann, D., B. Rajagopalan, and E. Zagona (2003), Regression model for daily maximum stream temperature, J. Environ. Eng., 129(7), 667-674. (Pubitemid 36901394)
    • (2003) Journal of Environmental Engineering , vol.129 , Issue.7 , pp. 667-674
    • Neumann, D.W.1    Rajagopalan, B.2    Zagona, E.A.3
  • 25
    • 84867194715 scopus 로고    scopus 로고
    • Nevada Division Of Water Planning Carson City, Nev
    • Nevada Division of Water Planning (1997), Truckee River chronology, report, Carson City, Nev.
    • (1997) Truckee River Chronology, Report
  • 28
    • 77952241017 scopus 로고    scopus 로고
    • Simulation-optimization modeling: A survey and potential application in reservoir systems operation
    • Rani, D., and M. Moreira (2010), Simulation-optimization modeling: A survey and potential application in reservoir systems operation, Water Resour. Manage., 24(6), 1107-1138.
    • (2010) Water Resour. Manage. , vol.24 , Issue.6 , pp. 1107-1138
    • Rani, D.1    Moreira, M.2
  • 30
    • 84867221735 scopus 로고    scopus 로고
    • Modeling in support of water operations in the Truckee River basin, paper presented at Watershed 2005
    • Williamsburg, Va
    • Rieker, J. D., S. Coors, M. Mann, and T. Scott (2005). Modeling in support of water operations in the Truckee River basin, paper presented at Watershed 2005, Environ. and Water Resour. Inst., Am. Soc. of Civ. Eng., Williamsburg, Va.
    • (2005) Environ. and Water Resour. Inst., Am. Soc. of Civ. Eng
    • Rieker, J.D.1    Coors, S.2    Mann, M.3    Scott, T.4
  • 33
    • 26944466214 scopus 로고    scopus 로고
    • Function approximation via tile coding: Automating parameter choice, in Proceedings of the 6th International Symposium on Abstraction, Reformulation and Approximation (SARA-05)
    • Springer, Berlin
    • Sherstov, A., and P. Stone (2005). Function approximation via tile coding: Automating parameter choice, in Proceedings of the 6th International Symposium on Abstraction, Reformulation and Approximation (SARA-05), Lect. Notes Comput. Sci., vol. 3607, pp. 194-205, Springer, Berlin.
    • (2005) Lect. Notes Comput. Sci. , vol.3607 , pp. 194-205
    • Sherstov, A.1    Stone, P.2
  • 34
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • DOI 10.1023/B:STCO.0000035301.49549.88
    • Smola, A. J., and B. Schölkopf (2004), A tutorial on support vector regression, Stat. Comput., 14(3), 199-222. (Pubitemid 39063488)
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 37
    • 0029276036 scopus 로고
    • Temporal difference learning and TD-Gammon
    • Tesauro, G. (1995), Temporal difference learning and TD-Gammon, Commun. ACM, 38(3), 58-68.
    • (1995) Commun. ACM , vol.38 , Issue.3 , pp. 58-68
    • Tesauro, G.1
  • 42
    • 0033178472 scopus 로고    scopus 로고
    • Modeling the impact of subsurface nutrient flux on water quality in the lower Truckee River, Nevada
    • Warwick, J. J., D. Cockrum, and A. McKay (1999), Modeling the impact of subsurface nutrient flux on water quality in the Lower Truckee River, Nevada, J. Am. Water Resour Assoc., 35(4), 837-851. (Pubitemid 29388499)
    • (1999) Journal of the American Water Resources Association , vol.35 , Issue.4 , pp. 837-851
    • Warwick, J.J.1    Cockrum, D.2    McKay, A.3
  • 44
    • 33646714634 scopus 로고    scopus 로고
    • Evolutionary function approximation for reinforcement learning
    • Whiteson, S., and P. Stone (2006), Evolutionary function approximation for reinforcement learning, J. Mach. Learn. Res., 7, 877-917. (Pubitemid 43736560)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 877-917
    • Whiteson, S.1    Stone, P.2
  • 45
    • 0004685891 scopus 로고    scopus 로고
    • Reinforcement learning: A new technique for the realtime optimal control of hydraulic networks
    • Taylor and Francis, London, U. K
    • Wilson, G. (1996), Reinforcement learning: A new technique for the realtime optimal control of hydraulic networks, in Hydroinformatics '96, vol. 2, pp. 893-900, Taylor and Francis, London, U. K.
    • (1996) Hydroinformatics '96 , vol.2 , pp. 893-900
    • Wilson, G.1
  • 47
    • 0022268780 scopus 로고
    • Reservoir management and operations models: A state-of-the-art review
    • Yeh, W.-G. (1985), Reservoir management and operations models: A state-of-the-art review, Water Resour. Res., 21(12), 1797-1818.
    • (1985) Water Resour. Res. , vol.21 , Issue.12 , pp. 1797-1818
    • Yeh, W.-G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.