메뉴 건너뛰기




Volumn 28, Issue 2, 2012, Pages 142-152

Application of a data mining approach to derive operating rules for the Eleviyan irrigation reservoir

Author keywords

Data mining; Decision tree; Monte Carlo simulation; Operating rules; Operational research; Optimization; Water resource management

Indexed keywords


EID: 84864649324     PISSN: 07438141     EISSN: 10402381     Source Type: Journal    
DOI: 10.1080/07438141.2012.678927     Document Type: Article
Times cited : (14)

References (10)
  • 3
    • 55649118871 scopus 로고    scopus 로고
    • The role of hydrologic information in reservoir operation-Learning from historical releases
    • Hejazi MI, Cai X, Ruddell BL. 2008. The role of hydrologic information in reservoir operation-Learning from historical releases. Adv Water Res. 31 (12):1636-1650.
    • (2008) Adv Water Res. , vol.31 , Issue.12 , pp. 1636-1650
    • Hejazi, M.I.1    Cai, X.2    Ruddell, B.L.3
  • 7
    • 71149084920 scopus 로고    scopus 로고
    • Operation analysis of Eleviyan irrigation reservoir dam by optimization and stochastic simulation
    • Sattari MT, Apaydin H, Ozturk F. 2009. Operation analysis of Eleviyan irrigation reservoir dam by optimization and stochastic simulation. Stoch Environ Res Risk Assess. 23 (8):1187-1201.
    • (2009) Stoch Environ Res Risk Assess , vol.23 , Issue.8 , pp. 1187-1201
    • Sattari, M.T.1    Apaydin, H.2    Ozturk, F.3
  • 8
    • 0345290559 scopus 로고    scopus 로고
    • Application of data-driven modeling and machine learning in control of water resources
    • Idea Group Publishing
    • Solomantine DP. 2002. Application of data-driven modeling and machine learning in control of water resources. Computational intelligence in control. Idea Group Publishing. 197-217.
    • (2002) Computational Intelligence in Control , pp. 197-217
    • Solomantine, D.P.1
  • 9
    • 85077949697 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall-runoff modeling
    • Solomantine DP, Dulal KN. 2003. Model trees as an alternative to neural networks in rainfall-runoff modeling. Hydrol Sci J. 48: 455-472.
    • (2003) Hydrol Sci J. , vol.48 , pp. 455-472
    • Solomantine, D.P.1    Dulal, K.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.