메뉴 건너뛰기




Volumn 23, Issue 3, 2016, Pages 217-224

Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation

Author keywords

[No Author keywords available]

Indexed keywords

CMG HELICASE; DOUBLE STRANDED DNA; FUNGAL ENZYME; HELICASE; UNCLASSIFIED DRUG; WINGED HELIX TRANSCRIPTION FACTOR; DNA HELICASE;

EID: 84959552559     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.3170     Document Type: Article
Times cited : (116)

References (65)
  • 1
    • 73949091058 scopus 로고    scopus 로고
    • A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication
    • Evrin C., et al. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc. Natl. Acad. Sci. USA 106, 20240-20245 (2009
    • (2009) Proc Natl. Acad. Sci. USA , vol.106 , pp. 20240-20245
    • Evrin, C.1
  • 2
    • 70350751416 scopus 로고    scopus 로고
    • Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing
    • Remus D., et al. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139, 719-730 (2009
    • (2009) Cell , vol.139 , pp. 719-730
    • Remus, D.1
  • 3
    • 78650240871 scopus 로고    scopus 로고
    • DNA replication: Making two forks from one prereplication complex
    • Botchan, M., & Berger, J. DNA replication: making two forks from one prereplication complex. Mol. Cell 40, 860-861 (2010
    • (2010) Mol. Cell , vol.40 , pp. 860-861
    • Botchan, M.1    Berger, J.2
  • 4
    • 84925813600 scopus 로고    scopus 로고
    • Regulated eukaryotic DNA replication origin firing with purified proteins
    • Yeeles, J.T., Deegan, T.D., Janska, A., Early, A., & Diffley, J.F. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519, 431-435 (2015
    • (2015) Nature , vol.519 , pp. 431-435
    • Yeeles, J.T.1    Deegan, T.D.2    Janska, A.3    Early, A.4    Diffley, J.F.5
  • 5
    • 33745925880 scopus 로고    scopus 로고
    • Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase
    • Moyer, S.E., Lewis, P.W., & Botchan, M.R. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. USA 103, 10236-10241 (2006
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 10236-10241
    • Moyer, S.E.1    Lewis, P.W.2    Botchan, M.R.3
  • 6
    • 74749095240 scopus 로고    scopus 로고
    • Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins
    • Ilves, I., Petojevic, T., Pesavento, J.J., & Botchan, M.R. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol. Cell 37, 247-258 (2010
    • (2010) Mol. Cell , vol.37 , pp. 247-258
    • Ilves, I.1    Petojevic, T.2    Pesavento, J.J.3    Botchan, M.R.4
  • 7
    • 84856768293 scopus 로고    scopus 로고
    • The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes
    • Makarova, K.S., Koonin, E.V., & Kelman, Z. The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes. Biol. Direct 7, 7 (2012
    • (2012) Biol. Direct , vol.7 , pp. 7
    • Makarova, K.S.1    Koonin, E.V.2    Kelman, Z.3
  • 8
    • 84873175571 scopus 로고    scopus 로고
    • MCM structure and mechanics: What we have learned from archaeal MCM
    • Slaymaker, I.M., & Chen, X.S. MCM structure and mechanics: what we have learned from archaeal MCM. Subcell. Biochem. 62, 89-111 (2012
    • (2012) Subcell. Biochem , vol.62 , pp. 89-111
    • Slaymaker, I.M.1    Chen, X.S.2
  • 9
    • 58149505656 scopus 로고    scopus 로고
    • Crystal structure of a near-full-length archaeal MCM: Functional insights for an AAA+ hexameric helicase
    • Brewster A.S., et al. Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase. Proc. Natl. Acad. Sci. USA 105, 20191-20196 (2008
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 20191-20196
    • Brewster, A.S.1
  • 10
    • 33746375404 scopus 로고    scopus 로고
    • Mechanism of DNA translocation in a replicative hexameric helicase
    • Enemark, E.J., & Joshua-Tor, L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442, 270-275 (2006
    • (2006) Nature , vol.442 , pp. 270-275
    • Enemark, E.J.1    Joshua-Tor, L.2
  • 11
    • 0034625236 scopus 로고    scopus 로고
    • Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides
    • Singleton, M.R., Sawaya, M.R., Ellenberger, T., & Wigley, D.B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589-600 (2000
    • (2000) Cell , vol.101 , pp. 589-600
    • Singleton, M.R.1    Sawaya, M.R.2    Ellenberger, T.3    Wigley, D.B.4
  • 12
    • 84921510079 scopus 로고    scopus 로고
    • Analysis of the crystal structure of an active MCM hexamer
    • Miller, J.M., Arachea, B.T., Epling, L.B., & Enemark, E.J. Analysis of the crystal structure of an active MCM hexamer. eLife 3, e03433 (2014
    • (2014) ELife , vol.3 , pp. e03433
    • Miller, J.M.1    Arachea, B.T.2    Epling, L.B.3    Enemark, E.J.4
  • 13
    • 84939545029 scopus 로고    scopus 로고
    • Structure of the eukaryotic MCM complex at 3.8 Å
    • Li N., et al. Structure of the eukaryotic MCM complex at 3.8 Å. Nature 524, 186-191 (2015
    • (2015) Nature , vol.524 , pp. 186-191
    • Li, N.1
  • 14
    • 84908100701 scopus 로고    scopus 로고
    • DNA binding polarity dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome
    • Costa, A., et al. DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. eLife 3, e03273 (2014
    • (2014) ELife , vol.3 , pp. e03273
    • Costa, A.1
  • 15
    • 79953769723 scopus 로고    scopus 로고
    • The structural basis for MCM2-7 helicase activation by GINS and Cdc45
    • Costa A., et al. The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat. Struct. Mol. Biol. 18, 471-477 (2011
    • (2011) Nat. Struct. Mol. Biol , vol.18 , pp. 471-477
    • Costa, A.1
  • 16
    • 84949535090 scopus 로고    scopus 로고
    • The architecture of a eukaryotic replisome
    • Sun J., et al. The architecture of a eukaryotic replisome. Nat. Struct. Mol. Biol. 22, 976-982 (2015
    • (2015) Nat. Struct. Mol. Biol , vol.22 , pp. 976-982
    • Sun, J.1
  • 17
    • 79953086676 scopus 로고    scopus 로고
    • The nuts and bolts of ring-Translocase structure and mechanism
    • Lyubimov, A.Y., Strycharska, M., & Berger, J.M. The nuts and bolts of ring-Translocase structure and mechanism. Curr. Opin. Struct. Biol. 21, 240-248 (2011
    • (2011) Curr. Opin. Struct. Biol , vol.21 , pp. 240-248
    • Lyubimov, A.Y.1    Strycharska, M.2    Berger, J.M.3
  • 18
    • 71449107031 scopus 로고    scopus 로고
    • The Mcm complex: Unwinding the mechanism of a replicative helicase
    • Bochman, M.L., & Schwacha, A. The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol. Mol. Biol. Rev. 73, 652-683 (2009
    • (2009) Microbiol. Mol. Biol. Rev , vol.73 , pp. 652-683
    • Bochman, M.L.1    Schwacha, A.2
  • 19
    • 84867538324 scopus 로고    scopus 로고
    • The hexameric helicase DnaB adopts a nonplanar conformation during translocation
    • Itsathitphaisarn, O., Wing, R.A., Eliason, W.K., Wang, J., & Steitz, T.A. The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell 151, 267-277 (2012
    • (2012) Cell , vol.151 , pp. 267-277
    • Itsathitphaisarn, O.1    Wing, R.A.2    Eliason, W.K.3    Wang, J.4    Steitz, T.A.5
  • 20
    • 80052942659 scopus 로고    scopus 로고
    • Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase
    • Fu Y.V., et al. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146, 931-941 (2011
    • (2011) Cell , vol.146 , pp. 931-941
    • Fu, Y.V.1
  • 21
    • 85016924288 scopus 로고    scopus 로고
    • Two promising future developments of cryo-EM: Capturing short-lived states and mapping a continuum of states of a macromolecule
    • 31 October 2015
    • Chen B., & Frank, J. Two promising future developments of cryo-EM: capturing short-lived states and mapping a continuum of states of a macromolecule. Microscopy (Oxf.) doi: 10.1093/jmicro/dfv344 (31 October 2015
    • Microscopy (Oxf
    • Chen, B.1    Frank, J.2
  • 22
    • 34547874631 scopus 로고    scopus 로고
    • Crystal structure of the GINS complex and functional insights into its role in DNA replication
    • Chang, Y.P., Wang, G., Bermudez, V., Hurwitz, J., & Chen, X.S. Crystal structure of the GINS complex and functional insights into its role in DNA replication. Proc. Natl. Acad. Sci. USA 104, 12685-12690 (2007
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 12685-12690
    • Chang, Y.P.1    Wang, G.2    Bermudez, V.3    Hurwitz, J.4    Chen, X.S.5
  • 23
    • 34249875398 scopus 로고    scopus 로고
    • Crystal structure of the human GINS complex
    • Choi, J.M., Lim, H.S., Kim, J.J., Song, O.K., & Cho, Y. Crystal structure of the human GINS complex. Genes Dev. 21, 1316-1321 (2007
    • (2007) Genes Dev , vol.21 , pp. 1316-1321
    • Choi, J.M.1    Lim, H.S.2    Kim, J.J.3    Song, O.K.4    Cho, Y.5
  • 24
    • 34247629049 scopus 로고    scopus 로고
    • Structure of the human GINS complex and its assembly and functional interface in replication initiation
    • Kamada, K., Kubota, Y., Arata, T., Shindo, Y., & Hanaoka, F. Structure of the human GINS complex and its assembly and functional interface in replication initiation. Nat. Struct. Mol. Biol. 14, 388-396 (2007
    • (2007) Nat. Struct. Mol. Biol , vol.14 , pp. 388-396
    • Kamada, K.1    Kubota, Y.2    Arata, T.3    Shindo, Y.4    Hanaoka, F.5
  • 25
    • 84898451718 scopus 로고    scopus 로고
    • A conserved MCM single-stranded DNA binding element is essential for replication initiation
    • Froelich, C.A., Kang, S., Epling, L.B., Bell, S.P, & Enemark, E.J. A conserved MCM single-stranded DNA binding element is essential for replication initiation. eLife 3 e01993 2014
    • (2014) ELife , vol.3 , pp. e01993
    • Froelich, C.A.1    Kang, S.2    Epling, L.B.3    Bell, S.P.4    Enemark, E.J.5
  • 26
    • 84881478122 scopus 로고    scopus 로고
    • Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA
    • Sun J., et al. Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA. Nat. Struct. Mol. Biol. 20, 944-951 (2013
    • (2013) Nat. Struct. Mol. Biol , vol.20 , pp. 944-951
    • Sun, J.1
  • 27
    • 84905255551 scopus 로고    scopus 로고
    • A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA
    • Samel S.A. et al. A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev. 28, 1653-1666 2014
    • (2014) Genes Dev , vol.28 , pp. 1653-1666
    • Samel, S.A.1
  • 28
    • 84921486481 scopus 로고    scopus 로고
    • Cdc45 (cell division cycle protein 45) guards the gate of the Eukaryote Replisome helicase stabilizing leading strand engagement
    • Petojevic T., et al. Cdc45 (cell division cycle protein 45) guards the gate of the Eukaryote Replisome helicase stabilizing leading strand engagement. Proc. Natl. Acad. Sci. USA 112, E249-E258 (2015
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. E249-E258
    • Petojevic, T.1
  • 29
    • 36348987861 scopus 로고    scopus 로고
    • MCM forked substrate specificity involves dynamic interaction with the 5'-Tail
    • Rothenberg, E., Trakselis, M.A., Bell, S.D., & Ha, T. MCM forked substrate specificity involves dynamic interaction with the 5'-Tail. J. Biol. Chem. 282, 34229-34234 (2007
    • (2007) J. Biol. Chem , vol.282 , pp. 34229-34234
    • Rothenberg, E.1    Trakselis, M.A.2    Bell, S.D.3    Ha, T.4
  • 30
    • 84902304914 scopus 로고    scopus 로고
    • A Ctf4 trimer couples the CMG helicase to DNA polymerase a in the eukaryotic replisome
    • Simon, A.C., et al A Ctf4 trimer couples the CMG helicase to DNA polymerase a in the eukaryotic replisome. Nature 510 293-297 2014
    • (2014) Nature , vol.510 , pp. 293-297
    • Simon, A.C.1
  • 31
    • 84876490667 scopus 로고    scopus 로고
    • Structure and evolutionary origins of the CMG complex
    • Onesti, S., & MacNeill, S.A. Structure and evolutionary origins of the CMG complex. Chromosoma 122, 47-53 (2013
    • (2013) Chromosoma , vol.122 , pp. 47-53
    • Onesti, S.1    MacNeill, S.A.2
  • 32
    • 84856747670 scopus 로고    scopus 로고
    • Structural and functional insights into the DNA replication factor Cdc45 reveal an evolutionary relationship to the DHH family of phosphoesterases
    • Krastanova I., et al. Structural and functional insights into the DNA replication factor Cdc45 reveal an evolutionary relationship to the DHH family of phosphoesterases. J. Biol. Chem. 287, 4121-4128 (2012
    • (2012) J. Biol. Chem , vol.287 , pp. 4121-4128
    • Krastanova, I.1
  • 33
    • 79960129821 scopus 로고    scopus 로고
    • Cdc45: The missing RecJ ortholog in eukaryotes?
    • Sanchez-Pulido, L., & Ponting, C.P. Cdc45: the missing RecJ ortholog in eukaryotes? Bioinformatics 27, 1885-1888 (2011
    • (2011) Bioinformatics , vol.27 , pp. 1885-1888
    • Sanchez-Pulido, L.1    Ponting, C.P.2
  • 35
    • 77951231950 scopus 로고    scopus 로고
    • Structure of RecJ exonuclease defines its specificity for single-stranded DNA
    • Wakamatsu T., et al. Structure of RecJ exonuclease defines its specificity for single-stranded DNA. J. Biol. Chem. 285, 9762-9769 (2010
    • (2010) J. Biol. Chem , vol.285 , pp. 9762-9769
    • Wakamatsu, T.1
  • 36
    • 0037197889 scopus 로고    scopus 로고
    • The crystal structure of exonuclease RecJ bound to Mn2+ ion suggests how its characteristic motifs are involved in exonuclease activity
    • Yamagata, A., Kakuta, Y., Masui, R., & Fukuyama, K. The crystal structure of exonuclease RecJ bound to Mn2+ ion suggests how its characteristic motifs are involved in exonuclease activity. Proc. Natl. Acad. Sci. USA 99, 5908-5912 (2002
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 5908-5912
    • Yamagata, A.1    Kakuta, Y.2    Masui, R.3    Fukuyama, K.4
  • 37
    • 34848840105 scopus 로고    scopus 로고
    • Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro
    • Niedziela-Majka, A., Chesnik, M.A., Tomko, E.J., & Lohman, T.M. Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro. J. Biol. Chem. 282, 27076-27085 (2007
    • (2007) J. Biol. Chem , vol.282 , pp. 27076-27085
    • Niedziela-Majka, A.1    Chesnik, M.A.2    Tomko, E.J.3    Lohman, T.M.4
  • 38
    • 0033515425 scopus 로고    scopus 로고
    • Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism
    • Velankar, S.S., Soultanas, P., Dillingham, M.S., Subramanya, H.S., & Wigley, D.B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75-84 (1999
    • (1999) Cell , vol.97 , pp. 75-84
    • Velankar, S.S.1    Soultanas, P.2    Dillingham, M.S.3    Subramanya, H.S.4    Wigley, D.B.5
  • 39
    • 9244235535 scopus 로고    scopus 로고
    • Mechanism of ATP-dependent translocation of e coli UvrD monomers along single-stranded DNA
    • Fischer, C.J., Maluf, N.K., & Lohman, T.M. Mechanism of ATP-dependent translocation of E. coli UvrD monomers along single-stranded DNA. J. Mol. Biol. 344, 1287-1309 (2004
    • (2004) J. Mol. Biol , vol.344 , pp. 1287-1309
    • Fischer, C.J.1    Maluf, N.K.2    Lohman, T.M.3
  • 40
    • 33845657428 scopus 로고    scopus 로고
    • UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke
    • Lee, J.Y., & Yang, W. UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. Cell 127, 1349-1360 (2006
    • (2006) Cell , vol.127 , pp. 1349-1360
    • Lee, J.Y.1    Yang, W.2
  • 41
    • 84857137035 scopus 로고    scopus 로고
    • Efficient coupling of ATP hydrolysis to translocation by RecQ helicase
    • Rad, B., & Kowalczykowski, S.C. Efficient coupling of ATP hydrolysis to translocation by RecQ helicase. Proc. Natl. Acad. Sci. USA 109, 1443-1448 (2012
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 1443-1448
    • Rad, B.1    Kowalczykowski, S.C.2
  • 42
    • 0030298002 scopus 로고    scopus 로고
    • ATP hydrolysis stimulates binding and release of single stranded DNA from alternating subunits of the dimeric e coli Rep helicase: Implications for ATP-driven helicase translocation
    • Bjornson, K.P., Wong, I., & Lohman, T.M. ATP hydrolysis stimulates binding and release of single stranded DNA from alternating subunits of the dimeric E. coli Rep helicase: implications for ATP-driven helicase translocation. J. Mol. Biol. 263, 411-422 (1996
    • (1996) J. Mol. Biol , vol.263 , pp. 411-422
    • Bjornson, K.P.1    Wong, I.2    Lohman, T.M.3
  • 43
    • 34548638261 scopus 로고    scopus 로고
    • Structure and mechanism of helicases and nucleic acid translocases
    • Singleton, M.R., Dillingham, M.S., & Wigley, D.B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23-50 (2007
    • (2007) Annu. Rev. Biochem , vol.76 , pp. 23-50
    • Singleton, M.R.1    Dillingham, M.S.2    Wigley, D.B.3
  • 44
    • 27744499156 scopus 로고    scopus 로고
    • Intrinsic dynamics of an enzyme underlies catalysis
    • Eisenmesser E.Z., et al. Intrinsic dynamics of an enzyme underlies catalysis. Nature 438, 117-121 (2005
    • (2005) Nature , vol.438 , pp. 117-121
    • Eisenmesser, E.Z.1
  • 45
    • 0026320866 scopus 로고
    • The energy landscapes and motions of proteins
    • Frauenfelder, H., Sligar, S.G., & Wolynes, P.G. The energy landscapes and motions of proteins. Science 254, 1598-1603 (1991
    • (1991) Science , vol.254 , pp. 1598-1603
    • Frauenfelder, H.1    Sligar, S.G.2    Wolynes, P.G.3
  • 46
    • 37249032102 scopus 로고    scopus 로고
    • Dynamic personalities of proteins
    • Henzler-Wildman, K., & Kern, D. Dynamic personalities of proteins. Nature 450, 964-972 (2007
    • (2007) Nature , vol.450 , pp. 964-972
    • Henzler-Wildman, K.1    Kern, D.2
  • 47
    • 84864352599 scopus 로고    scopus 로고
    • ATP-dependent conformational dynamics underlie the functional asymmetry of the replicative helicase from a minimalist eukaryote
    • Lyubimov, A.Y., Costa, A., Bleichert, F., Botchan, M.R., & Berger, J.M. ATP-dependent conformational dynamics underlie the functional asymmetry of the replicative helicase from a minimalist eukaryote. Proc. Natl. Acad. Sci. USA 109, 11999-12004 (2012
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 11999-12004
    • Lyubimov, A.Y.1    Costa, A.2    Bleichert, F.3    Botchan, M.R.4    Berger, J.M.5
  • 48
    • 3042588011 scopus 로고    scopus 로고
    • Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex
    • Bowman, G.D., ODonnell, M., & Kuriyan, J. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 429, 724-730 (2004
    • (2004) Nature , vol.429 , pp. 724-730
    • Bowman, G.D.1    Odonnell, M.2    Kuriyan, J.3
  • 49
    • 65549110769 scopus 로고    scopus 로고
    • The mechanism of ATP-dependent primer-Template recognition by a clamp loader complex
    • Simonetta K.R., et al. The mechanism of ATP-dependent primer-Template recognition by a clamp loader complex. Cell 137, 659-671 (2009
    • (2009) Cell , vol.137 , pp. 659-671
    • Simonetta, K.R.1
  • 50
    • 84455163347 scopus 로고    scopus 로고
    • How a DNA polymerase clamp loader opens a sliding clamp
    • Kelch, B.A., Makino, D.L., ODonnell, M., & Kuriyan, J. How a DNA polymerase clamp loader opens a sliding clamp. Science 334, 1675-1680 (2011
    • (2011) Science , vol.334 , pp. 1675-1680
    • Kelch, B.A.1    Makino, D.L.2    Odonnell, M.3    Kuriyan, J.4
  • 51
    • 0037559627 scopus 로고    scopus 로고
    • Structure of the Rho transcription terminator: Mechanism of mRNA recognition and helicase loading
    • Skordalakes, E., & Berger, J.M. Structure of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell 114, 135-146 (2003
    • (2003) Cell , vol.114 , pp. 135-146
    • Skordalakes, E.1    Berger, J.M.2
  • 52
    • 35348971984 scopus 로고    scopus 로고
    • ATPase site architecture and helicase mechanism of an archaeal MCM
    • Moreau, M.J., McGeoch, A.T., Lowe, A.R., Itzhaki, L.S., & Bell, S.D. ATPase site architecture and helicase mechanism of an archaeal MCM. Mol. Cell 28, 304-314 (2007
    • (2007) Mol. Cell , vol.28 , pp. 304-314
    • Moreau, M.J.1    McGeoch, A.T.2    Lowe, A.R.3    Itzhaki, L.S.4    Bell, S.D.5
  • 53
    • 84880848354 scopus 로고    scopus 로고
    • Electron counting and beam-induced motion correction enable near-Atomic-resolution single-particle cryo-EM
    • Li X., et al. Electron counting and beam-induced motion correction enable near-Atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584-590 (2013
    • (2013) Nat. Methods , vol.10 , pp. 584-590
    • Li, X.1
  • 54
    • 84946488108 scopus 로고    scopus 로고
    • CTFFIND4: Fast and accurate defocus estimation from electron micrographs
    • Rohou, A., & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216-221 (2015
    • (2015) J. Struct. Biol , vol.192 , pp. 216-221
    • Rohou, A.1    Grigorieff, N.2
  • 55
    • 84922727036 scopus 로고    scopus 로고
    • Semi-Automated selection of cryo-EM particles in RELION-1.3
    • Scheres, S.H. Semi-Automated selection of cryo-EM particles in RELION-1.3. J. Struct. Biol. 189, 114-122 (2015
    • (2015) J. Struct. Biol , vol.189 , pp. 114-122
    • Scheres, S.H.1
  • 56
    • 84868444740 scopus 로고    scopus 로고
    • RELION: Implementation of a Bayesian approach to cryo-EM structure determination
    • Scheres, S.H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519-530 (2012
    • (2012) J. Struct. Biol , vol.180 , pp. 519-530
    • Scheres, S.H.1
  • 57
    • 84926516252 scopus 로고    scopus 로고
    • De novo protein structure determination from near-Atomic-resolution cryo-EM maps
    • Wang R.Y., et al. De novo protein structure determination from near-Atomic-resolution cryo-EM maps. Nat. Methods 12, 335-338 (2015
    • (2015) Nat. Methods , vol.12 , pp. 335-338
    • Wang, R.Y.1
  • 58
    • 84904815625 scopus 로고    scopus 로고
    • SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information
    • Biasini M., et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252-W258 (2014
    • (2014) Nucleic Acids Res , vol.42 , pp. W252-W258
    • Biasini, M.1
  • 59
  • 60
    • 4444221565 scopus 로고    scopus 로고
    • UCSF Chimera: A visualization system for exploratory research and analysis
    • Pettersen E.F., et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612 (2004
    • (2004) J. Comput. Chem , vol.25 , pp. 1605-1612
    • Pettersen, E.F.1
  • 61
    • 84860273177 scopus 로고    scopus 로고
    • Towards automated crystallographic structure refinement with phenix.refine
    • Afonine P.V., et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352-367 (2012
    • (2012) Acta Crystallogr. D Biol. Crystallogr , vol.68 , pp. 352-367
    • Afonine, P.V.1
  • 62
    • 76449098262 scopus 로고    scopus 로고
    • PHENIX: A comprehensive Python-based system for macromolecular structure solution
    • Adams P.D., et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221 (2010
    • (2010) Acta Crystallogr. D Biol. Crystallogr , vol.66 , pp. 213-221
    • Adams, P.D.1
  • 63
    • 84897000112 scopus 로고    scopus 로고
    • Structure of the yeast mitochondrial large ribosomal subunit
    • Amunts A., et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485-1489 (2014
    • (2014) Science , vol.343 , pp. 1485-1489
    • Amunts, A.1
  • 64
    • 77951249114 scopus 로고    scopus 로고
    • Characterization and structure determination of the Cdt1 binding domain of human minichromosome maintenance (Mcm) 6
    • Wei Z., et al. Characterization and structure determination of the Cdt1 binding domain of human minichromosome maintenance (Mcm) 6. J. Biol. Chem. 285, 12469-12473 (2010
    • (2010) J. Biol. Chem , vol.285 , pp. 12469-12473
    • Wei, Z.1
  • 65
    • 74549178560 scopus 로고    scopus 로고
    • MolProbity: All-Atom structure validation for macromolecular crystallography
    • Chen V.B., et al. MolProbity: all-Atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12-21 (2010
    • (2010) Acta Crystallogr. D Biol. Crystallogr , vol.66 , pp. 12-21
    • Chen, V.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.