메뉴 건너뛰기




Volumn 177, Issue , 2016, Pages 242-256

Multiple task learning with flexible structure regularization

Author keywords

Accelerated proximal gradient; Flexible structure regularization; Generic multiple task learning; Iteratively reweighted least square; Joint 11 21 norm regularization

Indexed keywords

ALGORITHMS; FLEXIBLE STRUCTURES; LEAST SQUARES APPROXIMATIONS; LINEARIZATION; STATISTICS;

EID: 84959482110     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.11.029     Document Type: Article
Times cited : (4)

References (64)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Ando R.K., Zhang T. A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 2005, 6:1817-1853.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 2
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • Argyriou A., Evgeniou T., Pontil M. Convex multi-task feature learning. Mach. Learn. 2008, 73(3):243-272.
    • (2008) Mach. Learn. , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 3
    • 84904789621 scopus 로고    scopus 로고
    • Collaborative email-spam filtering with the hashing trick
    • The Sixth Conference on Email and Anti-Spam.
    • J. Attenberg, K. Weinberger, A. Dasgupta, A. Smola, M. Zinkevich, Collaborative email-spam filtering with the hashing trick, in: The Sixth Conference on Email and Anti-Spam, 2009.
    • (2009)
    • Attenberg, J.1    Weinberger, K.2    Dasgupta, A.3    Smola, A.4    Zinkevich, M.5
  • 4
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • Bakker B., Heskes T. Task clustering and gating for Bayesian multitask learning. J. Mach. Learn. Res. 2003, 4:83-99.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 5
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck A., Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2(1):183-202.
    • (2009) SIAM J. Imaging Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 6
    • 84926076587 scopus 로고    scopus 로고
    • Gradient-based algorithms with applications to signal recovery problems
    • Cambridge University Press, New York, NY, Y. Eldar, D. Palomar (Eds.)
    • Beck A., Teboulle M. Gradient-based algorithms with applications to signal recovery problems. Convex Optimization in Signal Processing and Communications 2010, 42-88. Cambridge University Press, New York, NY. Y. Eldar, D. Palomar (Eds.).
    • (2010) Convex Optimization in Signal Processing and Communications , pp. 42-88
    • Beck, A.1    Teboulle, M.2
  • 7
    • 84865680794 scopus 로고    scopus 로고
    • Smoothing and first order methods. a unified framework
    • Beck A., Teboulle M. Smoothing and first order methods. a unified framework. SIAM J. Optim. 2012, 22(2):557-580.
    • (2012) SIAM J. Optim. , vol.22 , Issue.2 , pp. 557-580
    • Beck, A.1    Teboulle, M.2
  • 10
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Caruana R. Multitask learning. Mach. Learn. 1997, 28(1):41-75.
    • (1997) Mach. Learn. , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 16
    • 0004177997 scopus 로고
    • Splitting methods for monotone operators with applications to parallel optimization
    • (Ph.D. thesis), Massachusetts Institute of Technology.
    • J. Eckstein, Splitting methods for monotone operators with applications to parallel optimization (Ph.D. thesis), Massachusetts Institute of Technology, 1989.
    • (1989)
    • Eckstein, J.1
  • 18
    • 84876033996 scopus 로고    scopus 로고
    • Structured feature selection and task relationship inference for multi-task learning
    • Fei H., Huan J. Structured feature selection and task relationship inference for multi-task learning. Knowl. Inf. Syst. 2013, 2:345-364.
    • (2013) Knowl. Inf. Syst. , vol.2 , pp. 345-364
    • Fei, H.1    Huan, J.2
  • 28
    • 84930951838 scopus 로고    scopus 로고
    • Robust structured subspace learning for data representation
    • Li Z., Liu J., Tang J., Lu H. Robust structured subspace learning for data representation. Trans. Pattern Anal. Mach. Intell. 2015, 37:2085-2098.
    • (2015) Trans. Pattern Anal. Mach. Intell. , vol.37 , pp. 2085-2098
    • Li, Z.1    Liu, J.2    Tang, J.3    Lu, H.4
  • 29
    • 84959493567 scopus 로고    scopus 로고
    • Clustering-guided sparse structural learning for unsupervised feature selection
    • Li Z., Liu J., Yang Y., Zhou X., Lu H. Clustering-guided sparse structural learning for unsupervised feature selection. Trans. Knowl. Data Eng. 2014, 26:2138-2150.
    • (2014) Trans. Knowl. Data Eng. , vol.26 , pp. 2138-2150
    • Li, Z.1    Liu, J.2    Yang, Y.3    Zhou, X.4    Lu, H.5
  • 30
    • 0000345334 scopus 로고
    • Splitting algorithms for the sum of two nonlinear operators
    • Lions P.L., Mercier B. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 1979, 16(6):964-979.
    • (1979) SIAM J. Numer. Anal. , vol.16 , Issue.6 , pp. 964-979
    • Lions, P.L.1    Mercier, B.2
  • 31
    • 80053145416 scopus 로고    scopus 로고
    • Multi-task feature learning via efficient ℓ2,1-norm minimization, in: UAI.
    • J. Liu, S. Ji, J. Ye, Multi-task feature learning via efficient ℓ2,1-norm minimization, in: UAI, 2009.
    • (2009)
    • Liu, J.1    Ji, S.2    Ye, J.3
  • 33
    • 0041356704 scopus 로고
    • Fonctions convexes duales et points proximaux dans un espace hilbertien
    • Moreau J.J. Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. de l'Acad. Sci. (Paris), Sér. A 1962, 255:2897-2899.
    • (1962) C. R. de l'Acad. Sci. (Paris), Sér. A , vol.255 , pp. 2897-2899
    • Moreau, J.J.1
  • 34
    • 84959550676 scopus 로고    scopus 로고
    • Joint support recovery under high-dimensional scaling: benefits and perils of ℓ1,∞-regularization, in: NIPS.
    • S. Negahban, M.J. Wainwright, Joint support recovery under high-dimensional scaling: benefits and perils of ℓ1,∞-regularization, in: NIPS, 2008.
    • (2008)
    • Negahban, S.1    Wainwright, M.J.2
  • 35
    • 77956529833 scopus 로고    scopus 로고
    • Estimation of (near) low-rank matrices with noise and high-dimensional scaling
    • ICML
    • S. Negahban, M.J. Wainwright, Estimation of (near) low-rank matrices with noise and high-dimensional scaling, in: ICML, 2010.
    • (2010)
    • Negahban, S.1    Wainwright, M.J.2
  • 37
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Nesterov Y. Smooth minimization of non-smooth functions. Math. Program. 2005, 103(1):127-152.
    • (2005) Math. Program. , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Y.1
  • 38
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Pan S.J., Yang Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22(10):1345-1359.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 40
    • 79251515185 scopus 로고    scopus 로고
    • Trace norm regularization. reformulations, algorithms, and multi-task learning
    • Pong T.K., Tseng P., Ji S., Ye J. Trace norm regularization. reformulations, algorithms, and multi-task learning. SIAM J. Optim. 2010, 20(6):3465-3489.
    • (2010) SIAM J. Optim. , vol.20 , Issue.6 , pp. 3465-3489
    • Pong, T.K.1    Tseng, P.2    Ji, S.3    Ye, J.4
  • 42
    • 85031883014 scopus 로고    scopus 로고
    • Which looks like which: exploring inter-class relationships in fine-grained visual categorization
    • in: ECCV
    • J. Pu, Y.-G. Jiang, J. Wang, X. Xue, Which looks like which: exploring inter-class relationships in fine-grained visual categorization, in: ECCV, 2014.
    • (2014)
    • Pu, J.1    Jiang, Y.-G.2    Wang, J.3    Xue, X.4
  • 43
    • 84898959873 scopus 로고    scopus 로고
    • It is all in the noise: efficient multi-task Gaussian process inference with structured residuals
    • in: NIPS
    • B. Rakitsch, C. Lippert, K. Borgwardt, O. Stegle, It is all in the noise: efficient multi-task Gaussian process inference with structured residuals, in: NIPS, 2013.
    • (2013)
    • Rakitsch, B.1    Lippert, C.2    Borgwardt, K.3    Stegle, O.4
  • 45
    • 0032712352 scopus 로고    scopus 로고
    • An affine scaling methodology for best basis selection
    • Rao B.D., Kreutz-Delgado K. An affine scaling methodology for best basis selection. IEEE Trans. Image Process. 1999, 47(1):187-200.
    • (1999) IEEE Trans. Image Process. , vol.47 , Issue.1 , pp. 187-200
    • Rao, B.D.1    Kreutz-Delgado, K.2
  • 46
    • 84898993633 scopus 로고    scopus 로고
    • Sparse overlapping sets lasso for multitask learning and its application to fMRI analysis
    • in: NIPS
    • N. Rao, C. Cox, R. Nowak, T.T. Rogers, Sparse overlapping sets lasso for multitask learning and its application to fMRI analysis, in: NIPS, 2013.
    • (2013)
    • Rao, N.1    Cox, C.2    Nowak, R.3    Rogers, T.T.4
  • 48
    • 1842829625 scopus 로고    scopus 로고
    • 2nd edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
    • Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2003.
    • (2003) Iterative Methods for Sparse Linear Systems
    • Saad, Y.1
  • 51
    • 0041494227 scopus 로고    scopus 로고
    • Is learning the n-th thing any easier than learning the first?
    • in: NIPS
    • S. Thrun, Is learning the n-th thing any easier than learning the first?, in: NIPS, 1996.
    • (1996)
    • Thrun, S.1
  • 53
    • 84863059819 scopus 로고    scopus 로고
    • Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance
    • in: ICCV
    • H. Wang, F. Nie, H. Huang, S.L. Risacher, C.H.Q. Ding, A. J. Saykin, L. Shen, Adni, Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance, in: ICCV, 2011.
    • (2011)
    • Wang, H.1    Nie, F.2    Huang, H.3    Risacher, S.L.4    Ding, C.H.Q.5    Saykin, A.J.6    Shen, L.Adni7
  • 54
    • 70450188142 scopus 로고    scopus 로고
    • Boosted multi-task learning for face verification with applications to web image and video search, in: CVPR.
    • X. Wang, C. Zhang, Z. Zhang, Boosted multi-task learning for face verification with applications to web image and video search, in: CVPR, 2009.
    • (2009)
    • Wang, X.1    Zhang, C.2    Zhang, Z.3
  • 55
    • 33846487387 scopus 로고    scopus 로고
    • Multi-task learning for classification with Dirichlet process priors
    • Xue Y., Liao X., Carin L., Krishnapuram B. Multi-task learning for classification with Dirichlet process priors. J. Mach. Learn. Res. 2007, 8:35-63.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 35-63
    • Xue, Y.1    Liao, X.2    Carin, L.3    Krishnapuram, B.4
  • 56
    • 85161989689 scopus 로고    scopus 로고
    • Heterogeneous multitask learning with joint sparsity constraints
    • in: NIPS.
    • X. Yang, S. Kim, E.P. Xing, Heterogeneous multitask learning with joint sparsity constraints, in: NIPS, 2009.
    • (2009)
    • Yang, X.1    Kim, S.2    Xing, E.P.3
  • 62
    • 84877334125 scopus 로고    scopus 로고
    • Modeling disease progression via multi-task learning
    • Zhou J., Liu J., Narayan V.A., Ye J. Modeling disease progression via multi-task learning. NeuroImage 2013, 78(0):233-248.
    • (2013) NeuroImage , vol.78 , pp. 233-248
    • Zhou, J.1    Liu, J.2    Narayan, V.A.3    Ye, J.4
  • 64
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H., Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2003, 67(2):301-320.
    • (2003) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.