-
1
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
Ando R.K., Zhang T. A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 2005, 6:1817-1853.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1817-1853
-
-
Ando, R.K.1
Zhang, T.2
-
2
-
-
55149088329
-
Convex multi-task feature learning
-
Argyriou A., Evgeniou T., Pontil M. Convex multi-task feature learning. Mach. Learn. 2008, 73(3):243-272.
-
(2008)
Mach. Learn.
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
3
-
-
84904789621
-
Collaborative email-spam filtering with the hashing trick
-
The Sixth Conference on Email and Anti-Spam.
-
J. Attenberg, K. Weinberger, A. Dasgupta, A. Smola, M. Zinkevich, Collaborative email-spam filtering with the hashing trick, in: The Sixth Conference on Email and Anti-Spam, 2009.
-
(2009)
-
-
Attenberg, J.1
Weinberger, K.2
Dasgupta, A.3
Smola, A.4
Zinkevich, M.5
-
4
-
-
0346238931
-
Task clustering and gating for Bayesian multitask learning
-
Bakker B., Heskes T. Task clustering and gating for Bayesian multitask learning. J. Mach. Learn. Res. 2003, 4:83-99.
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 83-99
-
-
Bakker, B.1
Heskes, T.2
-
5
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
Beck A., Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2(1):183-202.
-
(2009)
SIAM J. Imaging Sci.
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
6
-
-
84926076587
-
Gradient-based algorithms with applications to signal recovery problems
-
Cambridge University Press, New York, NY, Y. Eldar, D. Palomar (Eds.)
-
Beck A., Teboulle M. Gradient-based algorithms with applications to signal recovery problems. Convex Optimization in Signal Processing and Communications 2010, 42-88. Cambridge University Press, New York, NY. Y. Eldar, D. Palomar (Eds.).
-
(2010)
Convex Optimization in Signal Processing and Communications
, pp. 42-88
-
-
Beck, A.1
Teboulle, M.2
-
7
-
-
84865680794
-
Smoothing and first order methods. a unified framework
-
Beck A., Teboulle M. Smoothing and first order methods. a unified framework. SIAM J. Optim. 2012, 22(2):557-580.
-
(2012)
SIAM J. Optim.
, vol.22
, Issue.2
, pp. 557-580
-
-
Beck, A.1
Teboulle, M.2
-
8
-
-
56449090551
-
-
ICML
-
S. Bickel, J. Bogojeska, T. Lengauer, T. Scheffer, Multi-task learning for HIV therapy screening, in: ICML, 2008.
-
(2008)
Multi-task learning for HIV therapy screening
-
-
Bickel, S.1
Bogojeska, J.2
Lengauer, T.3
Scheffer, T.4
-
10
-
-
0031189914
-
Multitask learning
-
Caruana R. Multitask learning. Mach. Learn. 1997, 28(1):41-75.
-
(1997)
Mach. Learn.
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
12
-
-
71149094644
-
-
ICML
-
J. Chen, L. Tang, J. Liu, J. Ye, A convex formulation for learning shared structures from multiple tasks, in: ICML, 2009.
-
(2009)
A convex formulation for learning shared structures from multiple tasks
-
-
Chen, J.1
Tang, L.2
Liu, J.3
Ye, J.4
-
14
-
-
80053139009
-
-
UAI
-
X. Chen, Q. Lin, S. Kim, J.G. Carbonell, E.P. Xing, Smoothing proximal gradient method for general structured sparse learning, in: UAI, 2011.
-
(2011)
Smoothing proximal gradient method for general structured sparse learning
-
-
Chen, X.1
Lin, Q.2
Kim, S.3
Carbonell, J.G.4
Xing, E.P.5
-
15
-
-
77949704355
-
Iteratively reweighted least squares minimization for sparse recovery
-
I. Daubechies, R. Devore, M. Fornasier, C.S. Gntrk, Iteratively reweighted least squares minimization for sparse recovery, Commun. Pure Appl. Math. 63, 2010, 1-38.
-
(2010)
Commun. Pure Appl. Math.
, vol.63
, pp. 1-38
-
-
Daubechies, I.1
Devore, R.2
Fornasier, M.3
Gntrk, C.S.4
-
16
-
-
0004177997
-
Splitting methods for monotone operators with applications to parallel optimization
-
(Ph.D. thesis), Massachusetts Institute of Technology.
-
J. Eckstein, Splitting methods for monotone operators with applications to parallel optimization (Ph.D. thesis), Massachusetts Institute of Technology, 1989.
-
(1989)
-
-
Eckstein, J.1
-
18
-
-
84876033996
-
Structured feature selection and task relationship inference for multi-task learning
-
Fei H., Huan J. Structured feature selection and task relationship inference for multi-task learning. Knowl. Inf. Syst. 2013, 2:345-364.
-
(2013)
Knowl. Inf. Syst.
, vol.2
, pp. 345-364
-
-
Fei, H.1
Huan, J.2
-
22
-
-
85162062975
-
-
in: NIPS
-
A. Jalali, P.D. Ravikumar, S. Sanghavi, C. Ruan, A dirty model for multi-task learning, in: NIPS, 2010.
-
(2010)
A dirty model for multi-task learning
-
-
Jalali, A.1
Ravikumar, P.D.2
Sanghavi, S.3
Ruan, C.4
-
28
-
-
84930951838
-
Robust structured subspace learning for data representation
-
Li Z., Liu J., Tang J., Lu H. Robust structured subspace learning for data representation. Trans. Pattern Anal. Mach. Intell. 2015, 37:2085-2098.
-
(2015)
Trans. Pattern Anal. Mach. Intell.
, vol.37
, pp. 2085-2098
-
-
Li, Z.1
Liu, J.2
Tang, J.3
Lu, H.4
-
29
-
-
84959493567
-
Clustering-guided sparse structural learning for unsupervised feature selection
-
Li Z., Liu J., Yang Y., Zhou X., Lu H. Clustering-guided sparse structural learning for unsupervised feature selection. Trans. Knowl. Data Eng. 2014, 26:2138-2150.
-
(2014)
Trans. Knowl. Data Eng.
, vol.26
, pp. 2138-2150
-
-
Li, Z.1
Liu, J.2
Yang, Y.3
Zhou, X.4
Lu, H.5
-
30
-
-
0000345334
-
Splitting algorithms for the sum of two nonlinear operators
-
Lions P.L., Mercier B. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 1979, 16(6):964-979.
-
(1979)
SIAM J. Numer. Anal.
, vol.16
, Issue.6
, pp. 964-979
-
-
Lions, P.L.1
Mercier, B.2
-
31
-
-
80053145416
-
-
Multi-task feature learning via efficient ℓ2,1-norm minimization, in: UAI.
-
J. Liu, S. Ji, J. Ye, Multi-task feature learning via efficient ℓ2,1-norm minimization, in: UAI, 2009.
-
(2009)
-
-
Liu, J.1
Ji, S.2
Ye, J.3
-
32
-
-
84898059927
-
-
COLT
-
K. Lounici, M. Pontil, A.B. Tsybakov, S.A. van de Geer, Taking advantage of sparsity in multi-task learning, in: COLT, 2009.
-
(2009)
Taking advantage of sparsity in multi-task learning
-
-
Lounici, K.1
Pontil, M.2
Tsybakov, A.B.3
van de Geer, S.A.4
-
33
-
-
0041356704
-
Fonctions convexes duales et points proximaux dans un espace hilbertien
-
Moreau J.J. Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. de l'Acad. Sci. (Paris), Sér. A 1962, 255:2897-2899.
-
(1962)
C. R. de l'Acad. Sci. (Paris), Sér. A
, vol.255
, pp. 2897-2899
-
-
Moreau, J.J.1
-
34
-
-
84959550676
-
-
Joint support recovery under high-dimensional scaling: benefits and perils of ℓ1,∞-regularization, in: NIPS.
-
S. Negahban, M.J. Wainwright, Joint support recovery under high-dimensional scaling: benefits and perils of ℓ1,∞-regularization, in: NIPS, 2008.
-
(2008)
-
-
Negahban, S.1
Wainwright, M.J.2
-
35
-
-
77956529833
-
Estimation of (near) low-rank matrices with noise and high-dimensional scaling
-
ICML
-
S. Negahban, M.J. Wainwright, Estimation of (near) low-rank matrices with noise and high-dimensional scaling, in: ICML, 2010.
-
(2010)
-
-
Negahban, S.1
Wainwright, M.J.2
-
37
-
-
17444406259
-
Smooth minimization of non-smooth functions
-
Nesterov Y. Smooth minimization of non-smooth functions. Math. Program. 2005, 103(1):127-152.
-
(2005)
Math. Program.
, vol.103
, Issue.1
, pp. 127-152
-
-
Nesterov, Y.1
-
38
-
-
77956031473
-
A survey on transfer learning
-
Pan S.J., Yang Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22(10):1345-1359.
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Pan, S.J.1
Yang, Q.2
-
40
-
-
79251515185
-
Trace norm regularization. reformulations, algorithms, and multi-task learning
-
Pong T.K., Tseng P., Ji S., Ye J. Trace norm regularization. reformulations, algorithms, and multi-task learning. SIAM J. Optim. 2010, 20(6):3465-3489.
-
(2010)
SIAM J. Optim.
, vol.20
, Issue.6
, pp. 3465-3489
-
-
Pong, T.K.1
Tseng, P.2
Ji, S.3
Ye, J.4
-
41
-
-
84896063423
-
-
IJCAI
-
J. Pu, Y.-G. Jiang, J. Wang, X. Xue, Multiple task learning using iteratively reweighted least square, in: IJCAI, 2013.
-
(2013)
Multiple task learning using iteratively reweighted least square
-
-
Pu, J.1
Jiang, Y.-G.2
Wang, J.3
Xue, X.4
-
42
-
-
85031883014
-
Which looks like which: exploring inter-class relationships in fine-grained visual categorization
-
in: ECCV
-
J. Pu, Y.-G. Jiang, J. Wang, X. Xue, Which looks like which: exploring inter-class relationships in fine-grained visual categorization, in: ECCV, 2014.
-
(2014)
-
-
Pu, J.1
Jiang, Y.-G.2
Wang, J.3
Xue, X.4
-
43
-
-
84898959873
-
It is all in the noise: efficient multi-task Gaussian process inference with structured residuals
-
in: NIPS
-
B. Rakitsch, C. Lippert, K. Borgwardt, O. Stegle, It is all in the noise: efficient multi-task Gaussian process inference with structured residuals, in: NIPS, 2013.
-
(2013)
-
-
Rakitsch, B.1
Lippert, C.2
Borgwardt, K.3
Stegle, O.4
-
44
-
-
0037333986
-
Subset selection in noise based on diversity measure minimization
-
Rao B.D., Engan K., Cotter S.F., Palmer J., Kreutz-delgado K. Subset selection in noise based on diversity measure minimization. IEEE Trans. Signal Process. 2003, 760-770.
-
(2003)
IEEE Trans. Signal Process.
, pp. 760-770
-
-
Rao, B.D.1
Engan, K.2
Cotter, S.F.3
Palmer, J.4
Kreutz-delgado, K.5
-
45
-
-
0032712352
-
An affine scaling methodology for best basis selection
-
Rao B.D., Kreutz-Delgado K. An affine scaling methodology for best basis selection. IEEE Trans. Image Process. 1999, 47(1):187-200.
-
(1999)
IEEE Trans. Image Process.
, vol.47
, Issue.1
, pp. 187-200
-
-
Rao, B.D.1
Kreutz-Delgado, K.2
-
46
-
-
84898993633
-
Sparse overlapping sets lasso for multitask learning and its application to fMRI analysis
-
in: NIPS
-
N. Rao, C. Cox, R. Nowak, T.T. Rogers, Sparse overlapping sets lasso for multitask learning and its application to fMRI analysis, in: NIPS, 2013.
-
(2013)
-
-
Rao, N.1
Cox, C.2
Nowak, R.3
Rogers, T.T.4
-
47
-
-
85031891804
-
-
in: In NIPS05 Workshop, Inductive Transfer: 10 Years Later.
-
M.T. Rosenstein, Z. Marx, L.P. Kaelbling, T.G. Dietterich, To transfer or not to transfer, in: In NIPS05 Workshop, Inductive Transfer: 10 Years Later, 2005.
-
(2005)
To transfer or not to transfer
-
-
Rosenstein, M.T.1
Marx, Z.2
Kaelbling, L.P.3
Dietterich, T.G.4
-
48
-
-
1842829625
-
-
2nd edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
-
Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2003.
-
(2003)
Iterative Methods for Sparse Linear Systems
-
-
Saad, Y.1
-
51
-
-
0041494227
-
Is learning the n-th thing any easier than learning the first?
-
in: NIPS
-
S. Thrun, Is learning the n-th thing any easier than learning the first?, in: NIPS, 1996.
-
(1996)
-
-
Thrun, S.1
-
53
-
-
84863059819
-
Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance
-
in: ICCV
-
H. Wang, F. Nie, H. Huang, S.L. Risacher, C.H.Q. Ding, A. J. Saykin, L. Shen, Adni, Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance, in: ICCV, 2011.
-
(2011)
-
-
Wang, H.1
Nie, F.2
Huang, H.3
Risacher, S.L.4
Ding, C.H.Q.5
Saykin, A.J.6
Shen, L.Adni7
-
54
-
-
70450188142
-
-
Boosted multi-task learning for face verification with applications to web image and video search, in: CVPR.
-
X. Wang, C. Zhang, Z. Zhang, Boosted multi-task learning for face verification with applications to web image and video search, in: CVPR, 2009.
-
(2009)
-
-
Wang, X.1
Zhang, C.2
Zhang, Z.3
-
55
-
-
33846487387
-
Multi-task learning for classification with Dirichlet process priors
-
Xue Y., Liao X., Carin L., Krishnapuram B. Multi-task learning for classification with Dirichlet process priors. J. Mach. Learn. Res. 2007, 8:35-63.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 35-63
-
-
Xue, Y.1
Liao, X.2
Carin, L.3
Krishnapuram, B.4
-
56
-
-
85161989689
-
Heterogeneous multitask learning with joint sparsity constraints
-
in: NIPS.
-
X. Yang, S. Kim, E.P. Xing, Heterogeneous multitask learning with joint sparsity constraints, in: NIPS, 2009.
-
(2009)
-
-
Yang, X.1
Kim, S.2
Xing, E.P.3
-
62
-
-
84877334125
-
Modeling disease progression via multi-task learning
-
Zhou J., Liu J., Narayan V.A., Ye J. Modeling disease progression via multi-task learning. NeuroImage 2013, 78(0):233-248.
-
(2013)
NeuroImage
, vol.78
, pp. 233-248
-
-
Zhou, J.1
Liu, J.2
Narayan, V.A.3
Ye, J.4
-
63
-
-
85147400682
-
-
in: SIGKDD
-
J. Zhou, L. Yuan, J. Liu, J. Ye, A multi-task learning formulation for predicting disease progression, in: SIGKDD, 2011.
-
(2011)
A multi-task learning formulation for predicting disease progression
-
-
Zhou, J.1
Yuan, L.2
Liu, J.3
Ye, J.4
-
64
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou H., Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2003, 67(2):301-320.
-
(2003)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
|