-
1
-
-
55149088329
-
Convex multi-task feature learning
-
Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
-
(2008)
Machine Learning
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
3
-
-
68649086910
-
Simultaneous analysis of lasso and dantzig selector
-
Peter J Bickel, Ya'acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of lasso and dantzig selector. The Annals of Statistics, pages 1705-1732, 2009.
-
(2009)
The Annals of Statistics
, pp. 1705-1732
-
-
Bickel, P.J.1
Ritov, Y.2
Tsybakov, A.B.3
-
6
-
-
80052251399
-
Tree-based feature selection for dimensionality reduction of large-scale control systems
-
A Castelletti, S Galelli, M Restelli, and R Soncini-Sessa. Tree-based feature selection for dimensionality reduction of large-scale control systems. In IEEE ADPRL, 2011.
-
(2011)
IEEE ADPRL
-
-
Castelletti, A.1
Galelli, S.2
Restelli, M.3
Soncini-Sessa, R.4
-
7
-
-
21844465127
-
Tree-based batch mode reinforcement learning
-
Damien Ernst, Pierre Geurts, Louis Wehenkel, and Michael L Littman. Tree-based batch mode reinforcement learning. Journal of Machine Learning Research, 6(4), 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, Issue.4
-
-
Ernst, D.1
Geurts, P.2
Wehenkel, L.3
Littman, M.L.4
-
9
-
-
84867133646
-
Modelling transition dynamics in mdps with rkhs embeddings
-
Steffen Grunewalder, Guy Lever, Luca Baldassarre, Massimiliano Pontil, and Arthur Gretton. Modelling transition dynamics in mdps with rkhs embeddings. In ICML, 2012.
-
(2012)
ICML
-
-
Grunewalder, S.1
Lever, G.2
Baldassarre, L.3
Pontil, M.4
Gretton, A.5
-
10
-
-
84937834127
-
Feature selection for reinforcement learning: Evaluating implicit state-reward dependency via conditional mutual information
-
H. Hachiya and M. Sugiyama. Feature selection for reinforcement learning: Evaluating implicit state-reward dependency via conditional mutual information. In ECML PKDD. 2010.
-
(2010)
ECML PKDD
-
-
Hachiya, H.1
Sugiyama, M.2
-
12
-
-
84861687861
-
Regularized least squares temporal difference learning with nested ℓ2 and ℓ1 penalization
-
M. Hoffman, A. Lazaric, M. Ghavamzadeh, and R. Munos. Regularized least squares temporal difference learning with nested ℓ2 and ℓ1 penalization. In EWRL, pages 102-114. 2012.
-
(2012)
EWRL
, pp. 102-114
-
-
Hoffman, M.1
Lazaric, A.2
Ghavamzadeh, M.3
Munos, R.4
-
13
-
-
71149113559
-
Group lasso with overlap and graph lasso
-
ACM
-
Laurent Jacob, Guillaume Obozinski, and Jean-Philippe Vert. Group lasso with overlap and graph lasso. In ICML, pages 433-440. ACM, 2009.
-
(2009)
ICML
, pp. 433-440
-
-
Jacob, L.1
Obozinski, G.2
Vert, J.-P.3
-
14
-
-
71149121683
-
Regularization and feature selection in least-squares temporal difference learning
-
J. Zico Kolter and Andrew Y. Ng. Regularization and feature selection in least-squares temporal difference learning. In ICML, 2009.
-
(2009)
ICML
-
-
Zico Kolter, J.1
Ng, A.Y.2
-
15
-
-
84883000417
-
Transfer in reinforcement learning: A framework and a survey
-
M. Wiering and M. van Otterlo, editors Springer
-
A. Lazaric. Transfer in reinforcement learning: a framework and a survey. In M. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art. Springer, 2011.
-
(2011)
Reinforcement Learning: State of the Art
-
-
Lazaric, A.1
-
16
-
-
77956497402
-
Bayesian multi-task reinforcement learning
-
Alessandro Lazaric and Mohmammad Ghavamzadeh. Bayesian multi-task reinforcement learning. In ICML, 2010.
-
(2010)
ICML
-
-
Lazaric, A.1
Ghavamzadeh, M.2
-
17
-
-
85162564748
-
Transfer from multiple MDPs
-
Alessandro Lazaric and Marcello Restelli. Transfer from multiple MDPs. In NIPS, 2011.
-
(2011)
NIPS
-
-
Lazaric, A.1
Restelli, M.2
-
18
-
-
66849131425
-
Multi-task reinforcement learning in partially observable stochastic environments
-
Hui Li, Xuejun Liao, and Lawrence Carin. Multi-task reinforcement learning in partially observable stochastic environments. Journal of Machine Learning Research, 10:1131-1186, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 1131-1186
-
-
Li, H.1
Liao, X.2
Carin, L.3
-
19
-
-
84855412474
-
Oracle inequalities and optimal inference under group sparsity
-
Karim Lounici, Massimiliano Pontil, Sara Van De Geer, Alexandre B Tsybakov, et al. Oracle inequalities and optimal inference under group sparsity. The Annals of Statistics, 39(4):2164-2204, 2011.
-
(2011)
The Annals of Statistics
, vol.39
, Issue.4
, pp. 2164-2204
-
-
Lounici, K.1
Pontil, M.2
Van De Geer, S.3
Tsybakov, A.B.4
-
21
-
-
84867131813
-
Greedy algorithms for sparse reinforcement learning
-
C. Painter-Wakefield and R. Parr. Greedy algorithms for sparse reinforcement learning. In ICML, 2012.
-
(2012)
ICML
-
-
Painter-Wakefield, C.1
Parr, R.2
-
23
-
-
84861693137
-
Multi-task reinforcement learning: Shaping and feature selection
-
September
-
Matthijs Snel and Shimon Whiteson. Multi-task reinforcement learning: Shaping and feature selection. In EWRL, September 2011.
-
(2011)
EWRL
-
-
Snel, M.1
Whiteson, S.2
-
25
-
-
84863336191
-
Multitask reinforcement learning on the distribution of mdps
-
F. Tanaka and M. Yamamura. Multitask reinforcement learning on the distribution of mdps. In CIRA 2003, pages 1108-1113, 2003.
-
(2003)
CIRA 2003
, pp. 1108-1113
-
-
Tanaka, F.1
Yamamura, M.2
-
26
-
-
68949157375
-
Transfer learning for reinforcement learning domains: A survey
-
Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey. Journal of Machine Learning Research, 10(1):1633-1685, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, Issue.1
, pp. 1633-1685
-
-
Taylor, M.E.1
Stone, P.2
-
27
-
-
77955054299
-
On the conditions used to prove oracle results for the lasso
-
Sara A Van De Geer, Peter Bühlmann, et al. On the conditions used to prove oracle results for the lasso. Electronic Journal of Statistics, 3:1360-1392, 2009.
-
(2009)
Electronic Journal of Statistics
, vol.3
, pp. 1360-1392
-
-
Van De Geer, S.A.1
Bühlmann, P.2
-
28
-
-
34547994508
-
Multi-task reinforcement learning: A hierarchical Bayesian approach
-
A. Wilson, A. Fern, S. Ray, and P. Tadepalli. Multi-task reinforcement learning: A hierarchical Bayesian approach. In ICML, pages 1015-1022, 2007.
-
(2007)
ICML
, pp. 1015-1022
-
-
Wilson, A.1
Fern, A.2
Ray, S.3
Tadepalli, P.4
-
29
-
-
85161985386
-
Learning multiple tasks with a sparse matrix-normal penalty
-
Yi Zhang and Jeff G Schneider. Learning multiple tasks with a sparse matrix-normal penalty. In NIPS, pages 2550-2558, 2010.
-
(2010)
NIPS
, pp. 2550-2558
-
-
Zhang, Y.1
Schneider, J.G.2
|