메뉴 건너뛰기




Volumn , Issue , 2013, Pages

It is all in the noise: Efficient multi-task Gaussian process inference with structured residuals

Author keywords

[No Author keywords available]

Indexed keywords

GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC);

EID: 84898959873     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (77)

References (15)
  • 1
    • 52749083523 scopus 로고    scopus 로고
    • Multi-task gaussian process prediction
    • Edwin V. Bonilla, Kian Ming Adam Chai, and Christopher K. I.Williams. Multi-task gaussian process prediction. In NIPS, 2007.
    • (2007) NIPS
    • Bonilla, E.V.1    Chai, K.M.A.2    Williams, C.K.I.3
  • 2
    • 84858759793 scopus 로고    scopus 로고
    • Sparse convolved gaussian processes for multioutput regression
    • Mauricio A. Álvarez and Neil D. Lawrence. Sparse convolved gaussian processes for multioutput regression. In NIPS, pages 57-64, 2008.
    • (2008) NIPS , pp. 57-64
    • Álvarez, M.A.1    Lawrence, N.D.2
  • 3
    • 56449091254 scopus 로고    scopus 로고
    • Kernel multi-task learning using task-specific features
    • Edwin V. Bonilla, Felix V. Agakov, and Christopher K. I.Williams. Kernel multi-task learning using task-specific features. In AISTATS, 2007.
    • (2007) AISTATS
    • Bonilla, E.V.1    Agakov, F.V.2    Williams, C.K.I.3
  • 4
    • 67649583723 scopus 로고    scopus 로고
    • Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity
    • Byron M. Yu, John P. Cunningham, Gopal Santhanam, Stephen I. Ryu, Krishna V. Shenoy, and Maneesh Sahani. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. In NIPS, pages 1881-1888, 2008.
    • (2008) NIPS , pp. 1881-1888
    • Yu, B.M.1    Cunningham, J.P.2    Santhanam, G.3    Ryu, S.I.4    Shenoy, K.V.5    Sahani, M.6
  • 5
    • 85162502083 scopus 로고    scopus 로고
    • Efficient inference in matrix-variate gaussian models with iid observation noise
    • Oliver Stegle, Christoph Lippert, Joris M. Mooij, Neil D. Lawrence, and Karsten M. Borgwardt. Efficient inference in matrix-variate gaussian models with iid observation noise. In NIPS, pages 630-638, 2011.
    • (2011) NIPS , pp. 630-638
    • Stegle, O.1    Lippert, C.2    Mooij, J.M.3    Lawrence, N.D.4    Borgwardt, K.M.5
  • 6
    • 0026282694 scopus 로고
    • Estimating variances and covariances for multivariate animal models by restricted maximum likelihood
    • Karin Meyer. Estimating variances and covariances for multivariate animal models by restricted maximum likelihood. Genetics Selection Evolution, 23(1):67-83, 1991.
    • (1991) Genetics Selection Evolution , vol.23 , Issue.1 , pp. 67-83
    • Meyer, K.1
  • 7
    • 0030818681 scopus 로고    scopus 로고
    • Generalizing the use of the canonical transformation for the solution of multivariate mixed model equations
    • V Ducrocq and H Chapuis. Generalizing the use of the canonical transformation for the solution of multivariate mixed model equations. Genetics Selection Evolution, 29(2):205-224, 1997.
    • (1997) Genetics Selection Evolution , vol.29 , Issue.2 , pp. 205-224
    • Ducrocq, V.1    Chapuis, H.2
  • 8
    • 33947110315 scopus 로고    scopus 로고
    • Maximum-likelihood estimation for multivariate spatial linear coregionalization models
    • Hao Zhang. Maximum-likelihood estimation for multivariate spatial linear coregionalization models. Environmetrics, 18(2):125-139, 2007.
    • (2007) Environmetrics , vol.18 , Issue.2 , pp. 125-139
    • Zhang, H.1
  • 9
  • 11
    • 84898683723 scopus 로고    scopus 로고
    • Residual components analysis
    • Alfredo A. Kalaitzis and Neil D. Lawrence. Residual components analysis. In ICML, 2012.
    • (2012) ICML
    • Kalaitzis, A.A.1    Lawrence, N.D.2
  • 12
    • 0031345518 scopus 로고    scopus 로고
    • Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization
    • December
    • Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw., 23(4):550-560, December 1997.
    • (1997) ACM Trans. Math. Softw. , vol.23 , Issue.4 , pp. 550-560
    • Zhu, C.1    Byrd, R.H.2    Lu, P.3    Nocedal, J.4
  • 13
    • 84863652334 scopus 로고    scopus 로고
    • Using whole- genome sequence data to predict quantitative trait phenotypes in drosophila melanogaster
    • May
    • Ulrike Ober, Julien F. Ayroles, Eric A. Stone, Stephen Richards, and et al. Using Whole- Genome Sequence Data to Predict Quantitative Trait Phenotypes in Drosophila melanogaster. PLoS Genetics, 8(5):e1002685+, May 2012.
    • (2012) PLoS Genetics , vol.8 , Issue.5
    • Ober, U.1    Ayroles, J.F.2    Stone, E.A.3    Richards, S.4
  • 14
    • 43249129715 scopus 로고    scopus 로고
    • Gene-environment interaction in yeast gene expression
    • Erin N Smith and Leonid Kruglyak. Gene-environment interaction in yeast gene expression. PLoS Biology, 6(4):e83, 2008.
    • (2008) PLoS Biology , vol.6 , Issue.4
    • Smith, E.N.1    Kruglyak, L.2
  • 15
    • 77953233453 scopus 로고    scopus 로고
    • Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines
    • Jun
    • S. Atwell, Y. S. Huang, B. J. Vilhjalmsson,Willems, and et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 465(7298):627-631, Jun 2010.
    • (2010) Nature , vol.465 , Issue.7298 , pp. 627-631
    • Atwell, S.1    Huang, Y.S.2    Vilhjalmsson, B.J.3    Willems4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.