메뉴 건너뛰기




Volumn 42, Issue 1, 2016, Pages 127-143

Microbial fuel cells - Applications for generation of electrical power and beyond

Author keywords

Bioelectricity; biosensors; implantable power sources; robotics; wastewater treatment

Indexed keywords

ACETIC ACID; HEAVY METAL; HYDROGEN; HYDROGEN PEROXIDE; METHANE; ORGANIC MATTER; PHOSPHORUS;

EID: 84959326847     PISSN: 1040841X     EISSN: 15497828     Source Type: Journal    
DOI: 10.3109/1040841X.2014.905513     Document Type: Review
Times cited : (79)

References (258)
  • 2
    • 79960569577 scopus 로고    scopus 로고
    • Microbial fuel cells applied to the metabolically based detection of extraterrestrial life
    • Abrevaya XC, Mauas PJ, Corton E. (2010). Microbial fuel cells applied to the metabolically based detection of extraterrestrial life. Astrobiol 10: 965-71
    • (2010) Astrobiol , vol.10 , pp. 965-971
    • Abrevaya, X.C.1    Mauas, P.J.2    Corton, E.3
  • 3
    • 70349428300 scopus 로고    scopus 로고
    • Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures
    • Ahn Y, Logan BE. (2010). Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresource Technol 101: 469-75
    • (2010) Bioresource Technol , vol.101 , pp. 469-475
    • Ahn, Y.1    Logan, B.E.2
  • 4
    • 77950981194 scopus 로고    scopus 로고
    • Genetically engineered microbial fuel cells
    • Alfonta L. (2010). Genetically engineered microbial fuel cells. Electroanalysis 22: 822-31
    • (2010) Electroanalysis , vol.22 , pp. 822-831
    • Alfonta, L.1
  • 5
    • 52449144949 scopus 로고
    • Microbial fuel-cells: Electricity production from carbohydrates
    • Allen RM, Bennetto HP. (1993). Microbial fuel-cells: electricity production from carbohydrates. Appl Biochem Biotechnol 39: 27-40
    • (1993) Appl Biochem Biotechnol , vol.39 , pp. 27-40
    • Allen, R.M.1    Bennetto, H.P.2
  • 6
    • 79955626549 scopus 로고    scopus 로고
    • Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization
    • Bakhshian S, Kariminia HR, Roshandel R. (2011). Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization. Biores Technol 102: 6761-5
    • (2011) Biores Technol , vol.102 , pp. 6761-6765
    • Bakhshian, S.1    Kariminia, H.R.2    Roshandel, R.3
  • 7
    • 74549132545 scopus 로고    scopus 로고
    • Microbial fuel cells as an alternative energy option
    • Balat M. (2010). Microbial fuel cells as an alternative energy option. Energ Sour, A 32: 26-35
    • (2010) Energ Sour, A , vol.32 , pp. 26-35
    • Balat, M.1
  • 9
    • 77955270901 scopus 로고    scopus 로고
    • Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH
    • Behera M, Jana PS, More TT, Ghangrekar MM. (2010). Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochem 79: 228-33
    • (2010) Bioelectrochem , vol.79 , pp. 228-233
    • Behera, M.1    Jana, P.S.2    More, T.T.3    Ghangrekar, M.M.4
  • 10
    • 0037337606 scopus 로고    scopus 로고
    • Electricity production by Geobacter sulfurreducens attached to electrodes
    • Bond DR, Lovley DR. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Env Microbiol 69: 1548-55
    • (2003) Appl Env Microbiol , vol.69 , pp. 1548-1555
    • Bond, D.R.1    Lovley, D.R.2
  • 11
    • 26044459174 scopus 로고    scopus 로고
    • Hydrogen from a microbial fuel cell
    • Booth B. (2005). Hydrogen from a microbial fuel cell. Environ Sci Technol 39: 235A
    • (2005) Environ Sci Technol , vol.39 , pp. 235A
    • Booth, B.1
  • 12
    • 84870916681 scopus 로고    scopus 로고
    • Water softening using microbial desalination cell technology
    • Brastad KS, He Z. (2013). Water softening using microbial desalination cell technology. Desalination 309: 32-7
    • (2013) Desalination , vol.309 , pp. 32-37
    • Brastad, K.S.1    He, Z.2
  • 13
    • 47049085042 scopus 로고    scopus 로고
    • Hydrogen production in a single chamber microbial electrolysis cell (MEC) lacking a membrane
    • Call D, Logan BE. (2008). Hydrogen production in a single chamber microbial electrolysis cell (MEC) lacking a membrane. Environ Sci Technol 42: 3401-06
    • (2008) Environ Sci Technol , vol.42 , pp. 3401-3406
    • Call, D.1    Logan, B.E.2
  • 14
    • 67749116349 scopus 로고    scopus 로고
    • A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction
    • Cao XX, Huang X, Liang P, et al. (2009a). A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy Env Sci 2: 498-501
    • (2009) Energy Env Sci , vol.2 , pp. 498-501
    • Cao, X.X.1    Huang, X.2    Liang, P.3
  • 15
    • 70349108272 scopus 로고    scopus 로고
    • A new method for water desalination using microbial desalination cells
    • Cao X, Huang X, Liang P, et al. (2009b). A new method for water desalination using microbial desalination cells. Environ Sci Technol 43: 7148-52
    • (2009) Environ Sci Technol , vol.43 , pp. 7148-7152
    • Cao, X.1    Huang, X.2    Liang, P.3
  • 16
    • 77951881005 scopus 로고    scopus 로고
    • Explore various co-substrates for simultaneous electricity generation and congo red degradation in air-cathode single-chamber microbial fuel cell
    • Cao Y, Hu Y, Sun J, Hou B. (2010). Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell. Bioelectrochem 79: 71-6
    • (2010) Bioelectrochem , vol.79 , pp. 71-76
    • Cao, Y.1    Hu, Y.2    Sun, J.3    Hou, B.4
  • 17
    • 33751210109 scopus 로고    scopus 로고
    • Homogeneous photodegradation of c.i reactive blue 4 using a photo-fenton process under artificial and solar irradiation
    • Carneiro PA, Nogueira RFP, Zanoni MVB. (2007). Homogeneous photodegradation of C.I. Reactive Blue 4 using a photo-Fenton process under artificial and solar irradiation. Dyes Pigment 7: 127-32
    • (2007) Dyes Pigment , vol.7 , pp. 127-132
    • Carneiro, P.A.1    Nogueira, R.F.P.2    Zanoni, M.V.B.3
  • 18
    • 69849103522 scopus 로고    scopus 로고
    • Removal of selenite from wastewater using microbial fuel cells
    • Catal T, Bermek H, Liu H. (2009). Removal of selenite from wastewater using microbial fuel cells. Biotechnol Lett 31: 1211-16
    • (2009) Biotechnol Lett , vol.31 , pp. 1211-1216
    • Catal, T.1    Bermek, H.2    Liu, H.3
  • 19
    • 0346995405 scopus 로고    scopus 로고
    • Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor
    • Chang IS, Jang JK, Gil GC, et al. (2004). Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosen Bioelectron 19: 607-13
    • (2004) Biosen Bioelectron , vol.19 , pp. 607-613
    • Chang, I.S.1    Jang, J.K.2    Gil, G.C.3
  • 20
    • 12844252604 scopus 로고    scopus 로고
    • Improvement of a microbial fuel cell performance as BOD sensor using respiratory inhibitors
    • Chang IS, Moon H, Jang JK, Kim BH. (2005). Improvement of a microbial fuel cell performance as BOD sensor using respiratory inhibitors. Biosen Bioelectron 20: 1856-9
    • (2005) Biosen Bioelectron , vol.20 , pp. 1856-1859
    • Chang, I.S.1    Moon, H.2    Jang, J.K.3    Kim, B.H.4
  • 21
    • 84942411271 scopus 로고    scopus 로고
    • Electricity generation by direct oxidation of glucose in microbial fuel cells
    • Chaudhari SK, Lovely DR. (2003). Electricity generation by direct oxidation of glucose in microbial fuel cells. Nature Biotechnol 111-14
    • (2003) Nature Biotechnol , pp. 111-114
    • Chaudhari, S.K.1    Lovely, D.R.2
  • 22
    • 77649335841 scopus 로고    scopus 로고
    • Assessment upon azo dye decolorization and bioelectricity generation by proteus hauseri
    • Chen BY, Zhang MM, Chang CT, et al. (2010a). Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri. Biores Technol 101: 4737-41
    • (2010) Biores Technol , vol.101 , pp. 4737-4741
    • Chen, B.Y.1    Zhang, M.M.2    Chang, C.T.3
  • 23
    • 78649450112 scopus 로고    scopus 로고
    • Feasibility study of simultaneous bioelectricity generation and dye decolorization using naturally occurring decolorizers
    • Chen BY, Zhang MM, Ding Y, Chang CT. (2010b). Feasibility study of simultaneous bioelectricity generation and dye decolorization using naturally occurring decolorizers. J Taiwan Inst Chem Eng 41: 682-8
    • (2010) J Taiwan Inst Chem Eng , vol.41 , pp. 682-688
    • Chen, B.Y.1    Zhang, M.M.2    Ding, Y.3    Chang, C.T.4
  • 24
    • 84863229525 scopus 로고    scopus 로고
    • Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions
    • Chen S, Liu G, Zhang R, Qin B, Luo Y. (2012). Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions. Environ Sci Technol 46: 2467-72
    • (2012) Environ Sci Technol , vol.46 , pp. 2467-2472
    • Chen, S.1    Liu, G.2    Zhang, R.3    Qin, B.4    Luo, Y.5
  • 25
    • 78649654330 scopus 로고    scopus 로고
    • Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies
    • Cheng S, Jang JH, Dempsey BA, Logan BE. (2011). Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Water Res 45: 303-7
    • (2011) Water Res , vol.45 , pp. 303-307
    • Cheng, S.1    Jang, J.H.2    Dempsey, B.A.3    Logan, B.E.4
  • 26
    • 73749088450 scopus 로고    scopus 로고
    • Palm oil mill effluent treatment using a two stage microbial fuel cells system integrated with immobilized biological aerated filters
    • Cheng J, Zhu X, Ni J, Borthwick A. (2010). Palm oil mill effluent treatment using a two stage microbial fuel cells system integrated with immobilized biological aerated filters. Biores Technol 101: 2729-34
    • (2010) Biores Technol , vol.101 , pp. 2729-2734
    • Cheng, J.1    Zhu, X.2    Ni, J.3    Borthwick, A.4
  • 27
    • 78650828362 scopus 로고    scopus 로고
    • High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing
    • Cheng S, Logan BE. (2011). High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing Biores Technol 102: 3571-4
    • (2011) Biores Technol , vol.102 , pp. 3571-3574
    • Cheng, S.1    Logan, B.E.2
  • 28
    • 36749077086 scopus 로고    scopus 로고
    • Sustainable and efficient biohydrogen production via electrohydrogenesis
    • Cheng S, Logan BE. (2007). Sustainable and efficient biohydrogen production via electrohydrogenesis. PNAS 104: 18871-3
    • (2007) PNAS , vol.104 , pp. 18871-18873
    • Cheng, S.1    Logan, B.E.2
  • 29
    • 84856583214 scopus 로고    scopus 로고
    • Recovery of silver from wastewater coupled with power generation using a microbial fuel cell
    • Choi C, Cui Y. (2012). Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Biores Technol 107: 522-5
    • (2012) Biores Technol , vol.107 , pp. 522-525
    • Choi, C.1    Cui, Y.2
  • 30
    • 84874707527 scopus 로고    scopus 로고
    • The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell
    • Choi C, Hu N. (2013). The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell. Biores Technol 133: 589-98. doi: 10.1016/j.biortech.2013.01.143
    • (2013) Biores Technol , vol.133 , pp. 589-598
    • Choi, C.1    Hu, N.2
  • 31
    • 34248200523 scopus 로고    scopus 로고
    • Biological denitrification in microbial fuel cells
    • Clauwaert P, Rabaey K, Aelterman P, et al. (2007). Biological denitrification in microbial fuel cells. Env Sci Technol 41: 3354-60
    • (2007) Env Sci Technol , vol.41 , pp. 3354-3360
    • Clauwaert, P.1    Rabaey, K.2    Aelterman, P.3
  • 33
  • 34
    • 78650622613 scopus 로고    scopus 로고
    • Silicon-based microfabricated microbial fuel cell toxicity sensor
    • Davila D, Esquivel JP, Sabate N, Mas J. (2011). Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosen Bioelectron 26: 2426-30
    • (2011) Biosen Bioelectron , vol.26 , pp. 2426-2430
    • Davila, D.1    Esquivel, J.P.2    Sabate, N.3    Mas, J.4
  • 35
    • 67649229603 scopus 로고    scopus 로고
    • A single-chamber microbial fuel cell as a biosensor for wastewaters
    • Di Lorenzo M, Curtis TP, Head IM, Scott K (2009a). A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res 43: 3145-54
    • (2009) Water Res , vol.43 , pp. 3145-3154
    • Di Lorenzo, M.1    Curtis, T.P.2    Head, I.M.3    Scott, K.4
  • 36
    • 77949880675 scopus 로고    scopus 로고
    • A single chamber packed bed microbial fuel cell biosensor for measuring organic content of wastewater
    • Di Lorenzo M, Curtis TP, Head IM, et al. (2009b). A single chamber packed bed microbial fuel cell biosensor for measuring organic content of wastewater. Water Sci Technol 60: 2879-87
    • (2009) Water Sci Technol , vol.60 , pp. 2879-2887
    • Di Lorenzo, M.1    Curtis, T.P.2    Head, I.M.3
  • 37
    • 76049122072 scopus 로고    scopus 로고
    • Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode
    • Ding H, Li Y, Lu A, Jin S, et al. (2010). Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Biores Technol 101: 3500-5
    • (2010) Biores Technol , vol.101 , pp. 3500-3505
    • Ding, H.1    Li, Y.2    Lu, A.3    Jin, S.4
  • 38
    • 34548137689 scopus 로고    scopus 로고
    • Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR
    • Ditzig J, Liu H, Logan BE. (2007). Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int J Hydrogen Energy 32: 2296-04
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 2296-2304
    • Ditzig, J.1    Liu, H.2    Logan, B.E.3
  • 39
    • 84870810404 scopus 로고    scopus 로고
    • Microbial fuel cell as power supply for implantable medical devices: A novel configuration design for simulating colonic environment
    • Dong K, Jia B, Yu C, et al. (2013). Microbial fuel cell as power supply for implantable medical devices: a novel configuration design for simulating colonic environment. Biosens Bioelectron 41: 916-9
    • (2013) Biosens Bioelectron , vol.41 , pp. 916-919
    • Dong, K.1    Jia, B.2    Yu, C.3
  • 40
    • 84873663680 scopus 로고    scopus 로고
    • Sediment microbial fuel cell powering a submersible ultrasonic receiver: New approach to remote monitoring
    • Donovan C, Dewan A, Heo D, et al. (2013). Sediment microbial fuel cell powering a submersible ultrasonic receiver: new approach to remote monitoring. J Power Sou 233: 79-85
    • (2013) J Power Sou , vol.233 , pp. 79-85
    • Donovan, C.1    Dewan, A.2    Heo, D.3
  • 41
    • 34447285505 scopus 로고    scopus 로고
    • A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy
    • Du Z, Li H, Gu T. (2007). A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25: 464-82
    • (2007) Biotechnol Adv , vol.25 , pp. 464-482
    • Du, Z.1    Li, H.2    Gu, T.3
  • 42
  • 44
    • 84880414323 scopus 로고    scopus 로고
    • Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation
    • Fang Z, Song HL, Cang N, Li XN. (2013). Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Biores Technol 144: 165-71
    • (2013) Biores Technol , vol.144 , pp. 165-171
    • Fang, Z.1    Song, H.L.2    Cang, N.3    Li, X.N.4
  • 45
    • 79952624791 scopus 로고    scopus 로고
    • Electricity generation directly using human feces wastewater for life support system
    • Fangzhou D, Zhenglong L, Shaoqiang Y, et al. (2011). Electricity generation directly using human feces wastewater for life support system. Acta Astronautica 68: 1537-47
    • (2011) Acta Astronautica , vol.68 , pp. 1537-1547
    • Fangzhou, D.1    Zhenglong, L.2    Shaoqiang, Y.3
  • 46
    • 84879332109 scopus 로고    scopus 로고
    • A decentralized wastewater treatment system using microbial fuel cell techniques and its response to a copper shock load
    • Feng C, Hu A, Chen S, Yu CP. (2013a). A decentralized wastewater treatment system using microbial fuel cell techniques and its response to a copper shock load. Biores Technol 143: 76-82
    • (2013) Biores Technol , vol.143 , pp. 76-82
    • Feng, C.1    Hu, A.2    Chen, S.3    Yu, C.P.4
  • 47
    • 84875259256 scopus 로고    scopus 로고
    • Neural network processing of microbial fuel cell signals for the identification of chemicals present in water
    • Feng Y, Barr W, Harper WF Jr. (2013b). Neural network processing of microbial fuel cell signals for the identification of chemicals present in water. J Environ Manage 120: 84-92
    • (2013) J Environ Manage , vol.120 , pp. 84-92
    • Feng, Y.1    Barr, W.2    Harper, W.F.3
  • 48
    • 84874382869 scopus 로고    scopus 로고
    • Using microbial fuel cell output metrics and nonlinear modeling techniques for smart biosensing
    • Feng Y, Kayode O, Harper WF Jr. (2013c). Using microbial fuel cell output metrics and nonlinear modeling techniques for smart biosensing. Sci Total Environ 449: 223-8
    • (2013) Sci Total Environ , vol.449 , pp. 223-228
    • Feng, Y.1    Kayode, O.2    Harper, W.F.3
  • 49
    • 77957359934 scopus 로고    scopus 로고
    • Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell
    • Feng Y, Yang Q, Wang X, et al. (2011). Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. Biores Technol 102: 411-15
    • (2011) Biores Technol , vol.102 , pp. 411-415
    • Feng, Y.1    Yang, Q.2    Wang, X.3
  • 50
    • 84879557855 scopus 로고    scopus 로고
    • A paper-based microbial fuel cell: Instant battery for disposable diagnostic devices
    • Fraiwan A, Mukherjee S, Sundermier S, et al. (2013). A paper-based microbial fuel cell: instant battery for disposable diagnostic devices. Biosens Bioelectron 49: 410-14
    • (2013) Biosens Bioelectron , vol.49 , pp. 410-414
    • Fraiwan, A.1    Mukherjee, S.2    Sundermier, S.3
  • 51
    • 77953160485 scopus 로고    scopus 로고
    • Microbial fuel cells, a current review
    • Franks AE, Nevin KP. (2010). Microbial fuel cells, a current review. Energies 3: 899-919
    • (2010) Energies , vol.3 , pp. 899-919
    • Franks, A.E.1    Nevin, K.P.2
  • 52
    • 78650520448 scopus 로고    scopus 로고
    • Removal of heavy metal ions from wastewaters: A review
    • Fu F, Wang Q. (2011). Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92: 407-18
    • (2011) J Environ Manag , vol.92 , pp. 407-418
    • Fu, F.1    Wang, Q.2
  • 53
    • 77950796957 scopus 로고    scopus 로고
    • Synthesis of hydrogen peroxide in microbial fuel cell
    • Fu L, You SJ, Yang FL, et al. (2010a). Synthesis of hydrogen peroxide in microbial fuel cell. J Chem Technol Biotechnol 85: 715-19
    • (2010) J Chem Technol Biotechnol , vol.85 , pp. 715-719
    • Fu, L.1    You, S.J.2    Yang, F.L.3
  • 55
    • 67650245046 scopus 로고    scopus 로고
    • Landfill leachate treatment with microbial fuel cells; Scale-up through plurality
    • Galvez A, Greenman J, Ieropoulos I. (2009). Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Biores Technol 100: 5085-91
    • (2009) Biores Technol , vol.100 , pp. 5085-5091
    • Galvez, A.1    Greenman, J.2    Ieropoulos, I.3
  • 56
    • 84871115189 scopus 로고    scopus 로고
    • Treatment of oilfield wastewater using a microbial fuel cell integrated with an up-flow anaerobic sludge blanket reactor
    • Gong D, Qin G. (2012). Treatment of oilfield wastewater using a microbial fuel cell integrated with an up-flow anaerobic sludge blanket reactor. Desalination Water Treatm 49: 272-80
    • (2012) Desalination Water Treatm , vol.49 , pp. 272-280
    • Gong, D.1    Qin, G.2
  • 57
    • 57549116509 scopus 로고    scopus 로고
    • Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter
    • Greenman J, Gálvez A, Giust L, Ieropoulos I. (2009). Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter. Enz Microb Technol 44: 112-19
    • (2009) Enz Microb Technol , vol.44 , pp. 112-119
    • Greenman, J.1    Gálvez, A.2    Giust, L.3    Ieropoulos, I.4
  • 58
    • 2642520659 scopus 로고    scopus 로고
    • Graphite electrodes as electron donors for anaerobic respiration
    • Gregory KB, Bond DR, Lovley DR. (2004). Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6: 596-604
    • (2004) Environ Microbiol , vol.6 , pp. 596-604
    • Gregory, K.B.1    Bond, D.R.2    Lovley, D.R.3
  • 59
    • 37749008515 scopus 로고    scopus 로고
    • Studies on treatment of chlorophenol-containing wastewater by microbial fuel cell
    • Gu HY, Zhang XW, Li ZJ, Lei LC. (2007). Studies on treatment of chlorophenol-containing wastewater by microbial fuel cell. Chin Sci Bull 52: 3448-51
    • (2007) Chin Sci Bull , vol.52 , pp. 3448-3451
    • Gu, H.Y.1    Zhang, X.W.2    Li, Z.J.3    Lei, L.C.4
  • 60
    • 0025753865 scopus 로고
    • Biological fuel cells with sulphide storage capacity
    • Habermann W, Pommer EH. (1991). Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol 35: 128-33
    • (1991) Appl Microbiol Biotechnol , vol.35 , pp. 128-133
    • Habermann, W.1    Pommer, E.H.2
  • 61
    • 77951620483 scopus 로고    scopus 로고
    • A microbial fuel cell as power supply for implantable medical devices
    • Han Y, Yu C, Liu H. (2010). A microbial fuel cell as power supply for implantable medical devices. Biosens Bioelectron 25: 2156-60
    • (2010) Biosens Bioelectron , vol.25 , pp. 2156-2160
    • Han, Y.1    Yu, C.2    Liu, H.3
  • 62
    • 84871408407 scopus 로고    scopus 로고
    • Electricity generation from dissolved organic matter in polluted lake water using a microbial fuel cell (MFC
    • He YR, Xiao X, Li WW, et al. (2013). Electricity generation from dissolved organic matter in polluted lake water using a microbial fuel cell (MFC). Biochem Eng J 71: 57-61
    • (2013) Biochem Eng J , vol.71 , pp. 57-61
    • He, Y.R.1    Xiao, X.2    Li, W.W.3
  • 63
    • 77952908796 scopus 로고    scopus 로고
    • Copper recovery combined with electricity production in a microbial fuel cell
    • Heijne AT, Liu F, Weijden RVD, et al. (2010). Copper recovery combined with electricity production in a microbial fuel cell. Env Sci Technol 44: 4376-81
    • (2010) Env Sci Technol , vol.44 , pp. 4376-4381
    • Heijne, A.T.1    Liu, F.2    Weijden, R.V.D.3
  • 64
    • 76049092471 scopus 로고    scopus 로고
    • Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using spartina anglica, arundinella anomala and arundo donax
    • Helder M, Strik DP, Hamelers HV, et al. (2010). Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax. Biores Technol 101: 3541-7
    • (2010) Biores Technol , vol.101 , pp. 3541-3547
    • Helder, M.1    Strik, D.P.2    Hamelers, H.V.3
  • 65
    • 84876431149 scopus 로고    scopus 로고
    • Phosphorus recovery from artificial wastewater by microbial fuel cell and its effect on power generation
    • Hirooka K, Ichihashi O. (2013). Phosphorus recovery from artificial wastewater by microbial fuel cell and its effect on power generation. Biores Technol 137: 368-75
    • (2013) Biores Technol , vol.137 , pp. 368-375
    • Hirooka, K.1    Ichihashi, O.2
  • 66
    • 71749099684 scopus 로고    scopus 로고
    • Alteration of sediment organic matter in sediment microbial fuel cells
    • Hong SW, Kim HS, Chung TH. (2010). Alteration of sediment organic matter in sediment microbial fuel cells. Env Pollut 158: 185-91
    • (2010) Env Pollut , vol.158 , pp. 185-191
    • Hong, S.W.1    Kim, H.S.2    Chung, T.H.3
  • 67
    • 79955561175 scopus 로고    scopus 로고
    • Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation
    • Hou B, Sun J, Hu Y. (2011). Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation. Appl Microbiol Biotechnol 90: 1563-72
    • (2011) Appl Microbiol Biotechnol , vol.90 , pp. 1563-1572
    • Hou, B.1    Sun, J.2    Hu, Y.3
  • 68
    • 84873733225 scopus 로고    scopus 로고
    • Microfluidic microbial fuel cell array that supports long-term multiplexed analyses of electricigens
    • Hou H, Li L, Ceylan CU, et al. (2012). Microfluidic microbial fuel cell array that supports long-term multiplexed analyses of electricigens. Lab Chip 12: 4151-9
    • (2012) Lab Chip , vol.12 , pp. 4151-4159
    • Hou, H.1    Li, L.2    Ceylan, C.U.3
  • 69
    • 51349090905 scopus 로고    scopus 로고
    • Hydrogen production using single-chamber membrane-free microbial electrolysis cells
    • Hu H, Fan Y, Liu H. (2008). Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42: 4172-8
    • (2008) Water Res , vol.42 , pp. 4172-4178
    • Hu, H.1    Fan, Y.2    Liu, H.3
  • 70
    • 79952561928 scopus 로고    scopus 로고
    • Nitrogenous heterocyclic compounds degradation in the microbial fuel cells
    • Hu J, Niu CG, Wang Y, et al. (2011). Nitrogenous heterocyclic compounds degradation in the microbial fuel cells. Process Safety Env Protection 89: 133-40
    • (2011) Process Safety Env Protection , vol.89 , pp. 133-140
    • Hu, J.1    Niu, C.G.2    Wang, Y.3
  • 71
    • 80051842699 scopus 로고    scopus 로고
    • Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell
    • Huang DY, Zhou SG, Chen Q, et al. (2011a). Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell. Che Eng J 172: 647-53
    • (2011) Che Eng J , vol.172 , pp. 647-653
    • Huang, D.Y.1    Zhou, S.G.2    Chen, Q.3
  • 72
    • 79959534055 scopus 로고    scopus 로고
    • Electricity generation during wastewater treatment: An approach using an AFB-MFC for alcohol distillery wastewater
    • Huang J, Yang P, Guo Y, Zhang K (2011b). Electricity generation during wastewater treatment: an approach using an AFB-MFC for alcohol distillery wastewater. Desalination 276: 373-8
    • (2011) Desalination , vol.276 , pp. 373-378
    • Huang, J.1    Yang, P.2    Guo, Y.3    Zhang, K.4
  • 73
    • 79952606428 scopus 로고    scopus 로고
    • Bioelectrochemical systems for efficient recalcitrant wastes treatment
    • Huang L, Cheng S, Chen G. (2011c). Bioelectrochemical systems for efficient recalcitrant wastes treatment. J Chem Technol Biotechnol 86: 481-91
    • (2011) J Chem Technol Biotechnol , vol.86 , pp. 481-491
    • Huang, L.1    Cheng, S.2    Chen, G.3
  • 74
    • 80052366690 scopus 로고    scopus 로고
    • Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell
    • Huang L, Gan L, Zhao Q, et al. (2011d). Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell. Biores Technol 102: 8762-8
    • (2011) Biores Technol , vol.102 , pp. 8762-8768
    • Huang, L.1    Gan, L.2    Zhao, Q.3
  • 75
    • 84870526742 scopus 로고    scopus 로고
    • Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells
    • Huang L, Li T, Liu C, et al. (2013). Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells. Biores Technol 128: 539-46
    • (2013) Biores Technol , vol.128 , pp. 539-546
    • Huang, L.1    Li, T.2    Liu, C.3
  • 76
    • 48349122821 scopus 로고    scopus 로고
    • Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell
    • Huang L, Logan BE. (2008). Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Appl Microb Biotechnol 80: 349-55
    • (2008) Appl Microb Biotechnol , vol.80 , pp. 349-355
    • Huang, L.1    Logan, B.E.2
  • 77
    • 77950816428 scopus 로고    scopus 로고
    • A microbial fuel cell-electro-oxidation system for coking wastewater treatment and bioelectricity generation
    • Huang L, Yang X, Quan X, et al. (2010). A microbial fuel cell-electro-oxidation system for coking wastewater treatment and bioelectricity generation. J Chem Technol Biotechnol 85: 621-7
    • (2010) J Chem Technol Biotechnol , vol.85 , pp. 621-627
    • Huang, L.1    Yang, X.2    Quan, X.3
  • 79
    • 84860427242 scopus 로고    scopus 로고
    • Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell
    • Ichihashi O, Hirooka K (2012). Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Biores Technol 114: 303-7
    • (2012) Biores Technol , vol.114 , pp. 303-307
    • Ichihashi, O.1    Hirooka, K.2
  • 83
    • 84861847093 scopus 로고    scopus 로고
    • Microbial fuel cells for robotics: Energy autonomy through artificial symbiosis
    • Ieropoulos IA, Greenman J, Melhuish C, Horsfield I. (2012). Microbial fuel cells for robotics: energy autonomy through artificial symbiosis. ChemsumChem 5: 1020-6
    • (2012) ChemsumChem , vol.5 , pp. 1020-1026
    • Ieropoulos, I.A.1    Greenman, J.2    Melhuish, C.3    Horsfield, I.4
  • 84
    • 55949104194 scopus 로고    scopus 로고
    • Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability
    • Ieropoulos IA, Greenman J, Melhuish C. (2008). Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. Int J Energy Res 32: 1228-40
    • (2008) Int J Energy Res , vol.32 , pp. 1228-1240
    • Ieropoulos, I.A.1    Greenman, J.2    Melhuish, C.3
  • 87
    • 84863103351 scopus 로고    scopus 로고
    • Enhanced methane yields from anaerobic digestion of Arthrospira maxima biomass in an advanced flow-through reactor with an integrated recirculation loop microbial fuel cell
    • Inglesby AE, Fisher AC. (2012). Enhanced methane yields from anaerobic digestion of Arthrospira maxima biomass in an advanced flow-through reactor with an integrated recirculation loop microbial fuel cell. Energy Environ Sci 5: 7996-8006
    • (2012) Energy Environ Sci , vol.5 , pp. 7996-8006
    • Inglesby, A.E.1    Fisher, A.C.2
  • 88
    • 77957361587 scopus 로고    scopus 로고
    • Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode
    • Jacobson KS, Drew DM, He Z. (2011). Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Biores Technol 102: 376-80
    • (2011) Biores Technol , vol.102 , pp. 376-380
    • Jacobson, K.S.1    Drew, D.M.2    He, Z.3
  • 89
    • 1042264199 scopus 로고    scopus 로고
    • Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system
    • Jang JD, Barford JP, Lindawati R. (2004b). Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system. Biosen Bioelectron 19: 805-12
    • (2004) Biosen Bioelectron , vol.19 , pp. 805-812
    • Jang, J.D.1    Barford, J.P.2    Lindawati, R.3
  • 90
    • 1942489157 scopus 로고    scopus 로고
    • Construction and operation of a novel mediator and membrane-less microbial fuel cell
    • Jang JK, Pham TH, Chang IS, et al. (2004a). Construction and operation of a novel mediator and membrane-less microbial fuel cell. Process Biochem 39: 1007-12
    • (2004) Process Biochem , vol.39 , pp. 1007-1012
    • Jang, J.K.1    Pham, T.H.2    Chang, I.S.3
  • 91
    • 84877803093 scopus 로고    scopus 로고
    • Coupling bioelectricity generation and oil sands tailings treatment using microbial fuel cells
    • Jiang Y, Ulrich AC, Liu Y. (2013). Coupling bioelectricity generation and oil sands tailings treatment using microbial fuel cells. Biores Technol 139: 349-54
    • (2013) Biores Technol , vol.139 , pp. 349-354
    • Jiang, Y.1    Ulrich, A.C.2    Liu, Y.3
  • 92
    • 79957448939 scopus 로고    scopus 로고
    • Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology
    • Kaewkannetra P, Chiwes W, Chiu TY. (2011). Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology. Fuel 90: 2746-50
    • (2011) Fuel , vol.90 , pp. 2746-2750
    • Kaewkannetra, P.1    Chiwes, W.2    Chiu, T.Y.3
  • 93
    • 84862330857 scopus 로고    scopus 로고
    • Efficient decolorization of real dye wastewater and bioelectricity generation using a novel single chamber biocathode-microbial fuel cell
    • Kalathil S, Lee J, Cho MH. (2012). Efficient decolorization of real dye wastewater and bioelectricity generation using a novel single chamber biocathode-microbial fuel cell. Biores Technol 119: 22-7
    • (2012) Biores Technol , vol.119 , pp. 22-27
    • Kalathil, S.1    Lee, J.2    Cho, M.H.3
  • 94
    • 84874393858 scopus 로고    scopus 로고
    • Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging
    • Kalathil S, Lee J, Cho MH. (2013). Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging. ChemsusChem 6: 246-50
    • (2013) Chemsus Chem , vol.6 , pp. 246-250
    • Kalathil, S.1    Lee, J.2    Cho, M.H.3
  • 95
    • 82755193768 scopus 로고    scopus 로고
    • Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation
    • Kalathil S, Lee J, Cho MH. (2011). Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New Biotechnol 29: 32-7
    • (2011) New Biotechnol , vol.29 , pp. 32-37
    • Kalathil, S.1    Lee, J.2    Cho, M.H.3
  • 96
    • 0042856665 scopus 로고    scopus 로고
    • A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand
    • Kang KH, Jang JK, Pham TH, et al. (2003). A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand. Biotechnol Lett 25: 1357-61
    • (2003) Biotechnol Lett , vol.25 , pp. 1357-1361
    • Kang, K.H.1    Jang, J.K.2    Pham, T.H.3
  • 98
    • 79961134691 scopus 로고    scopus 로고
    • Performance improvement of whey-driven microbial fuel cells by acclimation of indigenous anodophilic microbes
    • Kassongo J, Togo CA. (2011b). Performance improvement of whey-driven microbial fuel cells by acclimation of indigenous anodophilic microbes. African J Biotechnol 10: 7846-52
    • (2011) African J Biotechnol , vol.10 , pp. 7846-7852
    • Kassongo, J.1    Togo, C.A.2
  • 99
    • 85036407405 scopus 로고    scopus 로고
    • The impact of electrode reuse on the biofilm community and performance of whey-fuelled H-type microbial fuel cell
    • Kassongo J, Togo CA. (2011a). The impact of electrode reuse on the biofilm community and performance of whey-fuelled H-type microbial fuel cell. African J Microbiol Res 5: 1090-6
    • (2011) African J Microbiol Res , vol.5 , pp. 1090-1096
    • Kassongo, J.1    Togo, C.A.2
  • 100
    • 84875792633 scopus 로고    scopus 로고
    • Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities
    • Kaur A, Kim JR, Michie I, et al. (2013). Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities. Biosens Bioelectron 47: 50-5
    • (2013) Biosens Bioelectron , vol.47 , pp. 50-55
    • Kaur, A.1    Kim, J.R.2    Michie, I.3
  • 101
    • 84957674494 scopus 로고    scopus 로고
    • Artificial autonomy in the natural world: Building a robot predator
    • Swiss Federal Institute of Technology, Lausanne (EPFL). Switzerland: Springer-Verlag
    • Kelly ID, Holland O, Scull M, McFarland D. (1999). Artificial autonomy in the natural world: building a robot predator. Proceedings of the 5th European Conference on Artificial Life. Swiss Federal Institute of Technology, Lausanne (EPFL). Switzerland: Springer-Verlag, 289-93
    • (1999) Proceedings of the 5th European Conference on Artificial Life , pp. 289-293
    • Kelly, I.D.1    Holland, O.2    Scull, M.3    McFarland, D.4
  • 102
    • 84866556635 scopus 로고    scopus 로고
    • Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell
    • Khunjar WO, Sahin A, West AC, Chandran K, Banta S. (2012). Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell. PLoS One 7: e44846
    • (2012) Plos One , vol.7 , pp. e44846
    • Khunjar, W.O.1    Sahin, A.2    West, A.C.3    Chandran, K.4    Banta, S.5
  • 104
    • 34548017839 scopus 로고    scopus 로고
    • Challenges in microbial fuel cell development and operation
    • Kim BH, Chang IS, Gadd GM. (2007). Challenges in microbial fuel cell development and operation. Appl Microb Biotechnol 76: 485-94
    • (2007) Appl Microb Biotechnol , vol.76 , pp. 485-494
    • Kim, B.H.1    Chang, I.S.2    Gadd, G.M.3
  • 106
    • 1542329064 scopus 로고    scopus 로고
    • Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell
    • Kim BH, Park HS, Kim HJ, et al. (2004). Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63: 672-81
    • (2004) Appl Microbiol Biotechnol , vol.63 , pp. 672-681
    • Kim, B.H.1    Park, H.S.2    Kim, H.J.3
  • 107
    • 0344780799 scopus 로고    scopus 로고
    • A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, shewanella putrefaciens
    • Kim HJ, Hyun MS, Chang IS, Kim BH. (1999). A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens, J Microbiol Biotechnol 9: 365-7
    • (1999) J Microbiol Biotechnol , vol.9 , pp. 365-367
    • Kim, H.J.1    Hyun, M.S.2    Chang, I.S.3    Kim, B.H.4
  • 108
    • 0037074898 scopus 로고    scopus 로고
    • A mediator-less microbial fuel cell using a metal reducing bacterium, shewanella putrefacians
    • Kim HJ, Park HS, Hyun MS, et al. (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefacians. Enz Microb Technol 30: 45-52
    • (2002) Enz Microb Technol , vol.30 , pp. 45-52
    • Kim, H.J.1    Park, H.S.2    Hyun, M.S.3
  • 109
    • 58949088600 scopus 로고    scopus 로고
    • Microbial fuel cells: Recent advances, bacterial communities and application beyond electricity generation
    • Kim IS, Chae KJ, Choi MJ, Verstraete W. (2008). Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation. Environ Eng Res 13: 51-65
    • (2008) Environ Eng Res , vol.13 , pp. 51-65
    • Kim, I.S.1    Chae, K.J.2    Choi, M.J.3    Verstraete, W.4
  • 110
    • 67449103003 scopus 로고    scopus 로고
    • Membrane-electrode assembly enhances performance of a microbial fuel cell type biological oxygen demand sensor
    • Kim M, Hyun MS, Gadd GM, et al. (2009). Membrane-electrode assembly enhances performance of a microbial fuel cell type biological oxygen demand sensor. Env Technol 30: 329-36
    • (2009) Env Technol , vol.30 , pp. 329-336
    • Kim, M.1    Hyun, M.S.2    Gadd, G.M.3
  • 111
    • 0043068208 scopus 로고    scopus 로고
    • Practical field application of a novel BOD monitoring system
    • Kim M, Youn SM, Shin SH, et al. (2003b). Practical field application of a novel BOD monitoring system. J Environ Monit 5: 640-3
    • (2003) J Environ Monit , vol.5 , pp. 640-643
    • Kim, M.1    Youn, S.M.2    Shin, S.H.3
  • 114
    • 74749106318 scopus 로고    scopus 로고
    • Natural treatment and onsite systems
    • Kruzic AP, Kreissi JF. (2009). Natural treatment and onsite systems. Water Environ Res 81: 1346-60
    • (2009) Water Environ Res , vol.81 , pp. 1346-1360
    • Kruzic, A.P.1    Kreissi, J.F.2
  • 115
    • 34248546192 scopus 로고    scopus 로고
    • Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter
    • Kumlanghan A, Liu J, Thavarungkul P, et al. (2007). Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter. Biosens Bioelectron 22: 2939-44
    • (2007) Biosens Bioelectron , vol.22 , pp. 2939-2944
    • Kumlanghan, A.1    Liu, J.2    Thavarungkul, P.3
  • 116
    • 79955008125 scopus 로고    scopus 로고
    • Electricity production in membrane-less microbial fuel cell fed with livestock organic solid waste
    • Lee Y, Nirmalakhandan N. (2011). Electricity production in membrane-less microbial fuel cell fed with livestock organic solid waste. Biores Technol 102: 5831-5
    • (2011) Biores Technol , vol.102 , pp. 5831-5835
    • Lee, Y.1    Nirmalakhandan, N.2
  • 117
    • 47949127342 scopus 로고    scopus 로고
    • An insight into cathode options for microbial fuel cells
    • Lefebvre O, Mamun AA, Ooi WK, et al. (2008). An insight into cathode options for microbial fuel cells. Water Sci Technol 57: 2031-7
    • (2008) Water Sci Technol , vol.57 , pp. 2031-2037
    • Lefebvre, O.1    Mamun, A.A.2    Ooi, W.K.3
  • 118
    • 69049120173 scopus 로고    scopus 로고
    • Study on microbial reduction of vanadium matallurgical waste water
    • Li H, Feng Y, Zou X, Luo X. (2009b). Study on microbial reduction of vanadium matallurgical waste water. Hydrometallurgy 99: 13-7
    • (2009) Hydrometallurgy , vol.99 , pp. 13-17
    • Li, H.1    Feng, Y.2    Zou, X.3    Luo, X.4
  • 119
    • 78650844252 scopus 로고    scopus 로고
    • Treatment of wastewater from dioscorea zingiberensis tubers used for producing steroid hormones in a microbial fuel cell
    • Li H, Ni J. (2011). Treatment of wastewater from Dioscorea zingiberensis tubers used for producing steroid hormones in a microbial fuel cell. Biores Technol 102: 2731-5
    • (2011) Biores Technol , vol.102 , pp. 2731-2735
    • Li, H.1    Ni, J.2
  • 120
    • 67649494273 scopus 로고    scopus 로고
    • Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells
    • Li Y, Lu A, Ding H, Jin S, et al. (2009a). Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells. Electrochem Comm 11: 1496-9
    • (2009) Electrochem Comm , vol.11 , pp. 1496-1499
    • Li, Y.1    Lu, A.2    Ding, H.3    Jin, S.4
  • 122
    • 79851502253 scopus 로고    scopus 로고
    • 2+-containing wastewater by microbial fuel cell with excess sludge as anodic substrate
    • 2+-containing wastewater by microbial fuel cell with excess sludge as anodic substrate. Env Sci Technol 32: 179-85
    • (2011) Env Sci Technol , vol.32 , pp. 179-185
    • Liang, M.1    Tao, H.C.2    Li, S.F.3
  • 123
    • 20044370112 scopus 로고    scopus 로고
    • Electrochemically assisted microbial production of hydrogen from acetate
    • Liu H, Grot S, Logan BE. (2005). Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39: 4317-20
    • (2005) Environ Sci Technol , vol.39 , pp. 4317-4320
    • Liu, H.1    Grot, S.2    Logan, B.E.3
  • 124
    • 78650839736 scopus 로고    scopus 로고
    • In-situ Cr(VI) reduction with electro-generated hydrogen peroxide driven by iron-reducing bacteria
    • Liu L, Yuan Y, Li F, Feng C. (2011a). In-situ Cr(VI) reduction with electro-generated hydrogen peroxide driven by iron-reducing bacteria. Biores Technol 102: 2468-73
    • (2011) Biores Technol , vol.102 , pp. 2468-2473
    • Liu, L.1    Yuan, Y.2    Li, F.3    Feng, C.4
  • 125
    • 80054842480 scopus 로고    scopus 로고
    • Microbial fuel cell based biosensor for in situ monitoring of anaerobic digestion process
    • Liu Z, Liu J, Zhang S, et al. (2011b). Microbial fuel cell based biosensor for in situ monitoring of anaerobic digestion process. Biores Technol 102: 10221-9
    • (2011) Biores Technol , vol.102 , pp. 10221-10229
    • Liu, Z.1    Liu, J.2    Zhang, S.3
  • 126
    • 84877896066 scopus 로고    scopus 로고
    • Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae
    • Lobato J, Campo AGC, Fernández FJ, et al. (2013). Lagooning microbial fuel cells: a first approach by coupling electricity-producing microorganisms and algae. Appl Energ 110: 220-6
    • (2013) Appl Energ , vol.110 , pp. 220-226
    • Lobato, J.1    Campo, A.G.C.2    Fernández, F.J.3
  • 127
    • 57449102625 scopus 로고    scopus 로고
    • Microbial electrolysis cells for high yield hydrogen gas production from organic matter
    • Logan BE, Call D, Cheng S, et al. 2008. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42: 8630-40
    • (2008) Environ Sci Technol , vol.42 , pp. 8630-8640
    • Logan, B.E.1    Call, D.2    Cheng, S.3
  • 128
    • 33748566549 scopus 로고    scopus 로고
    • Microbial fuel cells: Methodology and technology
    • Logan BE, Hamelers B, Rozendal R, et al. (2006). Microbial fuel cells: Methodology and technology. Env Sci Technol 40: 5181-92
    • (2006) Env Sci Technol , vol.40 , pp. 5181-5192
    • Logan, B.E.1    Hamelers, B.2    Rozendal, R.3
  • 129
    • 33748564008 scopus 로고    scopus 로고
    • Microbial fuel cells -challenges and applications
    • Logan BE, Regan JM. (2006). Microbial fuel cells -challenges and applications. Environ Sci Technol 40: 5172-80
    • (2006) Environ Sci Technol , vol.40 , pp. 5172-5180
    • Logan, B.E.1    Regan, J.M.2
  • 130
    • 76849084828 scopus 로고    scopus 로고
    • Scaling up microbial fuel cells and other bioelectrochemical systems
    • Logan BE. (2010). Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microb Biotechnol 85: 1665-71
    • (2010) Appl Microb Biotechnol , vol.85 , pp. 1665-1671
    • Logan, B.E.1
  • 131
    • 33744906766 scopus 로고    scopus 로고
    • Microbial fuel cells: Novel microbial physiologies and engineering approaches
    • Lovley DR. (2006). Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17: 327-32
    • (2006) Curr Opin Biotechnol , vol.17 , pp. 327-332
    • Lovley, D.R.1
  • 133
    • 58349084508 scopus 로고    scopus 로고
    • Electricity generation from starch processing wastewater using microbial fuel cell technology
    • Lu N, Zhou SG, Zhuang L, et al. (2009b). Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J 43: 246-51
    • (2009) Biochem Eng J , vol.43 , pp. 246-251
    • Lu, N.1    Zhou, S.G.2    Zhuang, L.3
  • 134
    • 60649098955 scopus 로고    scopus 로고
    • Phenol degradation in microbial fuel cells
    • Luo H, Liu G, Zhang R, Jin S. (2009). Phenol degradation in microbial fuel cells. Chem Eng J 147: 259-64
    • (2009) Chem Eng J , vol.147 , pp. 259-264
    • Luo, H.1    Liu, G.2    Zhang, R.3    Jin, S.4
  • 135
    • 78651484675 scopus 로고    scopus 로고
    • Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell
    • Luo Y, Zhang R, Liu G, Li J, et al. (2011). Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell. Biores Technol 102: 3827-32
    • (2011) Biores Technol , vol.102 , pp. 3827-3832
    • Luo, Y.1    Zhang, R.2    Liu, G.3    Li, J.4
  • 136
    • 77954488209 scopus 로고    scopus 로고
    • Electricity generation from indole degradation using the microbial fuel cell
    • Luo Y, Zhang RD, Li J, et al. (2010). Electricity generation from indole degradation using the microbial fuel cell. China Env Sci 30: 770-4
    • (2010) China Env Sci , vol.30 , pp. 770-774
    • Luo, Y.1    Zhang, R.D.2    Li, J.3
  • 137
    • 38349159666 scopus 로고    scopus 로고
    • Comparison of biohydrogen production processes
    • Manish S, Banerjee R. (2008). Comparison of biohydrogen production processes. Int J Hyd Energy 33: 279-86
    • (2008) Int J Hyd Energy , vol.33 , pp. 279-286
    • Manish, S.1    Banerjee, R.2
  • 138
    • 77955425014 scopus 로고    scopus 로고
    • The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge
    • Martin E, Savadogo O, Guiot SR, Tartakovsky B. (2010). The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge. Biochem Eng J 51: 132-9
    • (2010) Biochem Eng J , vol.51 , pp. 132-139
    • Martin, E.1    Savadogo, O.2    Guiot, S.R.3    Tartakovsky, B.4
  • 139
    • 77954314417 scopus 로고    scopus 로고
    • Bioelectricity production from paper industry waste using a microbial fuel cell by Clostridium species
    • Mathuriya AS, Sharma VN. (2009a). Bioelectricity production from paper industry waste using a microbial fuel cell by Clostridium species. J Biochem Technol 1: 49-52
    • (2009) J Biochem Technol , vol.1 , pp. 49-52
    • Mathuriya, A.S.1    Sharma, V.N.2
  • 140
    • 79954593562 scopus 로고    scopus 로고
    • Bioelectricity production from various wastewaters through microbial fuel cell technology
    • Mathuriya AS, Sharma VN. (2009b). Bioelectricity production from various wastewaters through microbial fuel cell technology. J Biochem Technol 2: 133-7
    • (2009) J Biochem Technol , vol.2 , pp. 133-137
    • Mathuriya, A.S.1    Sharma, V.N.2
  • 141
    • 79953739772 scopus 로고    scopus 로고
    • Treatment of brewery wastewater and production of electricity through microbial fuel cell technology
    • Mathuriya AS, Sharma VN. (2010). Treatment of Brewery Wastewater and Production of Electricity through Microbial Fuel Cell Technology. Int J Biotechnol Biochem 6: 71-80
    • (2010) Int J Biotechnol Biochem , vol.6 , pp. 71-80
    • Mathuriya, A.S.1    Sharma, V.N.2
  • 142
    • 84890486844 scopus 로고    scopus 로고
    • Eco-affectionate face of microbial fuel cells
    • Mathuriya AS. (2014). Eco-affectionate face of microbial fuel cells. Critical Rev Env Sci Technol 44: 97-153
    • (2014) Critical Rev Env Sci Technol , vol.44 , pp. 97-153
    • Mathuriya, A.S.1
  • 143
    • 84959438883 scopus 로고    scopus 로고
    • Enhanced Tannery wastewater treatment and simultaneous electricity generation in Microbial Fuel cell by bacterial strains isolated from tannery waste
    • Accepted Manuscript
    • Mathuriya AS. (2012). Enhanced Tannery wastewater treatment and simultaneous electricity generation in Microbial Fuel cell by bacterial strains isolated from tannery waste. Env Eng Manage J. (Accepted Manuscript). http://omicron.ch.tuiasi.ro/EEMJ/pdfs/accepted/133-605-Mathuriya-11.pdf
    • (2012) Env Eng Manage J.
    • Mathuriya, A.S.1
  • 144
    • 84886095497 scopus 로고    scopus 로고
    • Inoculum selection to enhance performance of a microbial fuel cell for electricity generation during wastewater treatment
    • Mathuriya AS. (2013). Inoculum selection to enhance performance of a microbial fuel cell for electricity generation during wastewater treatment. Env Technol: Sustain Technol Bioener Biofuel Biowaste Biomass 34: 1957-64
    • (2013) Env Technol: Sustain Technol Bioener Biofuel Biowaste Biomass , vol.34 , pp. 1957-1964
    • Mathuriya, A.S.1
  • 145
    • 55549143029 scopus 로고    scopus 로고
    • Simultaneous electrochemical oxidation and reduction of representative organic pollutants
    • Mayen-Mondragon R, Ibanez JG, Vasquez-Medrano R. (2008). Simultaneous electrochemical oxidation and reduction of representative organic pollutants. Fresenius Environ Bull 17: 1294-9
    • (2008) Fresenius Environ Bull , vol.17 , pp. 1294-1299
    • Mayen-Mondragon, R.1    Ibanez, J.G.2    Vasquez-Medrano, R.3
  • 146
    • 78650259349 scopus 로고    scopus 로고
    • Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production
    • Mehanna M, Kiely PD, Call DF, Logan BE. (2010a). Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environ Sci Technol 44: 9578-83
    • (2010) Environ Sci Technol , vol.44 , pp. 9578-9583
    • Mehanna, M.1    Kiely, P.D.2    Call, D.F.3    Logan, B.E.4
  • 147
    • 77957068564 scopus 로고    scopus 로고
    • Using microbial desalination cells to reduce water salinity prior to reverse osmosis
    • Mehanna M, Saito T, Yan J, et al. (2010b). Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy Environ Sci 3: 1114-20
    • (2010) Energy Environ Sci , vol.3 , pp. 1114-1120
    • Mehanna, M.1    Saito, T.2    Yan, J.3
  • 148
    • 77950340404 scopus 로고    scopus 로고
    • Electricity generation from carbon monoxide in a single chamber microbial fuel cell
    • Mehta P, Hussain A, Tartakovsky B, et al. (2010). Electricity generation from carbon monoxide in a single chamber microbial fuel cell. Enz Microb Technol 46: 450-5
    • (2010) Enz Microb Technol , vol.46 , pp. 450-455
    • Mehta, P.1    Hussain, A.2    Tartakovsky, B.3
  • 151
    • 0036198429 scopus 로고    scopus 로고
    • Microscale biosensor for measurement of volatile fatty acids in anoxic environments
    • Meyer RL, Larsen LH, Revsbech NP. (2002). Microscale biosensor for measurement of volatile fatty acids in anoxic environments. Appl Env Microbiol 68: 1204-10
    • (2002) Appl Env Microbiol , vol.68 , pp. 1204-1210
    • Meyer, R.L.1    Larsen, L.H.2    Revsbech, N.P.3
  • 152
    • 77950297537 scopus 로고    scopus 로고
    • Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: An integrative approach
    • Mohanakrishna G, Venkata Mohan S, Sarma PN. (2010). Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: an integrative approach. Int J Hyd Ener 35: 3440-9
    • (2010) Int J Hyd Ener , vol.35 , pp. 3440-3449
    • Mohanakrishna, G.1    Venkata Mohan, S.2    Sarma, P.N.3
  • 153
    • 12444255259 scopus 로고    scopus 로고
    • Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor
    • Moon H, Chang IS, Kang KH, et al. (2004). Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnol Lett 26: 1717-21
    • (2004) Biotechnol Lett , vol.26 , pp. 1717-1721
    • Moon, H.1    Chang, I.S.2    Kang, K.H.3
  • 154
    • 57349153557 scopus 로고    scopus 로고
    • Microbial fuel cell in enhancing anaerobic biodegradation of diesel
    • Morris JM, Jin S, Crimi B, Pruden A. (2009). Microbial fuel cell in enhancing anaerobic biodegradation of diesel. Chem Eng J 146: 161-7
    • (2009) Chem Eng J , vol.146 , pp. 161-167
    • Morris, J.M.1    Jin, S.2    Crimi, B.3    Pruden, A.4
  • 155
    • 84858341131 scopus 로고    scopus 로고
    • Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells
    • Morris JM, Jin S. (2012). Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells. J hazard mater 213-214: 474-7
    • (2012) J Hazard Mater , vol.213-214 , pp. 474-477
    • Morris, J.M.1    Jin, S.2
  • 156
    • 37549048654 scopus 로고    scopus 로고
    • Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater
    • Morris JM, Jin S. (2008), Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater. J Env Sci Health A Tox Hazard Subst Env Eng 43: 18-23
    • (2008) J Env Sci Health A Tox Hazard Subst Env Eng , vol.43 , pp. 18-23
    • Morris, J.M.1    Jin, S.2
  • 157
    • 84895065211 scopus 로고    scopus 로고
    • A microliter-scale microbial fuel cell array for bacterial electrogenic screening
    • Mukherjee S, Su S, Panmanee W, et al. (2013). A microliter-scale microbial fuel cell array for bacterial electrogenic screening. Sen Actuat A Phy 201: 532-7
    • (2013) Sen Actuat A Phy , vol.201 , pp. 532-537
    • Mukherjee, S.1    Su, S.2    Panmanee, W.3
  • 159
    • 77953126617 scopus 로고    scopus 로고
    • Ammonia inhibition of electricity generation in single-chambered microbial fuel cells
    • Nam JY, Kim HW, Shin HS. (2010). Ammonia inhibition of electricity generation in single-chambered microbial fuel cells. J Power Sources 195: 6428-33
    • (2010) J Power Sources , vol.195 , pp. 6428-6433
    • Nam, J.Y.1    Kim, H.W.2    Shin, H.S.3
  • 160
    • 80052682213 scopus 로고    scopus 로고
    • Whey as a substrate for generation of bioelectricity in microbial fuel cell using e coli
    • Nasirahmadi S, Safekordi AA. (2011). Whey as a substrate for generation of bioelectricity in microbial fuel cell using E. coli. Int J Env Sci Technol 8: 823-30
    • (2011) Int J Env Sci Technol , vol.8 , pp. 823-830
    • Nasirahmadi, S.1    Safekordi, A.A.2
  • 161
    • 80052158626 scopus 로고    scopus 로고
    • Microbial fuel cell operation on carbon monoxide: Cathode catalyst selection
    • Neburchilov V, Mehta P, Hussain A, et al. (2011). Microbial fuel cell operation on carbon monoxide: cathode catalyst selection. Int J Hyd Ener 36: 11929-35
    • (2011) Int J Hyd Ener , vol.36 , pp. 11929-11935
    • Neburchilov, V.1    Mehta, P.2    Hussain, A.3
  • 162
    • 27744556556 scopus 로고    scopus 로고
    • Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies
    • Oh SE, Logan BE. (2005). Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39: 4673-82
    • (2005) Water Res , vol.39 , pp. 4673-4682
    • Oh, S.E.1    Logan, B.E.2
  • 163
    • 74549151753 scopus 로고    scopus 로고
    • A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
    • Pant D, Bogaert GV, Diels L, Vanbroekhoven K (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Biores Technol 101: 1533-43
    • (2010) Biores Technol , vol.101 , pp. 1533-1543
    • Pant, D.1    Bogaert, G.V.2    Diels, L.3    Vanbroekhoven, K.4
  • 164
    • 7444246753 scopus 로고    scopus 로고
    • Micredox(r) - Development of a ferricyanide-mediated rapid biochemical oxygen demand method using an immobilised proteus vulgaris biocomponent
    • Pasco N, Baronian K, Jeffries C, Webber J, Hay J. (2004). MICREDOX(R)-development of a ferricyanide-mediated rapid biochemical oxygen demand method using an immobilised Proteus vulgaris biocomponent. Biosen Bioelectron 20: 524-32
    • (2004) Biosen Bioelectron , vol.20 , pp. 524-532
    • Pasco, N.1    Baronian, K.2    Jeffries, C.3    Webber, J.4    Hay, J.5
  • 165
  • 166
    • 67650269404 scopus 로고    scopus 로고
    • Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber
    • Patil SA, Surakasi VP, Koul S, et al. (2009). Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Biores Technol 100: 5132-9
    • (2009) Biores Technol , vol.100 , pp. 5132-5139
    • Patil, S.A.1    Surakasi, V.P.2    Koul, S.3
  • 167
    • 66149182888 scopus 로고    scopus 로고
    • Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia
    • Pham H, Boon N, Marzorati M, Verstraete W. (2009). Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia. Water Res 43: 2936-46
    • (2009) Water Res , vol.43 , pp. 2936-2946
    • Pham, H.1    Boon, N.2    Marzorati, M.3    Verstraete, W.4
  • 168
    • 33745192680 scopus 로고
    • On the difference of potential due to the vital activity of microorganisms
    • Potter MC. (1910). On the difference of potential due to the vital activity of microorganisms. In: Proceedings of University Durham Philosophical Society 3: 245-9
    • (1910) Proceedings of University Durham Philosophical Society , vol.3 , pp. 245-249
    • Potter, M.C.1
  • 171
    • 51349108665 scopus 로고    scopus 로고
    • Growth kinetics of chlorella vulgaris and its use as a cathodic half cell
    • Powell EE, Mapiour ML, Evitts RW, Hill GA. (2009). Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Biores Technol 100: 269-74
    • (2009) Biores Technol , vol.100 , pp. 269-274
    • Powell, E.E.1    Mapiour, M.L.2    Evitts, R.W.3    Hill, G.A.4
  • 172
    • 80052045746 scopus 로고    scopus 로고
    • Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs
    • Puig S, Serra M, Coma M, et al. (2011). Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs). Water Sci Technol 64: 904-9
    • (2011) Water Sci Technol , vol.64 , pp. 904-909
    • Puig, S.1    Serra, M.2    Coma, M.3
  • 173
    • 77957147094 scopus 로고    scopus 로고
    • Microbial electrosynthesis-revisiting the electrical route for microbial production
    • Rabaey K, Rozendal RA. (2010). Microbial electrosynthesis-revisiting the electrical route for microbial production. Nat Rev Microbiol 8: 706-16
    • (2010) Nat Rev Microbiol , vol.8 , pp. 706-716
    • Rabaey, K.1    Rozendal, R.A.2
  • 174
    • 19444367096 scopus 로고    scopus 로고
    • Microbial fuel cells: Novel biotechnology for energy generation
    • Rabaey K, Verstraete W. (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23: 291-8
    • (2005) Trends Biotechnol , vol.23 , pp. 291-298
    • Rabaey, K.1    Verstraete, W.2
  • 175
    • 84876427917 scopus 로고    scopus 로고
    • Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell
    • Rashid N, Cui YF, Saif Ur Rehman, Han JI. (2013). Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Sci Total Environ 456-457: 91-4
    • (2013) Sci Total Environ , vol.456-457 , pp. 91-94
    • Rashid, N.1    Cui, Y.F.2    Saif, U.R.3    Han, J.I.4
  • 176
    • 44449089547 scopus 로고    scopus 로고
    • Opportunities for renewable bioenergy using microorganisms
    • Rittmann BE. (2008). Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100: 203-12
    • (2008) Biotechnol Bioeng , vol.100 , pp. 203-212
    • Rittmann, B.E.1
  • 177
    • 84882809372 scopus 로고    scopus 로고
    • Can microbial fuel cells be an effective mitigation strategy for methane emissions from paddy fields?
    • Rizzo A, Boano F, Revelli R, Ridolfi L. (2013). Can microbial fuel cells be an effective mitigation strategy for methane emissions from paddy fields? Ecolog Eng 60: 161-71
    • (2013) Ecolog Eng , vol.60 , pp. 161-171
    • Rizzo, A.1    Boano, F.2    Revelli, R.3    Ridolfi, L.4
  • 178
    • 33750196473 scopus 로고    scopus 로고
    • Interfacing electrocatalysis and biocatalysis with tungsten carbide: A high performance noble-metal-free microbial fuel cell
    • Rosenbaum M, Zhao F, Schröder U, Scholz F. (2006). Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high performance noble-metal-free microbial fuel cell. Angew Chem (Int Ed) 45: 6658-61
    • (2006) Angew Chem (Int Ed , vol.45 , pp. 6658-6661
    • Rosenbaum, M.1    Zhao, F.2    Schröder, U.3    Scholz, F.4
  • 179
    • 34047125848 scopus 로고    scopus 로고
    • Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes
    • Rozendal R, Hamelers HVM, Molenkamp RJ, Buisman CJN. (2007). Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41: 1984-94
    • (2007) Water Res , vol.41 , pp. 1984-1994
    • Rozendal, R.1    Hamelers, H.V.M.2    Molenkamp, R.J.3    Buisman, C.J.N.4
  • 180
    • 47049103719 scopus 로고    scopus 로고
    • Towards practical implementation of bioelectrochemical wastewater treatment
    • Rozendal RA, Hamelers HV, Rabaey K, et al. (2008). Towards practical implementation of bioelectrochemical wastewater treatment. Trend Biotechnol 26: 450-9
    • (2008) Trend Biotechnol , vol.26 , pp. 450-459
    • Rozendal, R.A.1    Hamelers, H.V.2    Rabaey, K.3
  • 181
    • 33644938991 scopus 로고    scopus 로고
    • Principle and perspectives of hydrogen production through biocatalyzed electrolysis
    • Rozendal RA, Hamelers HVM, Euverink GJW, et al. (2006). Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energ 31: 1632-40
    • (2006) Int J Hydrogen Energ , vol.31 , pp. 1632-1640
    • Rozendal, R.A.1    Hamelers, H.V.M.2    Euverink, G.J.W.3
  • 182
    • 79958713347 scopus 로고    scopus 로고
    • Catholyte performance as an influencing factor on electricity production in a dual-chambered microbial fuel cell employing food processing wastewater
    • Sangeetha T, Muthukumar M. (2011). Catholyte performance as an influencing factor on electricity production in a dual-chambered microbial fuel cell employing food processing wastewater. Ener Source A Recov Utilization Envl Effect 33: 1514-22
    • (2011) Ener Source A Recov Utilization Envl Effect , vol.33 , pp. 1514-1522
    • Sangeetha, T.1    Muthukumar, M.2
  • 183
    • 34548337055 scopus 로고    scopus 로고
    • A study of a microbial fuel cell battery using manure sludge waste
    • Scott K, Murano C. (2007). A study of a microbial fuel cell battery using manure sludge waste. J Chem Technol Biotechnol 82: 809-17
    • (2007) J Chem Technol Biotechnol , vol.82 , pp. 809-817
    • Scott, K.1    Murano, C.2
  • 184
    • 41149117499 scopus 로고    scopus 로고
    • Science and technology for water purification in the coming decades
    • Shannon MA, Bohn PW, Elimelech M, et al. (2008). Science and technology for water purification in the coming decades. Nature 452: 301-10
    • (2008) Nature , vol.452 , pp. 301-310
    • Shannon, M.A.1    Bohn, P.W.2    Elimelech, M.3
  • 185
    • 22044440857 scopus 로고    scopus 로고
    • Wireless sensors powered by microbial fuel cells
    • Shantaram A, Beyenal H, Raajan R, et al. (2005). Wireless Sensors Powered by Microbial Fuel Cells. Environ Sci Technol 39: 5037-42
    • (2005) Environ Sci Technol , vol.39 , pp. 5037-5042
    • Shantaram, A.1    Beyenal, H.2    Raajan, R.3
  • 186
    • 77950297160 scopus 로고    scopus 로고
    • Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC
    • Sharma Y, Li B. (2010). Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC). Int J Hydrogen Energ 35: 3789-97
    • (2010) Int J Hydrogen Energ , vol.35 , pp. 3789-3797
    • Sharma, Y.1    Li, B.2
  • 187
    • 84877050223 scopus 로고    scopus 로고
    • Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(II
    • Shen Y, Wang M, Chang IS, Ng HY. (2013). Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(II). Biores Technol 136: 707-10
    • (2013) Biores Technol , vol.136 , pp. 707-710
    • Shen, Y.1    Wang, M.2    Chang, I.S.3    Ng, H.Y.4
  • 189
    • 66149139833 scopus 로고    scopus 로고
    • Electricity generation from terephthalic acid using a microbial fuel cell
    • Song T, Xu Y, Ye Y, et al. (2009). Electricity generation from terephthalic acid using a microbial fuel cell. J Chem Technol Biotechnol 84: 356-60
    • (2009) J Chem Technol Biotechnol , vol.84 , pp. 356-360
    • Song, T.1    Xu, Y.2    Ye, Y.3
  • 191
    • 84866120493 scopus 로고    scopus 로고
    • On-line detection of toxic components using a microbial fuel cell-based biosensor
    • Stein NK, Hamelers HMV, Straten GV, Keesman KJ. (2012). On-line detection of toxic components using a microbial fuel cell-based biosensor. J Process Control 22: 1755-61
    • (2012) J Process Control , vol.22 , pp. 1755-1761
    • Stein, N.K.1    Hamelers, H.M.V.2    Straten, G.V.3    Keesman, K.J.4
  • 192
    • 80054830761 scopus 로고    scopus 로고
    • Upflow bio-filter circuit (UBFC): Biocatalyst microbial fuel cell (MFC) configuration and application to biodiesel wastewater treatment
    • Sukkasem C, Laehlah S, Hniman A, et al. (2011). Upflow bio-filter circuit (UBFC): Biocatalyst microbial fuel cell (MFC) configuration and application to biodiesel wastewater treatment. Biores Technol 102: 10363-70
    • (2011) Biores Technol , vol.102 , pp. 10363-10370
    • Sukkasem, C.1    Laehlah, S.2    Hniman, A.3
  • 193
    • 78649645203 scopus 로고    scopus 로고
    • Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode
    • Sun J, Bi Z, Hou B, Cao YQ, Hu YY. (2011). Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode. Water Res 45: 283-91
    • (2011) Water Res , vol.45 , pp. 283-291
    • Sun, J.1    Bi, Z.2    Hou, B.3    Cao, Y.Q.4    Hu, Y.Y.5
  • 194
    • 58649095711 scopus 로고    scopus 로고
    • Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation
    • Sun J, Hu Y, Bi Z, Cao Y. (2009a). Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation. J Power Sources 87: 471-9
    • (2009) J Power Sources , vol.87 , pp. 471-479
    • Sun, J.1    Hu, Y.2    Bi, Z.3    Cao, Y.4
  • 195
    • 63649085511 scopus 로고    scopus 로고
    • Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell
    • Sun J, Hua YY, Bi Z, Cao YQ. (2009b). Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Biores Technol 100: 3185-92
    • (2009) Biores Technol , vol.100 , pp. 3185-3192
    • Sun, J.1    Hua, Y.Y.2    Bi, Z.3    Cao, Y.Q.4
  • 196
    • 84878932647 scopus 로고    scopus 로고
    • Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell
    • Sun J, Li W, Li Y, et al. (2013). Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell. Biores Technol 142: 407-14
    • (2013) Biores Technol , vol.142 , pp. 407-414
    • Sun, J.1    Li, W.2    Li, Y.3
  • 197
    • 77954815756 scopus 로고    scopus 로고
    • Hydrogen production from propionate in a biocatalyzed system with in-situ utilization of the electricity generated from a microbial fuel cell
    • Sun M, Mu ZX, Sheng GP, et al. (2010). Hydrogen production from propionate in a biocatalyzed system with in-situ utilization of the electricity generated from a microbial fuel cell. Int J Biodeterioration Biodegrad 64: 378-82
    • (2010) Int J Biodeterioration Biodegrad , vol.64 , pp. 378-382
    • Sun, M.1    Mu, Z.X.2    Sheng, G.P.3
  • 198
    • 70350759941 scopus 로고    scopus 로고
    • Biological chromium(VI) reduction in the cathode of a microbial fuel cell
    • Tandukar M, Huber SJ, Onodera T, Pavlostathis SG. (2009). Biological Chromium(VI) Reduction in the Cathode of a Microbial Fuel Cell. Env Sci Technol 43: 8159-65
    • (2009) Env Sci Technol , vol.43 , pp. 8159-8165
    • Tandukar, M.1    Huber, S.J.2    Onodera, T.3    Pavlostathis, S.G.4
  • 199
    • 84879087901 scopus 로고    scopus 로고
    • Coproduction of acetic acid and electricity by application of microbial fuel cell technology to vinegar fermentation
    • Tanino T, Nara Y, Tsujiguchi T, Ohshima T. (2013). Coproduction of acetic acid and electricity by application of microbial fuel cell technology to vinegar fermentation. J Biosci Bioeng 116: 219-23
    • (2013) J Biosci Bioeng , vol.116 , pp. 219-223
    • Tanino, T.1    Nara, Y.2    Tsujiguchi, T.3    Ohshima, T.4
  • 200
    • 44649101939 scopus 로고    scopus 로고
    • Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode
    • Tartakovsky B, Manuel MF, Neburchilov V, et al. (2008). Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode. J Power Sources 182: 291-7
    • (2008) J Power Sources , vol.182 , pp. 291-297
    • Tartakovsky, B.1    Manuel, M.F.2    Neburchilov, V.3
  • 202
    • 84959438884 scopus 로고    scopus 로고
    • Musk goes for methane-burning resusable rockets as step to colonise Mars
    • 2012-11-20 last accessed 16 August
    • Todd D. Musk goes for methane-burning resusable rockets as step to colonise Mars. Flight Global Hyperbola. 2012-11-20. http://www.flightglobal.com/blogs/hyperbola/2012/11/musk-goes-for-methane-burning/ [last accessed 16 August 2013
    • (2013) Flight Global Hyperbola
    • Todd, D.1
  • 203
    • 45849138532 scopus 로고    scopus 로고
    • Microbial fuel cell technology for measurement of microbial respiration of lactate as an example of bioremediation amendment
    • Tront JM, Fortner JD, Plotze M, et al. (2008a). Microbial fuel cell technology for measurement of microbial respiration of lactate as an example of bioremediation amendment. Biotechnol Lett 30: 1385-90
    • (2008) Biotechnol Lett , vol.30 , pp. 1385-1390
    • Tront, J.M.1    Fortner, J.D.2    Plotze, M.3
  • 204
    • 53049093437 scopus 로고    scopus 로고
    • Microbial fuel cell biosensor for in situ assessment of microbial activity
    • Tront JM, Fortner JD, Plotze M, et al. (2008b). Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens Bioelectron 24: 586-90
    • (2008) Biosens Bioelectron , vol.24 , pp. 586-590
    • Tront, J.M.1    Fortner, J.D.2    Plotze, M.3
  • 205
    • 79952534860 scopus 로고    scopus 로고
    • Factors affecting current production in microbial fuel cells using different industrial wastewaters
    • Velasquez-Orta SB, Head IM, Curtis TP, Scott K (2011). Factors affecting current production in microbial fuel cells using different industrial wastewaters. Biores Technol 102: 5105-12
    • (2011) Biores Technol , vol.102 , pp. 5105-5112
    • Velasquez-Orta, S.B.1    Head, I.M.2    Curtis, T.P.3    Scott, K.4
  • 206
    • 79957834448 scopus 로고    scopus 로고
    • Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: Influence of electrode assembly and buffering capacity
    • Venkata Mohan S, Chandrasekhar K (2011). Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: Influence of electrode assembly and buffering capacity. Biores Technol 102: 7077-85
    • (2011) Biores Technol , vol.102 , pp. 7077-7085
    • Venkata Mohan, S.1    Chandrasekhar, K.2
  • 207
    • 70450129275 scopus 로고    scopus 로고
    • Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell
    • Venkata Mohan S, Mohanakrishna G, Sarma PN. (2010a). Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell. Biores Technol 101: 970-6
    • (2010) Biores Technol , vol.101 , pp. 970-976
    • Venkata Mohan, S.1    Mohanakrishna, G.2    Sarma, P.N.3
  • 208
    • 43849083264 scopus 로고    scopus 로고
    • Harnessing of bioelectricity in microbial fuel cell (MFC) employing aerated cathode through anaerobic treatment of chemical wastewater using selectively enriched hydrogen producing mixed consortia
    • Venkata Mohan S, Mohanakrishna G, Srikanth S, Sarma PN. (2008). Harnessing of bioelectricity in microbial fuel cell (MFC) employing aerated cathode through anaerobic treatment of chemical wastewater using selectively enriched hydrogen producing mixed consortia. Fuel 87: 2667-76
    • (2008) Fuel , vol.87 , pp. 2667-2676
    • Venkata Mohan, S.1    Mohanakrishna, G.2    Srikanth, S.3    Sarma, P.N.4
  • 209
    • 77954315542 scopus 로고    scopus 로고
    • Bio catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation
    • Venkata Mohan S, Mohanakrishna G, Velvizhi G, et al. (2010b). Bio catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochem Eng J 51: 32-9
    • (2010) Biochem Eng J , vol.51 , pp. 32-39
    • Venkata Mohan, S.1    Mohanakrishna, G.2    Velvizhi, G.3
  • 210
    • 67349120260 scopus 로고    scopus 로고
    • Non-catalyzed microbial fuel cell (MFC) with open air cathode for bioelectricity generation during acidogenic wastewater treatment
    • Venkata Mohan S, Srikanth S, Sarma PN. (2009). Non-catalyzed microbial fuel cell (MFC) with open air cathode for bioelectricity generation during acidogenic wastewater treatment. Bioelectrochem 75: 130-5
    • (2009) Bioelectrochem , vol.75 , pp. 130-135
    • Venkata Mohan, S.1    Srikanth, S.2    Sarma, P.N.3
  • 211
    • 80054840953 scopus 로고    scopus 로고
    • Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: Synergistic effect of biocathode microenvironment
    • Venkata Mohan S, Srikanth S. (2011). Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: Synergistic effect of biocathode microenvironment. Biores Technol 102: 10210-20
    • (2011) Biores Technol , vol.102 , pp. 10210-10220
    • Venkata Mohan, S.1    Srikanth, S.2
  • 212
    • 77950927558 scopus 로고    scopus 로고
    • Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells
    • Virdis B, Rabaey K, Rozendal RA, Yuan Z, Kelle J. (2010). Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res 44: 2970-80
    • (2010) Water Res , vol.44 , pp. 2970-2980
    • Virdis, B.1    Rabaey, K.2    Rozendal, R.A.3    Yuan, Z.4    Kelle, J.5
  • 213
    • 61549120433 scopus 로고    scopus 로고
    • Hydrogen and methane production from swine wastewater using microbial electrolysis cells
    • Wagner RC, Regan JM, Oh SE, et al. (2009). Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res 43: 1480-8
    • (2009) Water Res , vol.43 , pp. 1480-1488
    • Wagner, R.C.1    Regan, J.M.2    Oh, S.E.3
  • 214
    • 79151470397 scopus 로고    scopus 로고
    • Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell
    • Wang A, Sun D, Cao G, et al. (2011). Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Biores Technol 102: 4137-43
    • (2011) Biores Technol , vol.102 , pp. 4137-4143
    • Wang, A.1    Sun, D.2    Cao, G.3
  • 215
    • 70350591122 scopus 로고    scopus 로고
    • Performance of a single chamber microbial fuel cell utilizing dioscorea zingiberensis c h wright wastewater
    • Wang C, Xue A, Zhao HZ, et al. (2009). Performance of a single chamber microbial fuel cell utilizing Dioscorea zingiberensis C. H. Wright wastewater. Huan Jing Ke Xue 30: 3093-8
    • (2009) Huan Jing Ke Xue , vol.30 , pp. 3093-3098
    • Wang, C.1    Xue, A.2    Zhao, H.Z.3
  • 216
    • 52449101935 scopus 로고    scopus 로고
    • Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells
    • Wang G, Huang L, Zhang Y. (2008). Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett 30: 1959-66
    • (2008) Biotechnol Lett , vol.30 , pp. 1959-1966
    • Wang, G.1    Huang, L.2    Zhang, Y.3
  • 217
    • 84883459589 scopus 로고    scopus 로고
    • Membraneless microfluidic microbial fuel cell for rapid detection of electrochemical activity of microorganism
    • Wang HY, Su JY. (2013). Membraneless microfluidic microbial fuel cell for rapid detection of electrochemical activity of microorganism. Biores Technol 145: 271-4
    • (2013) Biores Technol , vol.145 , pp. 271-274
    • Wang, H.Y.1    Su, J.Y.2
  • 218
    • 79955113680 scopus 로고    scopus 로고
    • Removing nitrate from wastewater in single and double-chamber microbial fuel cells
    • Wang J, Xia X, Chen S, et al. (2011a). Removing nitrate from wastewater in single and double-chamber microbial fuel cells. Acta Scientiae Circumstantiae 31: 254-9
    • (2011) Acta Scientiae Circumstantiae , vol.31 , pp. 254-259
    • Wang, J.1    Xia, X.2    Chen, S.3
  • 219
    • 84884208184 scopus 로고    scopus 로고
    • Electricity production from a bio-electrochemical cell for silver recovery in alkaline media
    • Wang YH, Wang BS, Pan B, et al. (2013). Electricity production from a bio-electrochemical cell for silver recovery in alkaline media. Appl Energy 112: 1337-41
    • (2013) Appl Energy , vol.112 , pp. 1337-1341
    • Wang, Y.H.1    Wang, B.S.2    Pan, B.3
  • 220
    • 58149129484 scopus 로고    scopus 로고
    • Recent developments in microbial fuel cell technologies for sustainable bioenergy
    • Watanabe K (2008). Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 106: 528-36
    • (2008) J Biosci Bioeng , vol.106 , pp. 528-536
    • Watanabe, K.1
  • 221
    • 79953330527 scopus 로고    scopus 로고
    • Electricity generation from synthetic penicillin wastewater in an air-cathode single chamber microbial fuel cell
    • Wen Q, Kong F, Zheng H, et al. (2011a). Electricity generation from synthetic penicillin wastewater in an air-cathode single chamber microbial fuel cell. Chem Eng J 168: 572-6
    • (2011) Chem Eng J , vol.168 , pp. 572-576
    • Wen, Q.1    Kong, F.2    Zheng, H.3
  • 222
    • 78650510152 scopus 로고    scopus 로고
    • Simultaneous processes of electricity generation and ceftriaxone sodium degradation in an air-cathode single chamber microbial fuel cell
    • Wen Q, Kong F, Zheng H, et al. (2011b). Simultaneous processes of electricity generation and ceftriaxone sodium degradation in an air-cathode single chamber microbial fuel cell. J Power Sources 196: 2567-72
    • (2011) J Power Sources , vol.196 , pp. 2567-2572
    • Wen, Q.1    Kong, F.2    Zheng, H.3
  • 223
    • 77950913737 scopus 로고    scopus 로고
    • Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell
    • Wen Q, Wu Y, Zhao L, et al. (2010a). Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell. J Zhejiang Univ Sci B 11: 87-93
    • (2010) J Zhejiang Univ Sci B , vol.11 , pp. 87-93
    • Wen, Q.1    Wu, Y.2    Zhao, L.3
  • 224
    • 77951258716 scopus 로고    scopus 로고
    • Production of electricity from the treatment of continuous brewery wastewater using a microbial fuel cell
    • Wen Q, Wu Y, Zhao L, Sun Q. (2010b). Production of electricity from the treatment of continuous brewery wastewater using a microbial fuel cell. Fuel 89: 1381-5
    • (2010) Fuel , vol.89 , pp. 1381-1385
    • Wen, Q.1    Wu, Y.2    Zhao, L.3    Sun, Q.4
  • 226
    • 0034272630 scopus 로고    scopus 로고
    • Gastrobots - Benefits and challenges of microbial fuel cells in food powered robot applications
    • Wilkinson S. (2000a).Gastrobots-benefits and challenges of microbial fuel cells in food powered robot applications. Autonomous Robots 9: 99-111
    • (2000) Autonomous Robots , vol.9 , pp. 99-111
    • Wilkinson, S.1
  • 228
    • 0343486190 scopus 로고    scopus 로고
    • Accrued but novel carrot powered Gastrobot for middle or high school demonstrations
    • Santa Barbara, California Oct
    • Wilkinson S. (1999). Accrued but novel carrot powered Gastrobot for middle or high school demonstrations. Proceedings of 7th IASTED International Conference on Robotics and Applications. Santa Barbara, CaliforniaOct 28-30: 347-51
    • (1999) Proceedings of 7th IASTED International Conference on Robotics and Applications , vol.2830 , pp. 347-351
    • Wilkinson, S.1
  • 229
    • 75349109600 scopus 로고    scopus 로고
    • Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation
    • Williams KH, Nevin KP, Franks A, et al. (2010b). Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation. Environ Sci Technol 44: 47-54
    • (2010) Environ Sci Technol , vol.44 , pp. 47-54
    • Williams, K.H.1    Nevin, K.P.2    Franks, A.3
  • 230
    • 84861638192 scopus 로고    scopus 로고
    • Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer
    • Williams KH, N'Guessan AL, Druhan J, et al. (2010a). Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer. J Geophys Res Biogeosci 115: 1-10
    • (2010) J Geophys Res Biogeosci , vol.115 , pp. 1-10
    • Williams, K.H.1    N'Guessan, A.L.2    Druhan, J.3
  • 231
    • 84876327019 scopus 로고    scopus 로고
    • Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell
    • Xiao B, Yang F, Liu J. (2013). Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell. J Hazard Mater 254-255: 57-63
    • (2013) J Hazard Mater , vol.254-255 , pp. 57-63
    • Xiao, B.1    Yang, F.2    Liu, J.3
  • 232
    • 84883410204 scopus 로고    scopus 로고
    • Arsenite removal from aqueous solution by a microbial fuel cell-zerovalent iron hybrid process
    • Xue A, Shen ZZ, Zhao B, Zhao HZ. (2013). Arsenite removal from aqueous solution by a microbial fuel cell-zerovalent iron hybrid process. J Hazard Mat 261: 621-7
    • (2013) J Hazard Mat , vol.261 , pp. 621-627
    • Xue, A.1    Shen, Z.Z.2    Zhao, B.3    Zhao, H.Z.4
  • 233
    • 84858076037 scopus 로고    scopus 로고
    • Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode
    • Yan H, Saito T, Regan JM. (2012). Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode. Water Res 46: 2215-24
    • (2012) Water Res , vol.46 , pp. 2215-2224
    • Yan, H.1    Saito, T.2    Regan, J.M.3
  • 234
    • 83955161085 scopus 로고    scopus 로고
    • Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide
    • Yan Z, Song N, Cai H, et al. (2010). Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide. J Hazard Mater 199: 217-25
    • (2010) J Hazard Mater , vol.199 , pp. 217-225
    • Yan, Z.1    Song, N.2    Cai, H.3
  • 235
    • 65449132439 scopus 로고    scopus 로고
    • Electricity generation using high concentration terephthalic acid solution by microbial fuel cell
    • Ye YJ, Song TS, Xu Y, et al. (2009). Electricity generation using high concentration terephthalic acid solution by microbial fuel cell. Huan Jing Ke Xue 30: 1221-6
    • (2009) Huan Jing Ke Xue , vol.30 , pp. 1221-1226
    • Ye, Y.J.1    Song, T.S.2    Xu, Y.3
  • 236
    • 79952415579 scopus 로고    scopus 로고
    • Characterization of microbial fuel cells enriched using Cr(VI)-containing sludge
    • Yeon RE, Kim M, Lee SJ. (2011). Characterization of microbial fuel cells enriched using Cr(VI)-containing sludge. J Microbiol Biotechnol 21: 187-91
    • (2011) J Microbiol Biotechnol , vol.21 , pp. 187-191
    • Yeon, R.E.1    Kim, M.2    Lee, S.J.3
  • 237
    • 77955350473 scopus 로고    scopus 로고
    • Development of microbial fuel cell with anoxic/oxic design for treatment of saline seafood wastewater and biological electricity generation
    • You SJ, Zhang JN, Yuan YX, et al. (2010). Development of microbial fuel cell with anoxic/oxic design for treatment of saline seafood wastewater and biological electricity generation. J Chem Technol Biotechnol 85: 1077-83
    • (2010) J Chem Technol Biotechnol , vol.85 , pp. 1077-1083
    • You, S.J.1    Zhang, J.N.2    Yuan, Y.X.3
  • 238
    • 33751192265 scopus 로고    scopus 로고
    • Sustainable approach for leachate treatment: Electricity generation in microbial fuel cell
    • You SJ, Zhao QL, Jiang JQ, et al. (2006). Sustainable approach for leachate treatment: electricity generation in microbial fuel cell. J Env Sci Health A: Toxic/Hazard Subs Env Eng 41: 2721-34
    • (2006) J Env Sci Health A: Toxic/Hazard Subs Env Eng , vol.41 , pp. 2721-2734
    • You, S.J.1    Zhao, Q.L.2    Jiang, J.Q.3
  • 239
    • 0019772275 scopus 로고
    • Alterations in the BOD procedure for the 15th edition of standard methods for the examination of water and wastewater
    • Young JC, Mcdermott GN, Jenkins D. (1981). Alterations in the BOD procedure for the 15th edition of standard methods for the examination of water and wastewater. J Water Pollut Control Fed 53: 1253-9
    • (1981) J Water Pollut Control Fed , vol.53 , pp. 1253-1259
    • Young, J.C.1    Mcdermott, G.N.2    Jenkins, D.3
  • 240
    • 78650560104 scopus 로고    scopus 로고
    • Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques
    • Yu CP, Liang Z, Das A, Hu Z. (2011). Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques. Water Res 45: 1157-64
    • (2011) Water Res , vol.45 , pp. 1157-1164
    • Yu, C.P.1    Liang, Z.2    Das, A.3    Hu, Z.4
  • 241
    • 77956885291 scopus 로고    scopus 로고
    • A new approach to in situ sediment remediation based on air-cathode microbial fuel cells
    • Yuan Y, Zhou S, Zhuang L. (2010). A new approach to in situ sediment remediation based on air-cathode microbial fuel cells. J Soil Sediment 10: 1427-33
    • (2010) J Soil Sediment , vol.10 , pp. 1427-1433
    • Yuan, Y.1    Zhou, S.2    Zhuang, L.3
  • 242
    • 84863014848 scopus 로고    scopus 로고
    • Nutrient removal and energy production in a urine treatment process using magnesium ammonium phosphate precipitation and a microbial fuel cell technique
    • Zang GL, Sheng GP, Li WW, et al. (2012). Nutrient removal and energy production in a urine treatment process using magnesium ammonium phosphate precipitation and a microbial fuel cell technique. Phys Chem Chem Phys 14: 1978-84
    • (2012) Phys Chem Chem Phys , vol.14 , pp. 1978-1984
    • Zang, G.L.1    Sheng, G.P.2    Li, W.W.3
  • 243
    • 68649121076 scopus 로고    scopus 로고
    • A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation
    • Zhang B, Zhao H, Zhou S, et al. (2009a). A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Biores Technol 100: 5687-93
    • (2009) Biores Technol , vol.100 , pp. 5687-5693
    • Zhang, B.1    Zhao, H.2    Zhou, S.3
  • 244
    • 80054812366 scopus 로고    scopus 로고
    • Simultaneous decolorization and degradation of azo dye with electricity generation in microbial fuel cells
    • Hohhot; July 15-17
    • Zhang B, Zhu Y. (2011). Simultaneous decolorization and degradation of azo dye with electricity generation in microbial fuel cells. Mechanic Automation and Control Engineering (MACE), Second International Conference. Hohhot; July 15-17: 2570-3
    • (2011) Mechanic Automation and Control Engineering (MACE), Second International Conference , pp. 2570-2573
    • Zhang, B.1    Zhu, Y.2
  • 245
    • 80051898589 scopus 로고    scopus 로고
    • Microbial fuel cells operated with two respective electron acceptors for energy and metal recovery during treatment of vanadium containing wastewater
    • Zhang B. (2011). Microbial fuel cells operated with two respective electron acceptors for energy and metal recovery during treatment of vanadium containing wastewater. ACS National Meeting Book of Abstracts March 30: 1-3
    • (2011) ACS National Meeting Book of Abstracts March , vol.30 , pp. 1-3
    • Zhang, B.1
  • 246
    • 77649237183 scopus 로고    scopus 로고
    • Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment
    • Zhang BG, Zhou SG, Zhao HZ, et al. (2010b). Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment. Bioproc Biosys Eng 33: 187-94
    • (2010) Bioproc Biosys Eng , vol.33 , pp. 187-194
    • Zhang, B.G.1    Zhou, S.G.2    Zhao, H.Z.3
  • 247
    • 70350536776 scopus 로고    scopus 로고
    • Pyridine degradation in the microbial fuel cells
    • Zhang C, Li M, Liu G, et al. (2009b). Pyridine degradation in the microbial fuel cells. J Hazard Mat 172: 465-71
    • (2009) J Hazard Mat , vol.172 , pp. 465-471
    • Zhang, C.1    Li, M.2    Liu, G.3
  • 248
    • 74449089677 scopus 로고    scopus 로고
    • Electricity production from and biodegradation of quinoline in the microbial fuel cell
    • Zhang C, Liu G, Zhang R, Luo H. (2010a). Electricity production from and biodegradation of quinoline in the microbial fuel cell. J Env Sci Health A 45: 250-6
    • (2010) J Env Sci Health A , vol.45 , pp. 250-256
    • Zhang, C.1    Liu, G.2    Zhang, R.3    Luo, H.4
  • 249
    • 84862732506 scopus 로고    scopus 로고
    • Characterization of strain Pseudomonas sp. Q1 in microbial fuel cell for treatment of quinoline-contaminated water
    • Zhang CP, Chen SS, Liu GL, et al. (2012a). Characterization of strain Pseudomonas sp. Q1 in microbial fuel cell for treatment of quinoline-contaminated water. Pedosphere 22: 528-35
    • (2012) Pedosphere , vol.22 , pp. 528-535
    • Zhang, C.P.1    Chen, S.S.2    Liu, G.L.3
  • 250
    • 84866378058 scopus 로고    scopus 로고
    • Bioelectrochemical recovery of ammonia-copper(II) complexes from wastewater using a dual chamber microbial fuel cell
    • Zhang LJ, Tao HC, Wei XY, et al. (2012b). Bioelectrochemical recovery of ammonia-copper(II) complexes from wastewater using a dual chamber microbial fuel cell. Chemosphere 89: 1177-82
    • (2012) Chemosphere , vol.89 , pp. 1177-1182
    • Zhang, L.J.1    Tao, H.C.2    Wei, X.Y.3
  • 251
    • 84881519371 scopus 로고    scopus 로고
    • Removal of ammonia nitrogen from wastewater using an aerobic cathode microbial fuel cell
    • Zhang X, Zhu F, Chen L, et al. (2013b). Removal of ammonia nitrogen from wastewater using an aerobic cathode microbial fuel cell. Biores Technol 146: 161-8
    • (2013) Biores Technol , vol.146 , pp. 161-168
    • Zhang, X.1    Zhu, F.2    Chen, L.3
  • 252
    • 84886942359 scopus 로고    scopus 로고
    • Electricity production from molasses wastewater in two-chamber microbial fuel cell
    • Zhang YJ, Sun CY, Liu XY, et al. (2013a). Electricity production from molasses wastewater in two-chamber microbial fuel cell. Water Sci Technol 68: 494-8
    • (2013) Water Sci Technol , vol.68 , pp. 494-498
    • Zhang, Y.J.1    Sun, C.Y.2    Liu, X.Y.3
  • 253
    • 68949182877 scopus 로고    scopus 로고
    • Techniques for the study and development of microbial fuel cells: An electrochemical perspective
    • Zhao F, Slade RCT, Varcoe JR. (2009a). Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chem Soc Rev 38: 1926-39
    • (2009) Chem Soc Rev , vol.38 , pp. 1926-1939
    • Zhao, F.1    Slade, R.C.T.2    Varcoe, J.R.3
  • 254
    • 71249123142 scopus 로고    scopus 로고
    • Cr(VI)-containing wastewater treatment coupled with electricity generation using microbial fuel cell
    • Zhao LX, Kong FY, Wang X, et al. (2009b). Cr(VI)-containing wastewater treatment coupled with electricity generation using microbial fuel cell. Modern Chem Ind 29: 37-9
    • (2009) Modern Chem Ind , vol.29 , pp. 37-39
    • Zhao, L.X.1    Kong, F.Y.2    Wang, X.3
  • 255
    • 77955835287 scopus 로고    scopus 로고
    • Simultaneous treatment of sludge and generation of electricity with a microbial fuel cell
    • Zhao QL, Jiang JQ, Wang K, Zhang LW. (2010). Simultaneous treatment of sludge and generation of electricity with a microbial fuel cell. J Harbin Eng Univ 31: 780-5
    • (2010) J Harbin Eng Univ , vol.31 , pp. 780-785
    • Zhao, Q.L.1    Jiang, J.Q.2    Wang, K.3    Zhang, L.W.4
  • 256
    • 79751498897 scopus 로고    scopus 로고
    • Electricity generation from molasses wastewater by an anaerobic baffled stacking microbial fuel cell
    • Zhong C, Zhang B, Kong L, et al. (2011). Electricity generation from molasses wastewater by an anaerobic baffled stacking microbial fuel cell. J Chem Technol Biotechnol 86: 406-13
    • (2011) J Chem Technol Biotechnol , vol.86 , pp. 406-413
    • Zhong, C.1    Zhang, B.2    Kong, L.3
  • 257
    • 58749093893 scopus 로고    scopus 로고
    • Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell
    • Zhu X, Ni J. (2009). Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochem Comm 11: 274-7
    • (2009) Electrochem Comm , vol.11 , pp. 274-277
    • Zhu, X.1    Ni, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.