메뉴 건너뛰기




Volumn 51, Issue 3, 2010, Pages 132-139

The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge

Author keywords

Methanogenesis; MFC; Organic load; PH; Temperature

Indexed keywords

CATHODES; ELECTRIC POWER GENERATION; METHANE; PH; TEMPERATURE;

EID: 77955425014     PISSN: 1369703X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.bej.2010.06.006     Document Type: Article
Times cited : (134)

References (32)
  • 1
    • 36349027640 scopus 로고    scopus 로고
    • Electricity production from twelve monosaccharides using microbial fuel cells
    • Catal T., Li K., Bermek H., Liu H. Electricity production from twelve monosaccharides using microbial fuel cells. J. Power Sources 2008, 175:196-200.
    • (2008) J. Power Sources , vol.175 , pp. 196-200
    • Catal, T.1    Li, K.2    Bermek, H.3    Liu, H.4
  • 2
    • 22344440626 scopus 로고    scopus 로고
    • Electricity generation from artificial wastewater using an upflow microbial fuel cell
    • He Z., Minteer S.D., Angenent L.T. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol. 2005, 39:5262-5267.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 5262-5267
    • He, Z.1    Minteer, S.D.2    Angenent, L.T.3
  • 3
    • 7444235902 scopus 로고    scopus 로고
    • Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell
    • Min B., Logan B.E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 2004, 38:5809-5814.
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 5809-5814
    • Min, B.1    Logan, B.E.2
  • 4
    • 19444374840 scopus 로고    scopus 로고
    • Continuous microbial fuel cells convert carbohydrates to electricity
    • Rabaey K., Ossieur W., Verhaege M., Verstraete W. Continuous microbial fuel cells convert carbohydrates to electricity. Wat. Sci. Technol. 2005, 52:515-523.
    • (2005) Wat. Sci. Technol. , vol.52 , pp. 515-523
    • Rabaey, K.1    Ossieur, W.2    Verhaege, M.3    Verstraete, W.4
  • 5
    • 34547626276 scopus 로고    scopus 로고
    • Electricity generation from cellulose by rumen microorganisms in microbial fuel cells
    • Rismani-Yazdi H., Christy A.D., Dehority B.A., Morrison M., et al. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol. Bioeng. 2007, 97:1398-1407.
    • (2007) Biotechnol. Bioeng. , vol.97 , pp. 1398-1407
    • Rismani-Yazdi, H.1    Christy, A.D.2    Dehority, B.A.3    Morrison, M.4
  • 6
    • 12344306121 scopus 로고    scopus 로고
    • Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell
    • Liu H., Cheng S., Logan B.E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol. 2005, 39:658-662.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 658-662
    • Liu, H.1    Cheng, S.2    Logan, B.E.3
  • 7
    • 0037337606 scopus 로고    scopus 로고
    • Electricity production by Geobacter sulfurreducens attached to electrodes
    • Bond D.R., Lovley D.R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 2003, 69:1548-1555.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 1548-1555
    • Bond, D.R.1    Lovley, D.R.2
  • 9
    • 21344461500 scopus 로고    scopus 로고
    • Extracellular electron transfer via microbial nanowires
    • Reguera G., McCarthy K.D., Mehta T., Nicoll J.S., et al. Extracellular electron transfer via microbial nanowires. Nat. Biotechnol. 2005, 435:1098-1101.
    • (2005) Nat. Biotechnol. , vol.435 , pp. 1098-1101
    • Reguera, G.1    McCarthy, K.D.2    Mehta, T.3    Nicoll, J.S.4
  • 10
    • 34447523820 scopus 로고    scopus 로고
    • Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
    • Schroder U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 2007, 9:2619-2629.
    • (2007) Phys. Chem. Chem. Phys. , vol.9 , pp. 2619-2629
    • Schroder, U.1
  • 11
    • 32344453522 scopus 로고    scopus 로고
    • A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors
    • Tartakovsky B., Guiot S.R. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors. Biotechnol. Prog. 2006, 22:241-246.
    • (2006) Biotechnol. Prog. , vol.22 , pp. 241-246
    • Tartakovsky, B.1    Guiot, S.R.2
  • 12
    • 34548355000 scopus 로고    scopus 로고
    • Effects of bio- and abio-factors on electricity production in a mediatorless microbial fuel cell
    • Liu Z.-D., Li H.-R. Effects of bio- and abio-factors on electricity production in a mediatorless microbial fuel cell. Biochem. Eng. J. 2007, 36:209-214.
    • (2007) Biochem. Eng. J. , vol.36 , pp. 209-214
    • Liu, Z.-D.1    Li, H.-R.2
  • 13
    • 34548451055 scopus 로고    scopus 로고
    • Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration
    • Fan Y., Hu H., Liu H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J. Power Sources 2007, 171:348-354.
    • (2007) J. Power Sources , vol.171 , pp. 348-354
    • Fan, Y.1    Hu, H.2    Liu, H.3
  • 14
    • 33645889973 scopus 로고    scopus 로고
    • Harvesting energy from the marine sediment-water interface. II. Kinetic activity of anode materials
    • Lowy D.A., Tender L.M., Zeikus J.G., Park D.H., Lovley D.R. Harvesting energy from the marine sediment-water interface. II. Kinetic activity of anode materials. Biosens. Bioelectron. 2006, 21:2058-2063.
    • (2006) Biosens. Bioelectron. , vol.21 , pp. 2058-2063
    • Lowy, D.A.1    Tender, L.M.2    Zeikus, J.G.3    Park, D.H.4    Lovley, D.R.5
  • 15
    • 40749115223 scopus 로고    scopus 로고
    • Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates
    • Lee H.-S., Parameswaran P., Kato-Marcus A., Torres C.I., Rittmann B.E. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Wat. Res. 2008, 42:1501-1510.
    • (2008) Wat. Res. , vol.42 , pp. 1501-1510
    • Lee, H.-S.1    Parameswaran, P.2    Kato-Marcus, A.3    Torres, C.I.4    Rittmann, B.E.5
  • 17
    • 50349093076 scopus 로고    scopus 로고
    • Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes
    • Aelterman P., Versichele M., Marzorati M., Boon N., Verstraete W. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour. Technol. 2008, 99:8895-8902.
    • (2008) Bioresour. Technol. , vol.99 , pp. 8895-8902
    • Aelterman, P.1    Versichele, M.2    Marzorati, M.3    Boon, N.4    Verstraete, W.5
  • 18
    • 40449113813 scopus 로고    scopus 로고
    • Methanogenesis versus electrogenesis: morphological and phylogenetic comparisons of microbial communities
    • Ishii S., Hotta Y., Watanabe K. Methanogenesis versus electrogenesis: morphological and phylogenetic comparisons of microbial communities. Biosci. Biotechnol. Biochem. 2008, 72:286-294.
    • (2008) Biosci. Biotechnol. Biochem. , vol.72 , pp. 286-294
    • Ishii, S.1    Hotta, Y.2    Watanabe, K.3
  • 19
    • 0012957636 scopus 로고    scopus 로고
    • Operational parameters affecting the performance of a mediator-less microbial fuel cell
    • Gil G.-G., Chang I.-S., Kim B.H., Kim M., et al. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 2003, 18:327-334.
    • (2003) Biosens. Bioelectron. , vol.18 , pp. 327-334
    • Gil, G.-G.1    Chang, I.-S.2    Kim, B.H.3    Kim, M.4
  • 20
    • 26044444072 scopus 로고    scopus 로고
    • Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation
    • Moon H., Chang I.-S., Jang J.K., Kim B.H. Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochem. Eng. J. 2005, 27:59-65.
    • (2005) Biochem. Eng. J. , vol.27 , pp. 59-65
    • Moon, H.1    Chang, I.-S.2    Jang, J.K.3    Kim, B.H.4
  • 21
    • 54549105196 scopus 로고    scopus 로고
    • Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell
    • He Z., Huang Y., Manohar A.K., Mansfeld F. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry 2008, 74:78-82.
    • (2008) Bioelectrochemistry , vol.74 , pp. 78-82
    • He, Z.1    Huang, Y.2    Manohar, A.K.3    Mansfeld, F.4
  • 22
    • 53649105860 scopus 로고    scopus 로고
    • Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration
    • Jadhav G.S., Ghangrekar M.M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour. Technol. 2009, 100:717-723.
    • (2009) Bioresour. Technol. , vol.100 , pp. 717-723
    • Jadhav, G.S.1    Ghangrekar, M.M.2
  • 23
    • 77955924892 scopus 로고    scopus 로고
    • Selective inhibition of methanogens for the improvement of biohydrogen in microbial electrolysis cells
    • in press
    • Chae K.J., Choi M.J., Kim K.Y., Ajayi F.F., et al. Selective inhibition of methanogens for the improvement of biohydrogen in microbial electrolysis cells. Int. J. Hydrogen Energy 2010, in press.
    • (2010) Int. J. Hydrogen Energy
    • Chae, K.J.1    Choi, M.J.2    Kim, K.Y.3    Ajayi, F.F.4
  • 24
    • 22344440310 scopus 로고    scopus 로고
    • Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration
    • Liu H., Cheng S., Logan B. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 2005, 39:5488-5493.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 5488-5493
    • Liu, H.1    Cheng, S.2    Logan, B.3
  • 25
    • 3242707506 scopus 로고    scopus 로고
    • Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane
    • Liu H., Logan B.E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 2004, 38:4040-4046.
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 4040-4046
    • Liu, H.1    Logan, B.E.2
  • 26
    • 65549090649 scopus 로고    scopus 로고
    • PEMFC electrode preparation by electrospray: optimization of catalyst load and ionomer content
    • Chaparroa A.M., Gallardo B., Folgado M.A., Martín A.J., Daza L. PEMFC electrode preparation by electrospray: optimization of catalyst load and ionomer content. Catal. Today 2009, 143:237-241.
    • (2009) Catal. Today , vol.143 , pp. 237-241
    • Chaparroa, A.M.1    Gallardo, B.2    Folgado, M.A.3    Martín, A.J.4    Daza, L.5
  • 27
    • 58249144863 scopus 로고    scopus 로고
    • The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions
    • Manohar A.K., Mansfeld F. The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochim. Acta 2009, 54:1664-1670.
    • (2009) Electrochim. Acta , vol.54 , pp. 1664-1670
    • Manohar, A.K.1    Mansfeld, F.2
  • 28
    • 62949091234 scopus 로고    scopus 로고
    • Methanogenesis in membraneless microbial electrolysis cells
    • Clauwaert P., Verstraete W. Methanogenesis in membraneless microbial electrolysis cells. Appl. Microbiol. Biotechnol. 2008, 82:829-836.
    • (2008) Appl. Microbiol. Biotechnol. , vol.82 , pp. 829-836
    • Clauwaert, P.1    Verstraete, W.2
  • 29
    • 40249098289 scopus 로고    scopus 로고
    • Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment
    • Mohan S.V., Mohanakrishna G., Reddy B.P., Saravanan R., Sarma P.N. Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment. Biochem. Eng. J. 2008, 39:121-130.
    • (2008) Biochem. Eng. J. , vol.39 , pp. 121-130
    • Mohan, S.V.1    Mohanakrishna, G.2    Reddy, B.P.3    Saravanan, R.4    Sarma, P.N.5
  • 31
    • 77955419787 scopus 로고    scopus 로고
    • Comparison of real-time methods for maximizing power output in microbial fuel cells
    • in press
    • Woodward L., Perrier M., Srinivasan B., Pinto R.P., Tartakovsky B. Comparison of real-time methods for maximizing power output in microbial fuel cells. AIChE J. 2010, in press.
    • (2010) AIChE J.
    • Woodward, L.1    Perrier, M.2    Srinivasan, B.3    Pinto, R.P.4    Tartakovsky, B.5
  • 32
    • 67651095619 scopus 로고    scopus 로고
    • Maximizing power production in a stack of microbial fuel cells using multiunit optimization method
    • Woodward L., Tartakovsky B., Perrier M., Srinivasan B. Maximizing power production in a stack of microbial fuel cells using multiunit optimization method. Biotechnol. Prog. 2009, 25:676-682.
    • (2009) Biotechnol. Prog. , vol.25 , pp. 676-682
    • Woodward, L.1    Tartakovsky, B.2    Perrier, M.3    Srinivasan, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.