메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1427-1434

The truth about cats and dogs

Author keywords

[No Author keywords available]

Indexed keywords

BAG OF WORDS; DEFORMABLE OBJECT; FLEXIBLE OBJECT; OBJECT CATEGORIES; OBJECT CLASS; OBJECT DETECTORS; SPECIFIC INFORMATION; STATE-OF-THE-ART PERFORMANCE; TEMPLATE-BASED; WHOLE-BODY;

EID: 84856635163     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2011.6126398     Document Type: Conference Paper
Times cited : (99)

References (40)
  • 1
    • 51949087368 scopus 로고    scopus 로고
    • Connected segmentation tree-A joint representation of region layout and hierarchy
    • N. Ahuja and S. Todorovic. Connected segmentation tree-A joint representation of region layout and hierarchy. In Proc. CVPR, 2008.
    • (2008) Proc. CVPR
    • Ahuja, N.1    Todorovic, S.2
  • 2
    • 0042004575 scopus 로고    scopus 로고
    • Class-specific, top-down segmentation
    • E. Borenstein and S. Ullman. Class-specific, top-down segmentation. In Proc. ECCV, pages 109-124, 2002.
    • (2002) Proc. ECCV , pp. 109-124
    • Borenstein, E.1    Ullman, S.2
  • 3
    • 33645006120 scopus 로고    scopus 로고
    • Learning to segment
    • E. Borenstein and S. Ullman. Learning to segment. In Proc. ECCV, volume 3, pages 315-328, 2004.
    • (2004) Proc. ECCV , vol.3 , pp. 315-328
    • Borenstein, E.1    Ullman, S.2
  • 4
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3D human pose annotations
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3D human pose annotations. In Proc. ICCV, 2009.
    • (2009) Proc. ICCV
    • Bourdev, L.1    Malik, J.2
  • 5
    • 0035509961 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Y. Boykov, H. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. PAMI, 23(11), 2001.
    • (2001) PAMI , vol.23 , pp. 11
    • Boykov, Y.1    Veksler, H.2    Zabih, R.3
  • 6
    • 33645146449 scopus 로고    scopus 로고
    • Histogram of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histogram of Oriented Gradients for Human Detection. In Proc. CVPR, volume 2, pages 886-893, 2005.
    • (2005) Proc. CVPR , vol.2 , pp. 886-893
    • Dalal, N.1    Triggs, B.2
  • 7
    • 33845580709 scopus 로고    scopus 로고
    • Supervised learning of edges and object boundaries
    • P. Dollár, Z. Tu, and S. Belongie. Supervised learning of edges and object boundaries. In Proc. CVPR, 2006.
    • (2006) Proc. CVPR
    • Dollár, P.1    Tu, Z.2    Belongie, S.3
  • 10
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition. IJCV, 61(1), 2005.
    • (2005) IJCV , vol.61 , pp. 1
    • Felzenszwalb, P.1    Huttenlocher, D.2
  • 16
    • 77953205895 scopus 로고    scopus 로고
    • Decomposing a scene into geometric and semantically consistent regions
    • S. Gould, R. Fulton, and D. Koller. Decomposing a scene into geometric and semantically consistent regions. In Proc. ICCV, 2009.
    • (2009) Proc. ICCV
    • Gould, S.1    Fulton, R.2    Koller, D.3
  • 19
    • 70449582001 scopus 로고    scopus 로고
    • Learning spatial context: Using stuff to find things
    • G. Heitz and D. Koller. Learning spatial context: Using stuff to find things. In Proc. ECCV, 2008.
    • (2008) Proc. ECCV
    • Heitz, G.1    Koller, D.2
  • 20
    • 84856629283 scopus 로고    scopus 로고
    • 3D layout CRF for multi-view object class recognition and segmentation
    • D. Hoeim, C. Rother, and J. M. Winn. 3D layout CRF for multi-view object class recognition and segmentation. In Proc. CVPR, 2008.
    • (2008) Proc. CVPR
    • Hoeim, D.1    Rother, C.2    Winn, J.M.3
  • 23
    • 78149320790 scopus 로고    scopus 로고
    • Efficient subwindow search: A branch and bound framework for object localization
    • C. H. Lampert, M. B. Blaschko, and T. Hofmann. Efficient subwindow search: A branch and bound framework for object localization. IEEE PAMI, 2009.
    • (2009) IEEE PAMI
    • Lampert, C.H.1    Blaschko, M.B.2    Hofmann, T.3
  • 24
    • 84898025694 scopus 로고    scopus 로고
    • Improvements of object detection using boosted histograms
    • I. Laptev. Improvements of object detection using boosted histograms. In Proc. BMVC, 2006.
    • (2006) Proc. BMVC
    • Laptev, I.1
  • 25
    • 51949086303 scopus 로고    scopus 로고
    • Combining appearance models and Markov random fields for category level object segmentation
    • D. Larlus and F. Jurie. Combining appearance models and Markov random fields for category level object segmentation. In Proc. CVPR, 2008.
    • (2008) Proc. CVPR
    • Larlus, D.1    Jurie, F.2
  • 26
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In Proc. CVPR, 2006.
    • (2006) Proc. CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 28
    • 34548799026 scopus 로고    scopus 로고
    • Learning to combine bottom-up and top-down segmentation
    • A. Levin and Y. Weiss. Learning to combine bottom-up and top-down segmentation. In Proc. ECCV, 2006.
    • (2006) Proc. ECCV
    • Levin, A.1    Weiss, Y.2
  • 29
    • 77955990360 scopus 로고    scopus 로고
    • Object recognition as ranking holistic figure-ground hypotheses
    • F. Li, J. Carreira, and C. Sminchisescu. Object recognition as ranking holistic figure-ground hypotheses. In Proc. CVPR, 2010.
    • (2010) Proc. CVPR
    • Li, F.1    Carreira, J.2    Sminchisescu, C.3
  • 30
    • 27244439546 scopus 로고    scopus 로고
    • Learning to detect natural image boundaries using local brightness, color, and texture cues
    • D. R. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI, 1, 2004.
    • (2004) PAMI , vol.1
    • Martin, D.R.1    Fowlkes, C.2    Malik, J.3
  • 31
    • 0029669420 scopus 로고    scopus 로고
    • A comparative study of texture measures with classification based on feature distributions
    • T. Ojala, M. Pietikäinen, and D. Harwood. A comparative study of texture measures with classification based on feature distributions. Pattern Recognition, 29, 1996.
    • (1996) Pattern Recognition , vol.29
    • Ojala, T.1    Pietikäinen, M.2    Harwood, D.3
  • 34
    • 34948910140 scopus 로고    scopus 로고
    • Using segmentation to verify object hypotheses
    • D. Ramanan. Using segmentation to verify object hypotheses. In Proc. CVPR, 2007.
    • (2007) Proc. CVPR
    • Ramanan, D.1
  • 35
    • 12844262766 scopus 로고    scopus 로고
    • Grabcut: Interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake. Grabcut: interactive foreground extraction using iterated graph cuts. Proc. ACM SIGGRAPH, 23(3):309-314, 2004.
    • (2004) Proc ACM SIGGRAPH , vol.23 , Issue.3 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 36
    • 33845596932 scopus 로고    scopus 로고
    • Using multiple segmentations to discover objects and their extent in image collections
    • B. C. Russel, A. A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman. Using multiple segmentations to discover objects and their extent in image collections. In Proc. CVPR, 2006.
    • (2006) Proc. CVPR
    • Russel, B.C.1    Efros, A.A.2    Sivic, J.3    Freeman, W.T.4    Zisserman, A.5
  • 37
    • 33845423382 scopus 로고    scopus 로고
    • Texton-Boost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi. Texton-Boost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In Proc. ECCV, 2006.
    • (2006) Proc. ECCV
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 39
    • 84863401481 scopus 로고    scopus 로고
    • Nonlinear learning using local coordinate coding
    • K. Yu, T. Zhang, and Y. Gong. Nonlinear learning using local coordinate coding. In Proc. NIPS, 2009.
    • (2009) Proc. NIPS
    • Yu, K.1    Zhang, T.2    Gong, Y.3
  • 40
    • 77955998044 scopus 로고    scopus 로고
    • Cat head detection-how to effectively exploit shape and texture features
    • W. Zhang, J. Sun, and X. Tang. Cat head detection-how to effectively exploit shape and texture features. In Proc. ECCV, 2008.
    • (2008) Proc. ECCV
    • Zhang, W.1    Sun, J.2    Tang, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.