메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 3527-3536

Metric imitation by manifold transfer for efficient vision applications

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; IMAGE RETRIEVAL; OPTICAL RESOLVING POWER;

EID: 84959201383     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298975     Document Type: Conference Paper
Times cited : (30)

References (53)
  • 1
    • 77949265725 scopus 로고    scopus 로고
    • Semi-supervised metric learning using pairwise constraints
    • M. S. Baghshah and S. B. Shouraki. Semi-supervised metric learning using pairwise constraints. In IJCAI, 2009
    • (2009) IJCAI
    • Baghshah, M.S.1    Shouraki, S.B.2
  • 2
    • 0031185845 scopus 로고    scopus 로고
    • Eigenfaces vs fisherfaces: Recognition using class specific linear projection
    • P. N. Belhumeur, J. a. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. TPAMI, 19(7):711-720, 1997
    • (1997) TPAMI , vol.19 , Issue.7 , pp. 711-720
    • Belhumeur, P.N.1    Hespanha, A.P.J.2    Kriegman, D.J.3
  • 3
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, 2001
    • (2001) NIPS
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 50649101132 scopus 로고    scopus 로고
    • Image classification using random forests and ferns
    • A. Bosch, A. Zisserman, and X. Muoz. Image classification using random forests and ferns. In ICCV, 2007
    • (2007) ICCV
    • Bosch, A.1    Zisserman, A.2    Muoz, X.3
  • 5
    • 5044219639 scopus 로고    scopus 로고
    • Superresolution through neighbor embedding
    • H. Chang, D.-Y. Yeung, and Y. Xiong. Superresolution through neighbor embedding. CVPR, 01:275-282, 2004
    • (2004) CVPR , vol.1 , pp. 275-282
    • Chang, H.1    Yeung, D.-Y.2    Xiong, Y.3
  • 6
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014
    • (2014) BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 8
    • 84898770189 scopus 로고    scopus 로고
    • Ensemble partitioning for unsupervised image categorization
    • D. Dai, M. Prasad, C. Leistner, and L. V. Gool. Ensemble partitioning for unsupervised image categorization. In ECCV, 2012
    • (2012) ECCV
    • Dai, D.1    Prasad, M.2    Leistner, C.3    Gool, L.V.4
  • 9
    • 84959234961 scopus 로고    scopus 로고
    • Jointly optimized regressors for image super-resolution
    • D. Dai, R. Timofte, and L. Van Gool. Jointly optimized regressors for image super-resolution. In Euro-graphics, 2015
    • (2015) Euro-graphics
    • Dai, D.1    Timofte, R.2    Van Gool, L.3
  • 10
    • 77956003388 scopus 로고    scopus 로고
    • Discovering scene categories by information projection and cluster sampling
    • D. Dai, T. Wu, and S. C. Zhu. Discovering scene categories by information projection and cluster sampling. In CVPR, 2010
    • (2010) CVPR
    • Dai, D.1    Wu, T.2    Zhu, S.C.3
  • 13
    • 84921971467 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image superresolution
    • C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image superresolution. In ECCV, 2014
    • (2014) ECCV
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 14
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data
    • USA
    • D. L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Nat Acad Sci USA, 100(10):5591-5596, 2003
    • (2003) Proc Nat Acad Sci , vol.100 , Issue.10 , pp. 5591-5596
    • Donoho, D.L.1    Grimes, C.2
  • 15
    • 33745118277 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In Workshop on Generative-Model Based Vision, 2004
    • (2004) Workshop on Generative-Model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 16
    • 77955655063 scopus 로고    scopus 로고
    • Semi-supervised learning in gigantic image collections
    • R. Fergus, Y. Weiss, and A. Torralba. Semi-supervised learning in gigantic image collections. In NIPS, 2009
    • (2009) NIPS
    • Fergus, R.1    Weiss, Y.2    Torralba, A.3
  • 17
    • 84898798531 scopus 로고    scopus 로고
    • Unsupervised visual domain adaptation using subspace alignment
    • B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adaptation using subspace alignment. In ICCV, 2013
    • (2013) ICCV
    • Fernando, B.1    Habrard, A.2    Sebban, M.3    Tuytelaars, T.4
  • 19
    • 50649117726 scopus 로고    scopus 로고
    • Learning globally-consistent local distance functions for shapebased image retrieval and classification
    • A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-consistent local distance functions for shapebased image retrieval and classification. In ICCV, 2007
    • (2007) ICCV
    • Frome, A.1    Singer, Y.2    Sha, F.3    Malik, J.4
  • 20
    • 84864030708 scopus 로고    scopus 로고
    • Metric learning by collapsing classes
    • A. Globerson and S. T. Roweis. Metric learning by collapsing classes. In NIPS, 2005
    • (2005) NIPS
    • Globerson, A.1    Roweis, S.T.2
  • 22
    • 80052874105 scopus 로고    scopus 로고
    • Iterative quantization: A procrustean approach to learning binary codes
    • Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to learning binary codes. In CVPR, 2011
    • (2011) CVPR
    • Gong, Y.1    Lazebnik, S.2
  • 23
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object recognition: An unsupervised approach. In ICCV, 2011
    • (2011) ICCV
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 24
    • 77953202699 scopus 로고    scopus 로고
    • Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation
    • M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In ICCV, 2009
    • (2009) ICCV
    • Guillaumin, M.1    Mensink, T.2    Verbeek, J.3    Schmid, C.4
  • 25
    • 77953178820 scopus 로고    scopus 로고
    • Is that you? Metric learning approaches for face identification
    • M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? metric learning approaches for face identification. In ICCV, 2009
    • (2009) ICCV
    • Guillaumin, M.1    Verbeek, J.2    Schmid, C.3
  • 26
  • 27
    • 70449560133 scopus 로고    scopus 로고
    • Hamming embedding and weak geometric consistency for large scale image search
    • H. Jegou, M. Douze, and C. Schmid. Hamming embedding and weak geometric consistency for large scale image search. In ECCV, 2008
    • (2008) ECCV
    • Jegou, H.1    Douze, M.2    Schmid, C.3
  • 29
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS. 2012
    • (2012) NIPS.
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 31
    • 70350618771 scopus 로고    scopus 로고
    • Fast similarity search for learned metrics
    • B. Kulis, P. Jain, and K. Grauman. Fast similarity search for learned metrics. PAMI, 31(12):2143-2157, 2009
    • (2009) PAMI , vol.31 , Issue.12 , pp. 2143-2157
    • Kulis, B.1    Jain, P.2    Grauman, K.3
  • 32
    • 80052895155 scopus 로고    scopus 로고
    • What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
    • B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In CVPR, 2011
    • (2011) CVPR
    • Kulis, B.1    Saenko, K.2    Darrell, T.3
  • 33
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, 2009
    • (2009) CVPR
    • Lampert, C.1    Nickisch, H.2    Harmeling, S.3
  • 34
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 36
    • 85162513516 scopus 로고    scopus 로고
    • Object bank: A high-level image representation for scene classification & semantic feature sparsification
    • L.-J. Li, H. Su, E. P. Xing, and F.-F. Li. Object bank: A high-level image representation for scene classification & semantic feature sparsification. In NIPS, 2010
    • (2010) NIPS
    • Li, L.-J.1    Su, H.2    Xing, E.P.3    Li, F.-F.4
  • 37
  • 38
    • 33845592987 scopus 로고    scopus 로고
    • Scalable recognition with a vocabulary tree
    • D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. In CVPR, 2006
    • (2006) CVPR
    • Nistér, D.1    Stewénius, H.2
  • 39
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. TPAMI, 24(7):971-987, 2002
    • (2002) TPAMI , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 40
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV, 42(3):145-175, 2001
    • (2001) IJCV , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 42
    • 84919771997 scopus 로고    scopus 로고
    • Learning to rank bag-of-word histograms for largescale object retrieval
    • D. Qin, Y. Chen, M. Guillaumin, and L. Van Gool. Learning to rank bag-of-word histograms for largescale object retrieval. In BMVC, 2014
    • (2014) BMVC
    • Qin, D.1    Chen, Y.2    Guillaumin, M.3    Van Gool, L.4
  • 43
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 44
    • 84904175757 scopus 로고    scopus 로고
    • Learning local feature descriptors using convex optimisation
    • K. Simonyan, A. Vedaldi, and A. Zisserman. Learning local feature descriptors using convex optimisation. TPAMI, 36(8):1573-1585, 2014
    • (2014) TPAMI , vol.36 , Issue.8 , pp. 1573-1585
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 45
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 46
    • 84898792173 scopus 로고    scopus 로고
    • Anchored neighborhood regression for fast example-based super resolution
    • R. Timofte, V. De Smet, and L. Van Gool. Anchored neighborhood regression for fast example-based super resolution. In ICCV, 2013
    • (2013) ICCV
    • Timofte, R.1    De Smet, V.2    Van Gool, L.3
  • 50
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 51
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res., 10:207-244, 2009
    • (2009) J. Mach Learn. Res. , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 52
    • 84863081893 scopus 로고    scopus 로고
    • Learning bregman distance functions for semi-supervised clustering
    • L. Wu, S. Hoi, R. Jin, J. Zhu, and N. Yu. Learning bregman distance functions for semi-supervised clustering. IEEE Trans. Knowl. Data Eng., 24(3):478-491, 2012
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.3 , pp. 478-491
    • Wu, L.1    Hoi, S.2    Jin, R.3    Zhu, J.4    Yu, N.5
  • 53
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning, with application to clustering with side-information
    • E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with application to clustering with side-information. In NIPS, 2003.
    • (2003) NIPS
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.