메뉴 건너뛰기




Volumn , Issue , 2010, Pages 3455-3462

Discovering scene categories by information projection and cluster sampling

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATIC FEATURE SELECTION; BAYESIAN FRAMEWORKS; BAYESIAN POSTERIOR PROBABILITIES; CLUSTER NUMBERS; CLUSTER SAMPLING; DATA SETS; GENERATIVE MODEL; GRAPH PARTITION PROBLEM; HETEROGENEOUS FEATURES; IMAGE SETS; OPTIMAL CLUSTERING; SCENE CATEGORIZATION;

EID: 77956003388     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2010.5539982     Document Type: Conference Paper
Times cited : (16)

References (24)
  • 1
    • 24344434731 scopus 로고    scopus 로고
    • Generalizing swendsenwang to sampling arbitrary posterior probabilities
    • A. Barbu and S. C. Zhu. Generalizing swendsenwang to sampling arbitrary posterior probabilities. PAMI, 27(8):1239-1253, 2005.
    • (2005) PAMI , vol.27 , Issue.8 , pp. 1239-1253
    • Barbu, A.1    Zhu, S.C.2
  • 3
    • 42449162318 scopus 로고    scopus 로고
    • Scene classification using a hybrid generative/discriminative approach
    • A. Bosch, A. Zisserman, and X. Muńoz. Scene classification using a hybrid generative/discriminative approach. PAMI, 30(4):712-727, 2008.
    • (2008) PAMI , vol.30 , Issue.4 , pp. 712-727
    • Bosch, A.1    Zisserman, A.2    Muńoz, X.3
  • 4
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant learning. In CVPR, volume 2, pages 264-271, 2003.
    • (2003) CVPR , vol.2 , pp. 264-271
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 5
    • 56449084167 scopus 로고    scopus 로고
    • An hdp-hmm for systems with state persistence
    • E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky. An hdp-hmm for systems with state persistence. In ICML, pages 312-319, 2008.
    • (2008) ICML , pp. 312-319
    • Fox, E.B.1    Sudderth, E.B.2    Jordan, M.I.3    Willsky, A.S.4
  • 6
    • 33745855044 scopus 로고    scopus 로고
    • The pyramid match kernel: Discriminative classification with sets of image features
    • K. Grauman and T. Darrell. The pyramid match kernel: discriminative classification with sets of image features. In ICCV, volume 2, pages 1458-1465, 2005.
    • (2005) ICCV , vol.2 , pp. 1458-1465
    • Grauman, K.1    Darrell, T.2
  • 7
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn., 42(1-2):177-196, 2001.
    • (2001) Mach. Learn. , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 8
    • 33745155436 scopus 로고    scopus 로고
    • A bayesian hierarchical model for learning natural scene categories
    • F.-F. Li and P. Perona. A bayesian hierarchical model for learning natural scene categories. In CVPR, pages 524-531, 2005.
    • (2005) CVPR , pp. 524-531
    • Li, F.-F.1    Perona, P.2
  • 9
    • 50649084971 scopus 로고    scopus 로고
    • Unsupervised image categorization and object localization using topic models and correspondences between images
    • D. Liu and T. Chen. Unsupervised image categorization and object localization using topic models and correspondences between images. In ICCV, pages 1-7, 2007.
    • (2007) ICCV , pp. 1-7
    • Liu, D.1    Chen, T.2
  • 10
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 11
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV, 42(3):145-175, 2001.
    • (2001) IJCV , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 12
    • 0031120321 scopus 로고    scopus 로고
    • Inducing features of random fields
    • S. D. Pietra, V. J. D. Pietra, and J. D. Lafferty. Inducing features of random fields. PAMI, 19(4):380-393, 1997.
    • (1997) PAMI , vol.19 , Issue.4 , pp. 380-393
    • Pietra, S.D.1    Pietra, V.J.D.2    Lafferty, J.D.3
  • 13
    • 70450196800 scopus 로고    scopus 로고
    • Learning mixed image templates for object recognition
    • Z. Si, H. Gong, Y. N. Wu, and S.-C. Zhu. Learning mixed image templates for object recognition. In CVPR, 2009.
    • (2009) CVPR
    • Si, Z.1    Gong, H.2    Wu, Y.N.3    Zhu, S.-C.4
  • 14
    • 50949090870 scopus 로고    scopus 로고
    • Scene summarization for online image collections
    • I. Simon, N. Snavely, and S. M. Seitz. Scene summarization for online image collections. In ICCV, pages 1-8, 2007.
    • (2007) ICCV , pp. 1-8
    • Simon, I.1    Snavely, N.2    Seitz, S.M.3
  • 16
    • 39749186647 scopus 로고    scopus 로고
    • Describing visual scenes using transformed objects and parts
    • E. B. Sudderth, A. B. Torralba, W. T. Freeman, and A. S. Willsky. Describing visual scenes using transformed objects and parts. IJCV, 77(1-3):291-330, 2008.
    • (2008) IJCV , vol.77 , Issue.1-3 , pp. 291-330
    • Sudderth, E.B.1    Torralba, A.B.2    Freeman, W.T.3    Willsky, A.S.4
  • 17
    • 56549126210 scopus 로고    scopus 로고
    • Unsupervised category modeling, recognition, and segmentation in images
    • S. Todorovic and N. Ahuja. Unsupervised category modeling, recognition, and segmentation in images. PAMI, 30(12):2158-2174, 2008.
    • (2008) PAMI , vol.30 , Issue.12 , pp. 2158-2174
    • Todorovic, S.1    Ahuja, N.2
  • 18
    • 17444392134 scopus 로고    scopus 로고
    • Image parsing: Unifying segmentation, detection, and recognition
    • Z. Tu, X. Chen, A. L. Yuille, and S. C. Zhu. Image parsing: Unifying segmentation, detection, and recognition. IJCV, 63(2):113-140, 2005.
    • (2005) IJCV , vol.63 , Issue.2 , pp. 113-140
    • Tu, Z.1    Chen, X.2    Yuille, A.L.3    Zhu, S.C.4
  • 20
    • 39649099198 scopus 로고    scopus 로고
    • Unsupervised learning of individuals and categories from images
    • S. Waydo and C. Koch. Unsupervised learning of individuals and categories from images. Neural Comput., 20(5):1165-1178, 2008.
    • (2008) Neural Comput. , vol.20 , Issue.5 , pp. 1165-1178
    • Waydo, S.1    Koch, C.2
  • 21
    • 0033698725 scopus 로고    scopus 로고
    • Towards automatic discovery of object categories
    • M. Weber, M. Welling, and P. Perona. Towards automatic discovery of object categories. CVPR, 2:2101, 2000.
    • (2000) CVPR , vol.2 , pp. 2101
    • Weber, M.1    Welling, M.2    Perona, P.3
  • 22
    • 51949085938 scopus 로고    scopus 로고
    • Where am i: Place instance and category recognition using spatial pact
    • J. Wu and J. M. Rehg. Where am i: Place instance and category recognition using spatial pact. In CVPR, 2008.
    • (2008) CVPR
    • Wu, J.1    Rehg, J.M.2
  • 23
    • 84755160766 scopus 로고    scopus 로고
    • Learning active basis model for object detection and recognition
    • Epub ahead
    • Y. Wu, Z. Si, H. Gong, and S.-C. Zhu. Learning active basis model for object detection and recognition. IJCV, Epub ahead, 2009.
    • (2009) IJCV
    • Wu, Y.1    Si, Z.2    Gong, H.3    Zhu, S.-C.4
  • 24
    • 34548709821 scopus 로고    scopus 로고
    • Introduction to a large scale general purpose ground truth dataset: Methodology, annotation tool, and benchmarks
    • B. Yao, X. Yang, and S. C. Zhu. Introduction to a large scale general purpose ground truth dataset: methodology, annotation tool, and benchmarks. In EMMCVPR, 2007.
    • (2007) EMMCVPR
    • Yao, B.1    Yang, X.2    Zhu, S.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.