메뉴 건너뛰기




Volumn 2, Issue 6, 2014, Pages

Xer site-specific recombination: Promoting vertical and horizontal transmission of genetic information

Author keywords

[No Author keywords available]

Indexed keywords

INTEGRASE;

EID: 84959167180     PISSN: None     EISSN: 21650497     Source Type: Journal    
DOI: 10.1128/microbiolspec.MDNA3-0056-2014     Document Type: Article
Times cited : (52)

References (172)
  • 1
    • 0001177771 scopus 로고
    • A Correlation of Ring-Shaped Chromosomes with Variegation in Zea Mays
    • McClintock B. 1932. A Correlation of Ring-Shaped Chromosomes with Variegation in Zea Mays. Proc Natl Acad Sci U S A 18:677-681.
    • (1932) Proc Natl Acad Sci U S A , vol.18 , pp. 677-681
    • McClintock, B.1
  • 3
    • 33749048664 scopus 로고
    • Genetical implications of the structure of deoxyribonucleic acid
    • Watson JD, Crick FHC. 1953. Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964-967.
    • (1953) Nature , vol.171 , pp. 964-967
    • Watson, J.D.1    Crick, F.H.C.2
  • 4
    • 0026712869 scopus 로고
    • The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication
    • Adams DE, Shekhtman EM, Zechiedrich EL, Schmid MB, Cozzarelli NR. 1992. The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell 71:277-288.
    • (1992) Cell , vol.71 , pp. 277-288
    • Adams, D.E.1    Shekhtman, E.M.2    Zechiedrich, E.L.3    Schmid, M.B.4    Cozzarelli, N.R.5
  • 6
    • 0025945415 scopus 로고
    • Escherichia coli XerC recombinase is required for chromosomal segregation at cell division
    • Blakely G, Colloms S, May G, Burke M, Sherratt D. 1991. Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol 3:789-798.
    • (1991) New Biol , vol.3 , pp. 789-798
    • Blakely, G.1    Colloms, S.2    May, G.3    Burke, M.4    Sherratt, D.5
  • 7
    • 0027422093 scopus 로고
    • Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12
    • Blakely G, May G, McCulloch R, Arciszewska LK, Burke M, Lovett ST, Sherratt DJ. 1993. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 75:351-361.
    • (1993) Cell , vol.75 , pp. 351-361
    • Blakely, G.1    May, G.2    McCulloch, R.3    Arciszewska, L.K.4    Burke, M.5    Lovett, S.T.6    Sherratt, D.J.7
  • 8
    • 0025954366 scopus 로고
    • dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli
    • Kuempel PL, Henson JM, Dircks L, Tecklenburg M, Lim DF. 1991. dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol 3:799-811.
    • (1991) New Biol , vol.3 , pp. 799-811
    • Kuempel, P.L.1    Henson, J.M.2    Dircks, L.3    Tecklenburg, M.4    Lim, D.F.5
  • 9
    • 0025954365 scopus 로고
    • Site-specific recombination promoted by a short DNA segment of plasmid R1 and by a homologous segment in the terminus region of the Escherichia coli chromosome
    • Clerget M. 1991. Site-specific recombination promoted by a short DNA segment of plasmid R1 and by a homologous segment in the terminus region of the Escherichia coli chromosome. New Biol 3:780-788.
    • (1991) New Biol , vol.3 , pp. 780-788
    • Clerget, M.1
  • 10
    • 0347504849 scopus 로고    scopus 로고
    • Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination
    • Ip SC, Bregu M, Barre FX, Sherratt DJ. 2003. Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination. EMBO J 22:6399-6407.
    • (2003) EMBO J , vol.22 , pp. 6399-6407
    • Ip, S.C.1    Bregu, M.2    Barre, F.X.3    Sherratt, D.J.4
  • 12
  • 13
  • 15
    • 78650882581 scopus 로고    scopus 로고
    • Replication termination and chromosome dimer resolution in the archaeon Sulfolobus solfataricus
    • Duggin IG, Dubarry N, Bell SD. 2011. Replication termination and chromosome dimer resolution in the archaeon Sulfolobus solfataricus. EMBO J 30:145-153.
    • (2011) EMBO J , vol.30 , pp. 145-153
    • Duggin, I.G.1    Dubarry, N.2    Bell, S.D.3
  • 16
    • 33748660433 scopus 로고    scopus 로고
    • Analysis of the terminus region of the Caulobacter crescentus chromosome and identification of the dif site
    • Jensen RB. 2006. Analysis of the terminus region of the Caulobacter crescentus chromosome and identification of the dif site. J Bacteriol 188:6016-6019.
    • (2006) J Bacteriol , vol.188 , pp. 6016-6019
    • Jensen, R.B.1
  • 17
    • 0032862324 scopus 로고    scopus 로고
    • Synthetic lethal phenotypes caused by mutations affecting chromosome partitioning in Bacillus subtilis
    • Britton RA, Grossman AD. 1999. Synthetic lethal phenotypes caused by mutations affecting chromosome partitioning in Bacillus subtilis. J Bacteriol 181:5860-5864.
    • (1999) J Bacteriol , vol.181 , pp. 5860-5864
    • Britton, R.A.1    Grossman, A.D.2
  • 18
    • 0032841657 scopus 로고    scopus 로고
    • The ripX locus of Bacillus subtilis encodes a site-specific recombinase involved in proper chromosome partitioning
    • Sciochetti SA, Piggot PJ, Sherratt DJ, Blakely G. 1999. The ripX locus of Bacillus subtilis encodes a site-specific recombinase involved in proper chromosome partitioning. J Bacteriol 181:6053-6062.
    • (1999) J Bacteriol , vol.181 , pp. 6053-6062
    • Sciochetti, S.A.1    Piggot, P.J.2    Sherratt, D.J.3    Blakely, G.4
  • 19
    • 0035152883 scopus 로고    scopus 로고
    • Identification and Characterization of the dif Site from Bacillus subtilis
    • Sciochetti SA, Piggot PJ, Blakely GW. 2001. Identification and Characterization of the dif Site from Bacillus subtilis. J Bacteriol 183:1058-68.
    • (2001) J Bacteriol , vol.183 , pp. 1058-1068
    • Sciochetti, S.A.1    Piggot, P.J.2    Blakely, G.W.3
  • 20
    • 84885675033 scopus 로고    scopus 로고
    • The Xer/dif site-specific recombination system of Campylobacter jejuni
    • Leroux M, Rezoug Z, Szatmari G. 2013. The Xer/dif site-specific recombination system of Campylobacter jejuni. Mol Genet Genomics 288:495-502.
    • (2013) Mol Genet Genomics , vol.288 , pp. 495-502
    • Leroux, M.1    Rezoug, Z.2    Szatmari, G.3
  • 21
    • 0036269016 scopus 로고    scopus 로고
    • oriC region and replication termination site, dif, of the Xanthomonas campestris pv. campestris 17 chromosome
    • Yen M-R, Lin N-T, Hung C-H, Choy K-T, Weng S-F, Tseng Y-H. 2002. oriC region and replication termination site, dif, of the Xanthomonas campestris pv. campestris 17 chromosome. Appl Environ Microbiol 68:2924-2933.
    • (2002) Appl Environ Microbiol , vol.68 , pp. 2924-2933
    • Yen, M.-R.1    Lin, N.-T.2    Hung, C.-H.3    Choy, K.-T.4    Weng, S.-F.5    Tseng, Y.-H.6
  • 24
    • 0032958944 scopus 로고    scopus 로고
    • Site-specific recombination at dif by Haemophilus influenzae XerC
    • Neilson L, Blakely G, Sherratt DJ. 1999. Site-specific recombination at dif by Haemophilus influenzae XerC. Mol Microbiol 31:915-926.
    • (1999) Mol Microbiol , vol.31 , pp. 915-926
    • Neilson, L.1    Blakely, G.2    Sherratt, D.J.3
  • 27
    • 0034115179 scopus 로고    scopus 로고
    • Functional polarization of the Escherichia coli chromosome terminus: the dif site acts in chromosome dimer resolution only when located between long stretches of opposite polarity
    • Pérals K, Cornet F, Merlet Y, Delon I, Louarn JM. 2000. Functional polarization of the Escherichia coli chromosome terminus: the dif site acts in chromosome dimer resolution only when located between long stretches of opposite polarity. Mol Microbiol 36:33-43.
    • (2000) Mol Microbiol , vol.36 , pp. 33-43
    • Pérals, K.1    Cornet, F.2    Merlet, Y.3    Delon, I.4    Louarn, J.M.5
  • 28
    • 8544255518 scopus 로고    scopus 로고
    • FtsK activities in Xer recombination, DNA mobilization and cell division involve overlapping and separate domains of the protein
    • Bigot S, Corre J, Louarn J, Cornet F, Barre FX. 2004. FtsK activities in Xer recombination, DNA mobilization and cell division involve overlapping and separate domains of the protein. Mol Microbiol 54:876-886.
    • (2004) Mol Microbiol , vol.54 , pp. 876-886
    • Bigot, S.1    Corre, J.2    Louarn, J.3    Cornet, F.4    Barre, F.X.5
  • 29
    • 0034029382 scopus 로고    scopus 로고
    • Cell division, guillotining of dimer chromosomes and SOS induction in resolution mutants (dif, xerC and xerD) of Escherichia coli
    • Hendricks EC, Szerlong H, Hill T, Kuempel P. 2000. Cell division, guillotining of dimer chromosomes and SOS induction in resolution mutants (dif, xerC and xerD) of Escherichia coli. Mol Microbiol 36:973-981.
    • (2000) Mol Microbiol , vol.36 , pp. 973-981
    • Hendricks, E.C.1    Szerlong, H.2    Hill, T.3    Kuempel, P.4
  • 30
    • 0025602270 scopus 로고
    • Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases
    • Colloms SD, Sykora P, Szatmari G, Sherratt DJ. 1990. Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases. J Bacteriol 172:6973-6980.
    • (1990) J Bacteriol , vol.172 , pp. 6973-6980
    • Colloms, S.D.1    Sykora, P.2    Szatmari, G.3    Sherratt, D.J.4
  • 32
    • 78651076675 scopus 로고    scopus 로고
    • Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes
    • Kono N, Arakawa K, Tomita M. 2011. Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes. BMC Genomics 12:19. doi: 10.1186/1471-2164-12-19.
    • (2011) BMC Genomics , vol.12 , pp. 19
    • Kono, N.1    Arakawa, K.2    Tomita, M.3
  • 33
    • 70249104254 scopus 로고    scopus 로고
    • The dif/Xer recombination systems in proteobacteria
    • Carnoy C, Roten CA. 2009. The dif/Xer recombination systems in proteobacteria. PLoS One 4:e6531.
    • (2009) PLoS One , vol.4
    • Carnoy, C.1    Roten, C.A.2
  • 34
    • 0033457304 scopus 로고    scopus 로고
    • Conservation of Xer site-specific recombination genes in bacteria
    • Recchia GD, Sherratt DJ. 1999. Conservation of Xer site-specific recombination genes in bacteria. Mol Microbiol 34:1146-8.
    • (1999) Mol Microbiol , vol.34 , pp. 1146-1148
    • Recchia, G.D.1    Sherratt, D.J.2
  • 35
    • 0022731677 scopus 로고
    • Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli
    • Klemm P. 1986. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 5:1389-1393.
    • (1986) EMBO J , vol.5 , pp. 1389-1393
    • Klemm, P.1
  • 36
    • 0024075253 scopus 로고
    • Transposon Tn554 encodes three products required for transposition
    • Bastos MC, Murphy E. 1988. Transposon Tn554 encodes three products required for transposition. EMBO J 7:2935-2941.
    • (1988) EMBO J , vol.7 , pp. 2935-2941
    • Bastos, M.C.1    Murphy, E.2
  • 37
    • 0022305933 scopus 로고
    • Transposon Tn554: complete nucleotide sequence and isolation of transpositiondefective and antibiotic-sensitive mutants
    • Murphy E, Huwyler L, de Freire Bastos M do C. 1985. Transposon Tn554: complete nucleotide sequence and isolation of transpositiondefective and antibiotic-sensitive mutants. EMBO J 4:3357-3365.
    • (1985) EMBO J , vol.4 , pp. 3357-3365
    • Murphy, E.1    Huwyler, L.2    de Freire Bastos, M.C.3
  • 39
    • 0030881917 scopus 로고    scopus 로고
    • Xer recombination in Escherichia coli. Site-specific DNA topoisomerase activity of the XerC and XerD recombinases
    • Cornet F, Hallet B, Sherratt DJ. 1997. Xer recombination in Escherichia coli. Site-specific DNA topoisomerase activity of the XerC and XerD recombinases. J Biol Chem 272:21927-21931.
    • (1997) J Biol Chem , vol.272 , pp. 21927-21931
    • Cornet, F.1    Hallet, B.2    Sherratt, D.J.3
  • 40
    • 0032821668 scopus 로고    scopus 로고
    • Structure and mechanism in site-specific recombination
    • Gopaul DN, Duyne GD. 1999. Structure and mechanism in site-specific recombination. Curr Opin Struct Biol 9:14-20.
    • (1999) Curr Opin Struct Biol , vol.9 , pp. 14-20
    • Gopaul, D.N.1    Duyne, G.D.2
  • 41
    • 0032528271 scopus 로고    scopus 로고
    • Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination
    • Gopaul DN, Guo F, Van Duyne GD. 1998. Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J 17:4175-4187.
    • (1998) EMBO J , vol.17 , pp. 4175-4187
    • Gopaul, D.N.1    Guo, F.2    Van Duyne, G.D.3
  • 42
    • 0033594916 scopus 로고    scopus 로고
    • Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse
    • Guo F, Gopaul DN, Van Duyne GD. 1999. Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc Natl Acad Sci U S A 96:7143-7148.
    • (1999) Proc Natl Acad Sci U S A , vol.96 , pp. 7143-7148
    • Guo, F.1    Gopaul, D.N.2    Van Duyne, G.D.3
  • 43
    • 77749297944 scopus 로고    scopus 로고
    • Molecular keys of the tropism of integration of the cholera toxin phage
    • Das B, Bischerour J, Val M-E, Barre F-X. 2010. Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci U S A 107:4377-4382.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 4377-4382
    • Das, B.1    Bischerour, J.2    Val, M.-E.3    Barre, F.-X.4
  • 44
    • 0034595513 scopus 로고    scopus 로고
    • Coordinated control of XerC and XerD catalytic activities during Holliday junction resolution
    • Arciszewska LK, Baker RA, Hallet B, Sherratt DJ. 2000. Coordinated control of XerC and XerD catalytic activities during Holliday junction resolution. J Mol Biol 299:391-403.
    • (2000) J Mol Biol , vol.299 , pp. 391-403
    • Arciszewska, L.K.1    Baker, R.A.2    Hallet, B.3    Sherratt, D.J.4
  • 45
    • 0033382191 scopus 로고    scopus 로고
    • Reciprocal control of catalysis by the tyrosine recombinases XerC and XerD: an enzymatic switch in site-specific recombination
    • Hallet B, Arciszewska LK, Sherratt DJ. 1999. Reciprocal control of catalysis by the tyrosine recombinases XerC and XerD: an enzymatic switch in site-specific recombination. Mol Cell 4:949-959.
    • (1999) Mol Cell , vol.4 , pp. 949-959
    • Hallet, B.1    Arciszewska, L.K.2    Sherratt, D.J.3
  • 46
    • 0035823229 scopus 로고    scopus 로고
    • Switching catalytic activity in the XerCD site-specific recombination machine
    • Ferreira H, Sherratt D, Arciszewska L. 2001. Switching catalytic activity in the XerCD site-specific recombination machine. J Mol Biol 312:45-57.
    • (2001) J Mol Biol , vol.312 , pp. 45-57
    • Ferreira, H.1    Sherratt, D.2    Arciszewska, L.3
  • 48
    • 0032984988 scopus 로고    scopus 로고
    • C-terminal interactions between the XerC and XerD site-specific recombinases
    • Spiers AJ, Sherratt DJ. 1999. C-terminal interactions between the XerC and XerD site-specific recombinases. Mol Microbiol 32:1031-1042.
    • (1999) Mol Microbiol , vol.32 , pp. 1031-1042
    • Spiers, A.J.1    Sherratt, D.J.2
  • 49
    • 0030927777 scopus 로고    scopus 로고
    • Action of site-specific recombinases XerC and XerD on tethered Holliday junctions
    • Arciszewska LK, Grainge I, Sherratt DJ. 1997. Action of site-specific recombinases XerC and XerD on tethered Holliday junctions. EMBO J 16:3731-3743.
    • (1997) EMBO J , vol.16 , pp. 3731-3743
    • Arciszewska, L.K.1    Grainge, I.2    Sherratt, D.J.3
  • 50
    • 0029030020 scopus 로고
    • Xer site-specific recombination in vitro
    • Arciszewska LK, Sherratt DJ. 1995. Xer site-specific recombination in vitro. EMBO J 14:2112-2120.
    • (1995) EMBO J , vol.14 , pp. 2112-2120
    • Arciszewska, L.K.1    Sherratt, D.J.2
  • 52
    • 84885371027 scopus 로고    scopus 로고
    • The chromosome cycle of prokaryotes
    • Kuzminov A. 2013. The chromosome cycle of prokaryotes. Mol Microbiol 90:214-227.
    • (2013) Mol Microbiol , vol.90 , pp. 214-227
    • Kuzminov, A.1
  • 53
    • 0014413357 scopus 로고
    • Chromosome replication and the division cycle of Escherichia coli B/r
    • Cooper S, Helmstetter CE. 1968. Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol 31:519-540.
    • (1968) J Mol Biol , vol.31 , pp. 519-540
    • Cooper, S.1    Helmstetter, C.E.2
  • 54
    • 42549161198 scopus 로고    scopus 로고
    • Delayed activation of Xer recombination at dif by FtsK during septum assembly in Escherichia coli
    • Kennedy SP, Chevalier F, Barre FX. 2008. Delayed activation of Xer recombination at dif by FtsK during septum assembly in Escherichia coli. Mol Microbiol 68:1018-1028.
    • (2008) Mol Microbiol , vol.68 , pp. 1018-1028
    • Kennedy, S.P.1    Chevalier, F.2    Barre, F.X.3
  • 55
    • 0031974261 scopus 로고    scopus 로고
    • Cell division is required for resolution of dimer chromosomes at the dif locus of Escherichia coli
    • Steiner WW, Kuempel PL. 1998. Cell division is required for resolution of dimer chromosomes at the dif locus of Escherichia coli. Mol Microbiol 27:257-268.
    • (1998) Mol Microbiol , vol.27 , pp. 257-268
    • Steiner, W.W.1    Kuempel, P.L.2
  • 56
    • 84905482605 scopus 로고    scopus 로고
    • Differential management of the replication terminus regions of the two Vibrio cholerae chromosomes during cell division
    • eCollection 2014
    • Demarre G, Galli E, Muresan L, David A, Paly E, Possoz C, Barre F-X. 2014. Differential management of the replication terminus regions of the two Vibrio cholerae chromosomes during cell division. PLoS Genet 10(9): e1004557. doi: 10.1371/journal.pgen.1004557. eCollection 2014.
    • (2014) PLoS Genet , vol.10 , Issue.9
    • Demarre, G.1    Galli, E.2    Muresan, L.3    David, A.4    Paly, E.5    Possoz, C.6    Barre, F.-X.7
  • 57
    • 0037249352 scopus 로고    scopus 로고
    • Temporal regulation of topoisomerase IV activity in E. coli
    • Espeli O, Levine C, Hassing H, Marians KJ. 2003. Temporal regulation of topoisomerase IV activity in E. coli. Mol Cell 11:189-201.
    • (2003) Mol Cell , vol.11 , pp. 189-201
    • Espeli, O.1    Levine, C.2    Hassing, H.3    Marians, K.J.4
  • 58
    • 51149119105 scopus 로고    scopus 로고
    • Modulation of Escherichia coli sister chromosome cohesion by topoisomerase IV
    • Wang X, Reyes-Lamothe R, Sherratt DJ. 2008. Modulation of Escherichia coli sister chromosome cohesion by topoisomerase IV. Genes Dev 22:2426-2433.
    • (2008) Genes Dev , vol.22 , pp. 2426-2433
    • Wang, X.1    Reyes-Lamothe, R.2    Sherratt, D.J.3
  • 59
    • 0029985398 scopus 로고    scopus 로고
    • Asymmetric substitution patterns in the two DNA strands of bacteria
    • Lobry JR. 1996. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13:660-665.
    • (1996) Mol Biol Evol , vol.13 , pp. 660-665
    • Lobry, J.R.1
  • 60
    • 33947231236 scopus 로고    scopus 로고
    • Mutational bias suggests that replication termination occurs near the dif site, not at Ter sites
    • Hendrickson H, Lawrence JG. 2007. Mutational bias suggests that replication termination occurs near the dif site, not at Ter sites. Mol Microbiol 64:42-56.
    • (2007) Mol Microbiol , vol.64 , pp. 42-56
    • Hendrickson, H.1    Lawrence, J.G.2
  • 61
    • 0032884404 scopus 로고    scopus 로고
    • Norfloxacin-induced DNA cleavage occurs at the dif resolvase locus in Escherichia coli and is the result of interaction with topoisomerase IV
    • Hojgaard A, Szerlong H, Tabor C, Kuempel P. 1999. Norfloxacin-induced DNA cleavage occurs at the dif resolvase locus in Escherichia coli and is the result of interaction with topoisomerase IV. Mol Microbiol 33:1027-1036.
    • (1999) Mol Microbiol , vol.33 , pp. 1027-1036
    • Hojgaard, A.1    Szerlong, H.2    Tabor, C.3    Kuempel, P.4
  • 62
    • 0029881879 scopus 로고    scopus 로고
    • Restriction of the activity of the recombination site dif to a small zone of the Escherichia coli chromosome
    • Cornet F, Louarn J, Patte J, Louarn JM. 1996. Restriction of the activity of the recombination site dif to a small zone of the Escherichia coli chromosome. Genes Dev 10:1152-1161.
    • (1996) Genes Dev , vol.10 , pp. 1152-1161
    • Cornet, F.1    Louarn, J.2    Patte, J.3    Louarn, J.M.4
  • 63
    • 0030007428 scopus 로고    scopus 로고
    • Use of a transposon (Tndif) to obtain suppressing and nonsuppressing insertions of the dif resolvase site of Escherichia coli
    • Kuempel P, Hogaard A, Nielsen M, Nagappan O, Tecklenburg M. 1996. Use of a transposon (Tndif) to obtain suppressing and nonsuppressing insertions of the dif resolvase site of Escherichia coli. Genes Dev 10:1162-1171.
    • (1996) Genes Dev , vol.10 , pp. 1162-1171
    • Kuempel, P.1    Hogaard, A.2    Nielsen, M.3    Nagappan, O.4    Tecklenburg, M.5
  • 64
    • 0028920035 scopus 로고
    • The dif resolvase locus of the Escherichia coli chromosome can be replaced by a 33-bp sequence, but function depends on location
    • Tecklenburg M, Naumer A, Nagappan O, Kuempel P. 1995. The dif resolvase locus of the Escherichia coli chromosome can be replaced by a 33-bp sequence, but function depends on location. Proc Natl Acad Sci U S A 92:1352-1356.
    • (1995) Proc Natl Acad Sci U S A , vol.92 , pp. 1352-1356
    • Tecklenburg, M.1    Naumer, A.2    Nagappan, O.3    Kuempel, P.4
  • 65
    • 0033636814 scopus 로고    scopus 로고
    • FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation
    • Barre FX, Aroyo M, Colloms SD, Helfrich A, Cornet F, Sherratt DJ. 2000. FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation. Genes Dev 14:2976-2988.
    • (2000) Genes Dev , vol.14 , pp. 2976-2988
    • Barre, F.X.1    Aroyo, M.2    Colloms, S.D.3    Helfrich, A.4    Cornet, F.5    Sherratt, D.J.6
  • 67
    • 58149142956 scopus 로고    scopus 로고
    • Asymmetry of chromosome Replichores renders the DNA translocase activity of FtsK essential for cell division and cell shape maintenance in Escherichia coli
    • Lesterlin C, Pages C, Dubarry N, Dasgupta S, Cornet F. 2008. Asymmetry of chromosome Replichores renders the DNA translocase activity of FtsK essential for cell division and cell shape maintenance in Escherichia coli. PLoS Genet 4:e1000288.
    • (2008) PLoS Genet , vol.4
    • Lesterlin, C.1    Pages, C.2    Dubarry, N.3    Dasgupta, S.4    Cornet, F.5
  • 68
    • 22144463194 scopus 로고    scopus 로고
    • Roles for replichores and macrodomains in segregation of the Escherichia coli chromosome
    • Lesterlin C, Mercier R, Boccard F, Barre FX, Cornet F. 2005. Roles for replichores and macrodomains in segregation of the Escherichia coli chromosome. EMBO Rep 6:557-562.
    • (2005) EMBO Rep , vol.6 , pp. 557-562
    • Lesterlin, C.1    Mercier, R.2    Boccard, F.3    Barre, F.X.4    Cornet, F.5
  • 69
    • 19444386428 scopus 로고    scopus 로고
    • SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over Chromosomes in E. coli
    • Bernhardt TG, de Boer PA. 2005. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over Chromosomes in E. coli. Mol Cell 18:555-564.
    • (2005) Mol Cell , vol.18 , pp. 555-564
    • Bernhardt, T.G.1    de Boer, P.A.2
  • 70
    • 2942752105 scopus 로고    scopus 로고
    • Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis
    • Wu LJ, Errington J. 2004. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117:915-925.
    • (2004) Cell , vol.117 , pp. 915-925
    • Wu, L.J.1    Errington, J.2
  • 71
    • 79952417674 scopus 로고    scopus 로고
    • Two DNA translocases synergistically affect chromosome dimer resolution in Bacillus subtilis
    • Kaimer C, Schenk K, Graumann PL. 2011. Two DNA translocases synergistically affect chromosome dimer resolution in Bacillus subtilis. J Bacteriol 193:1334-1340.
    • (2011) J Bacteriol , vol.193 , pp. 1334-1340
    • Kaimer, C.1    Schenk, K.2    Graumann, P.L.3
  • 72
    • 70449576026 scopus 로고    scopus 로고
    • The Bacillus subtilis SftA (YtpS) and SpoIIIE DNA translocases play distinct roles in growing cells to ensure faithful chromosome partitioning
    • Biller SJ, Burkholder WF. 2009. The Bacillus subtilis SftA (YtpS) and SpoIIIE DNA translocases play distinct roles in growing cells to ensure faithful chromosome partitioning. Mol Microbiol 74:790-809.
    • (2009) Mol Microbiol , vol.74 , pp. 790-809
    • Biller, S.J.1    Burkholder, W.F.2
  • 73
    • 0028179987 scopus 로고
    • Bacillus subtilis spoIIIE protein required for DNA segregation during asymmetric cell division
    • Wu LJ, Errington J. 1994. Bacillus subtilis spoIIIE protein required for DNA segregation during asymmetric cell division. Science 264:572-575.
    • (1994) Science , vol.264 , pp. 572-575
    • Wu, L.J.1    Errington, J.2
  • 74
    • 36148931768 scopus 로고    scopus 로고
    • FtsK and SpoIIIE: the tale of the conserved tails
    • Barre FX. 2007. FtsK and SpoIIIE: the tale of the conserved tails. Mol Microbiol 66:1051-1055.
    • (2007) Mol Microbiol , vol.66 , pp. 1051-1055
    • Barre, F.X.1
  • 75
    • 0034725994 scopus 로고    scopus 로고
    • Membrane topology of the N-terminus of the escherichia coli FtsK division protein
    • Dorazi R, Dewar SJ. 2000. Membrane topology of the N-terminus of the escherichia coli FtsK division protein. FEBS Lett 478:13-18.
    • (2000) FEBS Lett , vol.478 , pp. 13-18
    • Dorazi, R.1    Dewar, S.J.2
  • 76
    • 33746987484 scopus 로고    scopus 로고
    • Double-stranded DNA translocation: structure and mechanism of hexameric FtsK
    • Massey TH, Mercogliano CP, Yates J, Sherratt DJ, Lowe J. 2006. Double-stranded DNA translocation: structure and mechanism of hexameric FtsK. Mol Cell 23:457-469.
    • (2006) Mol Cell , vol.23 , pp. 457-469
    • Massey, T.H.1    Mercogliano, C.P.2    Yates, J.3    Sherratt, D.J.4    Lowe, J.5
  • 77
    • 78649592020 scopus 로고    scopus 로고
    • Multiple regions along the Escherichia coli FtsK protein are implicated in cell division
    • Dubarry N, Possoz C, Barre FX. 2010. Multiple regions along the Escherichia coli FtsK protein are implicated in cell division. Mol Microbiol 78:1088-1100.
    • (2010) Mol Microbiol , vol.78 , pp. 1088-1100
    • Dubarry, N.1    Possoz, C.2    Barre, F.X.3
  • 78
    • 0037169328 scopus 로고    scopus 로고
    • FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases
    • Aussel L, Barre FX, Aroyo M, Stasiak A, Stasiak AZ, Sherratt D. 2002. FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 108:195-205.
    • (2002) Cell , vol.108 , pp. 195-205
    • Aussel, L.1    Barre, F.X.2    Aroyo, M.3    Stasiak, A.4    Stasiak, A.Z.5    Sherratt, D.6
  • 79
    • 3242699635 scopus 로고    scopus 로고
    • Fast, DNA-sequence independent translocation by FtsK in a single-molecule experiment
    • Saleh OA, Perals C, Barre FX, Allemand JF. 2004. Fast, DNA-sequence independent translocation by FtsK in a single-molecule experiment. EMBO J 23:2430-2439.
    • (2004) EMBO J , vol.23 , pp. 2430-2439
    • Saleh, O.A.1    Perals, C.2    Barre, F.X.3    Allemand, J.F.4
  • 80
    • 76349104603 scopus 로고    scopus 로고
    • Fully efficient chromosome dimer resolution in Escherichia coli cells lacking the integral membrane domain of FtsK
    • Dubarry N, Barre FX. 2010. Fully efficient chromosome dimer resolution in Escherichia coli cells lacking the integral membrane domain of FtsK. EMBO J 29:597-605.
    • (2010) EMBO J , vol.29 , pp. 597-605
    • Dubarry, N.1    Barre, F.X.2
  • 85
    • 84863199786 scopus 로고    scopus 로고
    • Co-evolution of segregation guide DNA motifs and the FtsK translocase in bacteria: identification of the atypical Lactococcus lactis KOPS motif
    • Nolivos S, Touzain F, Pages C, Coddeville M, Rousseau P, El Karoui M, Le Bourgeois P, Cornet F. 2012. Co-evolution of segregation guide DNA motifs and the FtsK translocase in bacteria: identification of the atypical Lactococcus lactis KOPS motif. Nucleic Acids Res 40:5535-45.
    • (2012) Nucleic Acids Res , vol.40 , pp. 5535-5545
    • Nolivos, S.1    Touzain, F.2    Pages, C.3    Coddeville, M.4    Rousseau, P.5    El Karoui, M.6    Le Bourgeois, P.7    Cornet, F.8
  • 88
    • 78049300491 scopus 로고    scopus 로고
    • FtsK DNA translocase: the fast motor that knows where it's going
    • Crozat E, Grainge I. 2010. FtsK DNA translocase: the fast motor that knows where it's going. Chem Bio Chem 11:2232-2243.
    • (2010) Chem Bio Chem , vol.11 , pp. 2232-2243
    • Crozat, E.1    Grainge, I.2
  • 89
    • 0242582268 scopus 로고    scopus 로고
    • A physical and functional interaction between Escherichia coli FtsK and topoisomerase IV
    • Espeli O, Lee C, Marians KJ. 2003. A physical and functional interaction between Escherichia coli FtsK and topoisomerase IV. J Biol Chem 278:44639-44644.
    • (2003) J Biol Chem , vol.278 , pp. 44639-44644
    • Espeli, O.1    Lee, C.2    Marians, K.J.3
  • 90
    • 77953236795 scopus 로고    scopus 로고
    • DNA chirality-dependent stimulation of topoisomerase IV activity by the C-terminal AAA+ domain of FtsK
    • Bigot S, Marians KJ. 2010. DNA chirality-dependent stimulation of topoisomerase IV activity by the C-terminal AAA+ domain of FtsK. Nucleic Acids Res 38:3031-3040.
    • (2010) Nucleic Acids Res , vol.38 , pp. 3031-3040
    • Bigot, S.1    Marians, K.J.2
  • 91
    • 84879726705 scopus 로고    scopus 로고
    • FtsK actively segregates sister chromosomes in Escherichia coli
    • Stouf M, Meile J-C, Cornet F. 2013. FtsK actively segregates sister chromosomes in Escherichia coli. Proc Natl Acad Sci U S A 110:11157-11162.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 11157-11162
    • Stouf, M.1    Meile, J.-C.2    Cornet, F.3
  • 92
    • 0035117194 scopus 로고    scopus 로고
    • Interplay between recombination, cell division and chromosome structure during chromosome dimer resolution in Escherichia coli
    • Pérals K, Capiaux H, Vincourt JB, Louarn JM, Sherratt DJ, Cornet F. 2001. Interplay between recombination, cell division and chromosome structure during chromosome dimer resolution in Escherichia coli. Mol Microbiol 39:904-913.
    • (2001) Mol Microbiol , vol.39 , pp. 904-913
    • Pérals, K.1    Capiaux, H.2    Vincourt, J.B.3    Louarn, J.M.4    Sherratt, D.J.5    Cornet, F.6
  • 93
    • 32444436111 scopus 로고    scopus 로고
    • The bifunctional FtsK protein mediates chromosome partitioning and cell division in Caulobacter
    • Wang SC, West L, Shapiro L. 2006. The bifunctional FtsK protein mediates chromosome partitioning and cell division in Caulobacter. J Bacteriol 188:1497-1508.
    • (2006) J Bacteriol , vol.188 , pp. 1497-1508
    • Wang, S.C.1    West, L.2    Shapiro, L.3
  • 94
    • 33645462819 scopus 로고    scopus 로고
    • Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinase
    • Yates J, Zhekov I, Baker R, Eklund B, Sherratt DJ, Arciszewska LK. 2006. Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinase. Mol Microbiol 59:1754-1766.
    • (2006) Mol Microbiol , vol.59 , pp. 1754-1766
    • Yates, J.1    Zhekov, I.2    Baker, R.3    Eklund, B.4    Sherratt, D.J.5    Arciszewska, L.K.6
  • 95
    • 0038385095 scopus 로고    scopus 로고
    • Species specificity in the activation of Xer recombination at dif by FtsK
    • Yates J, Aroyo M, Sherratt DJ, Barre FX. 2003. Species specificity in the activation of Xer recombination at dif by FtsK. Mol Microbiol 49:241-249.
    • (2003) Mol Microbiol , vol.49 , pp. 241-249
    • Yates, J.1    Aroyo, M.2    Sherratt, D.J.3    Barre, F.X.4
  • 96
    • 2442543553 scopus 로고    scopus 로고
    • Asymmetric activation of Xer site-specific recombination by FtsK
    • Massey TH, Aussel L, Barre F-X, Sherratt DJ. 2004. Asymmetric activation of Xer site-specific recombination by FtsK. EMBO Rep 5:399-404.
    • (2004) EMBO Rep , vol.5 , pp. 399-404
    • Massey, T.H.1    Aussel, L.2    Barre, F.-X.3    Sherratt, D.J.4
  • 97
    • 0033570159 scopus 로고    scopus 로고
    • FtsK-dependent and -independent pathways of Xer site-specific recombination
    • Recchia GD, Aroyo M, Wolf D, Blakely G, Sherratt DJ. 1999. FtsK-dependent and -independent pathways of Xer site-specific recombination. EMBO J 18:5724-5734.
    • (1999) EMBO J , vol.18 , pp. 5724-5734
    • Recchia, G.D.1    Aroyo, M.2    Wolf, D.3    Blakely, G.4    Sherratt, D.J.5
  • 98
    • 84891587996 scopus 로고    scopus 로고
    • The N-terminal membrane-spanning domain of the Escherichia coli DNA translocase FtsK hexamerizes at midcell
    • Bisicchia P, Steel B, Mariam Debela MH, Löwe J, Sherratt D. 2013. The N-terminal membrane-spanning domain of the Escherichia coli DNA translocase FtsK hexamerizes at midcell. mBio 4:e00800-00813.
    • (2013) mBio , vol.4 , pp. e00800-e00813
    • Bisicchia, P.1    Steel, B.2    Mariam Debela, M.H.3    Löwe, J.4    Sherratt, D.5
  • 100
    • 85158014868 scopus 로고    scopus 로고
    • Xer Site-Specific Recombination: Promoting Chromosome Segregation
    • In Craig, NL, Craigie, R, Gellert, M, Lambowitz, A (ed), ASM Press, Washington, DC
    • Barre F-X, Sherratt DJS. 2002. Xer Site-Specific Recombination: Promoting Chromosome Segregation, p 149-161. In Craig, NL, Craigie, R, Gellert, M, Lambowitz, A (ed), Mobile DNA II, ASM Press, Washington, DC.
    • (2002) Mobile DNA II , pp. 149-161
    • Barre, F.-X.1    Sherratt, D.J.S.2
  • 102
    • 79960223131 scopus 로고    scopus 로고
    • Activation of XerCD-dif recombination by the FtsK DNA translocase
    • Grainge I, Lesterlin C, Sherratt DJ. 2011. Activation of XerCD-dif recombination by the FtsK DNA translocase. Nucleic Acids Res 39:5140-5148.
    • (2011) Nucleic Acids Res , vol.39 , pp. 5140-5148
    • Grainge, I.1    Lesterlin, C.2    Sherratt, D.J.3
  • 103
    • 84896697880 scopus 로고    scopus 로고
    • TPM analyses reveal that FtsK contributes both to the assembly and the activation of the XerCD-dif recombination synapse
    • Diagne CT, Salhi M, Crozat E, Salomé L, Cornet F, Rousseau P, Tardin C. 2014. TPM analyses reveal that FtsK contributes both to the assembly and the activation of the XerCD-dif recombination synapse. Nucleic Acids Res 42:1721-1732.
    • (2014) Nucleic Acids Res , vol.42 , pp. 1721-1732
    • Diagne, C.T.1    Salhi, M.2    Crozat, E.3    Salomé, L.4    Cornet, F.5    Rousseau, P.6    Tardin, C.7
  • 104
    • 70449564517 scopus 로고    scopus 로고
    • SpoIIIE and a novel type of DNA translocase, SftA, couple chromosome segregation with cell division in Bacillus subtilis
    • Kaimer C, Gonzalez-Pastor JE, Graumann PL. 2009. SpoIIIE and a novel type of DNA translocase, SftA, couple chromosome segregation with cell division in Bacillus subtilis. Mol Microbiol 74:810-825.
    • (2009) Mol Microbiol , vol.74 , pp. 810-825
    • Kaimer, C.1    Gonzalez-Pastor, J.E.2    Graumann, P.L.3
  • 105
    • 78049353926 scopus 로고    scopus 로고
    • Are two better than one? Analysis of an FtsK/Xer recombination system that uses a single recombinase
    • Nolivos S, Pages C, Rousseau P, Le Bourgeois P, Cornet F. 2010. Are two better than one? Analysis of an FtsK/Xer recombination system that uses a single recombinase. Nucleic Acids Res 38:6477-6489.
    • (2010) Nucleic Acids Res , vol.38 , pp. 6477-6489
    • Nolivos, S.1    Pages, C.2    Rousseau, P.3    Le Bourgeois, P.4    Cornet, F.5
  • 107
    • 84860204938 scopus 로고    scopus 로고
    • Single-molecule imaging of DNA curtains reveals mechanisms of KOPS sequence targeting by the DNA translocase FtsK
    • Lee JY, Finkelstein IJ, Crozat E, Sherratt DJ, Greene EC. 2012. Single-molecule imaging of DNA curtains reveals mechanisms of KOPS sequence targeting by the DNA translocase FtsK. Proc Natl Acad Sci U S A 109:6531-6536.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 6531-6536
    • Lee, J.Y.1    Finkelstein, I.J.2    Crozat, E.3    Sherratt, D.J.4    Greene, E.C.5
  • 109
    • 0031036308 scopus 로고    scopus 로고
    • Plasmid stability: comments on the dimer catastrophe hypothesis
    • Boe L, Tolker-Nielsen T. 1997. Plasmid stability: comments on the dimer catastrophe hypothesis. Mol Microbiol 23:247-253.
    • (1997) Mol Microbiol , vol.23 , pp. 247-253
    • Boe, L.1    Tolker-Nielsen, T.2
  • 110
    • 80053492422 scopus 로고    scopus 로고
    • Multicopy plasmid stability: revisiting the dimer catastrophe
    • Field CM, Summers DK. 2011. Multicopy plasmid stability: revisiting the dimer catastrophe. J Theor Biol 291:119-127.
    • (2011) J Theor Biol , vol.291 , pp. 119-127
    • Field, C.M.1    Summers, D.K.2
  • 111
    • 0027255960 scopus 로고
    • Multicopy plasmid instability: the dimer catastrophe hypothesis
    • Summers DK, Beton CW, Withers HL. 1993. Multicopy plasmid instability: the dimer catastrophe hypothesis. Mol Microbiol 8:1031-1038.
    • (1993) Mol Microbiol , vol.8 , pp. 1031-1038
    • Summers, D.K.1    Beton, C.W.2    Withers, H.L.3
  • 112
    • 0021419102 scopus 로고
    • Multimerization of high copy number plasmids causes instability: CoIE1 encodes a determinant essential for plasmid monomerization and stability
    • Summers DK, Sherratt DJ. 1984. Multimerization of high copy number plasmids causes instability: CoIE1 encodes a determinant essential for plasmid monomerization and stability. Cell 36:1097-1103.
    • (1984) Cell , vol.36 , pp. 1097-1103
    • Summers, D.K.1    Sherratt, D.J.2
  • 113
    • 0019447996 scopus 로고
    • A novel role for site-specific recombination in maintenance of bacterial replicons
    • Austin S, Ziese M, Sternberg N. 1981. A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25:729-736.
    • (1981) Cell , vol.25 , pp. 729-736
    • Austin, S.1    Ziese, M.2    Sternberg, N.3
  • 114
    • 33645994467 scopus 로고    scopus 로고
    • Differences in resolution of mwr-containing plasmid dimers mediated by the Klebsiella pneumoniae and Escherichia coli XerC recombinases: potential implications in dissemination of antibiotic resistance genes
    • Bui D, Ramiscal J, Trigueros S, Newmark JS, Do A, Sherratt DJ, Tolmasky ME. 2006. Differences in resolution of mwr-containing plasmid dimers mediated by the Klebsiella pneumoniae and Escherichia coli XerC recombinases: potential implications in dissemination of antibiotic resistance genes. J Bacteriol 188:2812-2820.
    • (2006) J Bacteriol , vol.188 , pp. 2812-2820
    • Bui, D.1    Ramiscal, J.2    Trigueros, S.3    Newmark, J.S.4    Do, A.5    Sherratt, D.J.6    Tolmasky, M.E.7
  • 116
    • 0028225930 scopus 로고
    • Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmidmultimers and to substitute for the analogous chromosomal Escherichia coli site dif
    • Cornet F, Mortier I, Patte J, Louarn JM. 1994. Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmidmultimers and to substitute for the analogous chromosomal Escherichia coli site dif. J Bacteriol 176:3188-3195.
    • (1994) J Bacteriol , vol.176 , pp. 3188-3195
    • Cornet, F.1    Mortier, I.2    Patte, J.3    Louarn, J.M.4
  • 117
    • 0034056410 scopus 로고    scopus 로고
    • Stability by multimer resolution of pJHCMW1 is due to the Tn1331 resolvase and not to the Escherichia coli Xer system
    • Tolmasky ME, Colloms S, Blakely G, Sherratt DJ. 2000. Stability by multimer resolution of pJHCMW1 is due to the Tn1331 resolvase and not to the Escherichia coli Xer system. Microbiology 146:581-589.
    • (2000) Microbiology , vol.146 , pp. 581-589
    • Tolmasky, M.E.1    Colloms, S.2    Blakely, G.3    Sherratt, D.J.4
  • 119
    • 0023968566 scopus 로고
    • Resolution of ColE1 dimers requires a DNA sequence implicated in the three-dimensional organization of the cer site
    • Summers DK, Sherratt DJ. 1988. Resolution of ColE1 dimers requires a DNA sequence implicated in the three-dimensional organization of the cer site. EMBO J 7:851-858.
    • (1988) EMBO J , vol.7 , pp. 851-858
    • Summers, D.K.1    Sherratt, D.J.2
  • 120
    • 0031033382 scopus 로고    scopus 로고
    • DNA sequence of recombinase-binding sites can determine Xer site-specific recombination outcome
    • Blake JA, Ganguly N, Sherratt DJ. 1997. DNA sequence of recombinase-binding sites can determine Xer site-specific recombination outcome. Mol Microbiol 23:387-398.
    • (1997) Mol Microbiol , vol.23 , pp. 387-398
    • Blake, J.A.1    Ganguly, N.2    Sherratt, D.J.3
  • 121
    • 0037099579 scopus 로고    scopus 로고
    • Accessory factors determine the order of strand exchange in Xer recombination at psi
    • Bregu M, Sherratt DJ, Colloms SD. 2002. Accessory factors determine the order of strand exchange in Xer recombination at psi. EMBO J 21:3888-3897.
    • (2002) EMBO J , vol.21 , pp. 3888-3897
    • Bregu, M.1    Sherratt, D.J.2    Colloms, S.D.3
  • 122
    • 0030943173 scopus 로고    scopus 로고
    • Topological selectivity in Xer site-specific recombination
    • Colloms SD, Bath J, Sherratt DJ. 1997. Topological selectivity in Xer site-specific recombination. Cell 88:855-864.
    • (1997) Cell , vol.88 , pp. 855-864
    • Colloms, S.D.1    Bath, J.2    Sherratt, D.J.3
  • 123
    • 0032981279 scopus 로고    scopus 로고
    • Topology of Xer recombination on catenanes produced by lambda integrase
    • Bath J, Sherratt DJ, Colloms SD. 1999. Topology of Xer recombination on catenanes produced by lambda integrase. JMol Biol 289:873-883.
    • (1999) JMol Biol , vol.289 , pp. 873-883
    • Bath, J.1    Sherratt, D.J.2    Colloms, S.D.3
  • 124
    • 12544251405 scopus 로고    scopus 로고
    • Tangle analysis of Xer recombination reveals only three solutions, all consistent with a single three-dimensional topological pathway
    • Vazquez M, Colloms SD, Sumners DW. 2005. Tangle analysis of Xer recombination reveals only three solutions, all consistent with a single three-dimensional topological pathway. J Mol Biol 346:493-504.
    • (2005) J Mol Biol , vol.346 , pp. 493-504
    • Vazquez, M.1    Colloms, S.D.2    Sumners, D.W.3
  • 125
    • 0024316734 scopus 로고
    • xerB, an Escherichia coli gene required for plasmid ColE1 site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase
    • Stirling CJ, Colloms SD, Collins JF, Szatmari G, Sherratt DJ. 1989. xerB, an Escherichia coli gene required for plasmid ColE1 site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase. EMBO J 8:1623-1627.
    • (1989) EMBO J , vol.8 , pp. 1623-1627
    • Stirling, C.J.1    Colloms, S.D.2    Collins, J.F.3    Szatmari, G.4    Sherratt, D.J.5
  • 126
    • 0024293535 scopus 로고
    • The arginine repressor is essential for plasmid-stabilizing site-specific recombination at the ColE1 cer locus
    • Stirling CJ, Szatmari G, Stewart G, Smith MC, Sherratt DJ. 1988. The arginine repressor is essential for plasmid-stabilizing site-specific recombination at the ColE1 cer locus. EMBO J 7:4389-4395.
    • (1988) EMBO J , vol.7 , pp. 4389-4395
    • Stirling, C.J.1    Szatmari, G.2    Stewart, G.3    Smith, M.C.4    Sherratt, D.J.5
  • 127
    • 0342618313 scopus 로고    scopus 로고
    • Direct interaction of aminopeptidase A with recombination site DNA in Xer site-specific recombination
    • Alen C, Sherratt DJ, Colloms SD. 1997. Direct interaction of aminopeptidase A with recombination site DNA in Xer site-specific recombination. EMBO J 16:5188-5197.
    • (1997) EMBO J , vol.16 , pp. 5188-5197
    • Alen, C.1    Sherratt, D.J.2    Colloms, S.D.3
  • 128
    • 0031979599 scopus 로고    scopus 로고
    • The ArcA/ArcB two-component regulatory system of Escherichia coli is essential for Xer site-specific recombination at psi
    • Colloms SD, Alen C, Sherratt DJ. 1998. The ArcA/ArcB two-component regulatory system of Escherichia coli is essential for Xer site-specific recombination at psi. Mol Microbiol 28:521-530.
    • (1998) Mol Microbiol , vol.28 , pp. 521-530
    • Colloms, S.D.1    Alen, C.2    Sherratt, D.J.3
  • 129
    • 0344931801 scopus 로고    scopus 로고
    • X-ray structure of aminopeptidase A from Escherichia coli and a model for the nucleoprotein complex in Xer site-specific recombination
    • Sträter N, Sherratt DJ, Colloms SD. 1999. X-ray structure of aminopeptidase A from Escherichia coli and a model for the nucleoprotein complex in Xer site-specific recombination. EMBO J 18:4513-4522.
    • (1999) EMBO J , vol.18 , pp. 4513-4522
    • Sträter, N.1    Sherratt, D.J.2    Colloms, S.D.3
  • 130
    • 23744505065 scopus 로고    scopus 로고
    • Mutagenesis of PepA suggests a new model for the Xer/cer synaptic complex
    • Reijns M, Lu Y, Leach S, Colloms SD. 2005. Mutagenesis of PepA suggests a new model for the Xer/cer synaptic complex. Mol Microbiol 57:927-941.
    • (2005) Mol Microbiol , vol.57 , pp. 927-941
    • Reijns, M.1    Lu, Y.2    Leach, S.3    Colloms, S.D.4
  • 131
    • 63249100571 scopus 로고    scopus 로고
    • Insights into the architecture and stoichiometry of Escherichia coli PepA*DNA complexes involved in transcriptional control and site-specific DNA recombination by atomic force microscopy
    • Minh PNL, Devroede N, Massant J, Maes D, Charlier D. 2009. Insights into the architecture and stoichiometry of Escherichia coli PepA*DNA complexes involved in transcriptional control and site-specific DNA recombination by atomic force microscopy. Nucleic Acids Res 37:1463-1476.
    • (2009) Nucleic Acids Res , vol.37 , pp. 1463-1476
    • Minh, P.N.L.1    Devroede, N.2    Massant, J.3    Maes, D.4    Charlier, D.5
  • 132
    • 0020523314 scopus 로고
    • Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination
    • Abremski K, Hoess R, Sternberg N. 1983. Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32:1301-1311.
    • (1983) Cell , vol.32 , pp. 1301-1311
    • Abremski, K.1    Hoess, R.2    Sternberg, N.3
  • 133
    • 0021858501 scopus 로고
    • Phage P1 Cre-loxP site-specific recombination. Effects of DNA supercoiling on catenation and knotting of recombinant products
    • Abremski K, Hoess R. 1985. Phage P1 Cre-loxP site-specific recombination. Effects of DNA supercoiling on catenation and knotting of recombinant products. J Mol Biol 184:211-220.
    • (1985) J Mol Biol , vol.184 , pp. 211-220
    • Abremski, K.1    Hoess, R.2
  • 134
    • 0026784978 scopus 로고
    • Cre-lox recombination in Escherichia coli cells. Mechanistic differences from the in vitro reaction
    • Adams DE, Bliska JB, Cozzarelli NR. 1992. Cre-lox recombination in Escherichia coli cells. Mechanistic differences from the in vitro reaction. J Mol Biol 226:661-673.
    • (1992) J Mol Biol , vol.226 , pp. 661-673
    • Adams, D.E.1    Bliska, J.B.2    Cozzarelli, N.R.3
  • 135
    • 0033603387 scopus 로고    scopus 로고
    • Topological selectivity of a hybrid site-specific recombination system with elements from Tn3 res/resolvase and bacteriophage P1 loxP/Cre
    • Kilbride E, Boocock MR, Stark WM. 1999. Topological selectivity of a hybrid site-specific recombination system with elements from Tn3 res/resolvase and bacteriophage P1 loxP/Cre. J Mol Biol 289:1219-1230.
    • (1999) J Mol Biol , vol.289 , pp. 1219-1230
    • Kilbride, E.1    Boocock, M.R.2    Stark, W.M.3
  • 136
    • 1942455734 scopus 로고    scopus 로고
    • Control of Cre recombination by regulatory elements from Xer recombination systems
    • Gourlay SC, Colloms SD. 2004. Control of Cre recombination by regulatory elements from Xer recombination systems. Mol Microbiol 52:53-65.
    • (2004) Mol Microbiol , vol.52 , pp. 53-65
    • Gourlay, S.C.1    Colloms, S.D.2
  • 138
    • 0028349558 scopus 로고
    • Xermediated site-specific recombination at cer generates Holliday junctions in vivo
    • McCulloch R, Coggins LW, Colloms SD, Sherratt DJ. 1994. Xermediated site-specific recombination at cer generates Holliday junctions in vivo. EMBO J 13:1844-1855.
    • (1994) EMBO J , vol.13 , pp. 1844-1855
    • McCulloch, R.1    Coggins, L.W.2    Colloms, S.D.3    Sherratt, D.J.4
  • 139
    • 0034761801 scopus 로고    scopus 로고
    • The RepA protein of plasmid pSC101 controls Escherichia coli cell division through the SOS response
    • Ingmer H, Miller C, Cohen SN. 2001. The RepA protein of plasmid pSC101 controls Escherichia coli cell division through the SOS response. Mol Microbiol 42:519-526.
    • (2001) Mol Microbiol , vol.42 , pp. 519-526
    • Ingmer, H.1    Miller, C.2    Cohen, S.N.3
  • 140
    • 0027180203 scopus 로고
    • ColE1 multimer formation triggers inhibition of Escherichia coli cell division
    • Patient ME, Summers DK. 1993. ColE1 multimer formation triggers inhibition of Escherichia coli cell division. Mol Microbiol 9:1089-1095.
    • (1993) Mol Microbiol , vol.9 , pp. 1089-1095
    • Patient, M.E.1    Summers, D.K.2
  • 142
    • 33646530499 scopus 로고    scopus 로고
    • A mutational analysis of the ColE1-encoded cell cycle regulator Rcd confirms its role in plasmid stability
    • Balding C, Blaby I, Summers D. 2006. A mutational analysis of the ColE1-encoded cell cycle regulator Rcd confirms its role in plasmid stability. Plasmid 56:68-73.
    • (2006) Plasmid , vol.56 , pp. 68-73
    • Balding, C.1    Blaby, I.2    Summers, D.3
  • 143
    • 0035169451 scopus 로고    scopus 로고
    • Monomer-dimer control of the ColE1 P(cer) promoter
    • Chatwin HM, Summers DK. 2001. Monomer-dimer control of the ColE1 P(cer) promoter. Microbiology (Reading U K) 147:3071-3081.
    • (2001) Microbiology (Reading U K) , vol.147 , pp. 3071-3081
    • Chatwin, H.M.1    Summers, D.K.2
  • 144
    • 33845708038 scopus 로고    scopus 로고
    • Indole signalling contributes to the stable maintenance of Escherichia coli multicopy plasmids
    • Chant EL, Summers DK. 2007. Indole signalling contributes to the stable maintenance of Escherichia coli multicopy plasmids. Mol Microbiol 63:35-43.
    • (2007) Mol Microbiol , vol.63 , pp. 35-43
    • Chant, E.L.1    Summers, D.K.2
  • 146
    • 84858996990 scopus 로고    scopus 로고
    • Indole inhibition of ColE1 replication contributes to stable plasmid maintenance
    • Field CM, Summers DK. 2012. Indole inhibition of ColE1 replication contributes to stable plasmid maintenance. Plasmid 67:88-94.
    • (2012) Plasmid , vol.67 , pp. 88-94
    • Field, C.M.1    Summers, D.K.2
  • 148
    • 79952940896 scopus 로고    scopus 로고
    • Molecular mechanism of acquisition of the cholera toxin genes
    • Das B, Bischerour J, Barre FX. 2011. Molecular mechanism of acquisition of the cholera toxin genes. Indian J Med Res 133:195-200.
    • (2011) Indian J Med Res , vol.133 , pp. 195-200
    • Das, B.1    Bischerour, J.2    Barre, F.X.3
  • 149
    • 0024250708 scopus 로고
    • Nucleotide sequences involved in the neolysogenic insertion of filamentous phage Cf16-v1 into the Xanthomonas campestris pv. citri chromosome
    • Dai H, Chow TY, Liao HJ, Chen ZY, Chiang KS. 1988. Nucleotide sequences involved in the neolysogenic insertion of filamentous phage Cf16-v1 into the Xanthomonas campestris pv. citri chromosome. Virology 167:613-620.
    • (1988) Virology , vol.167 , pp. 613-620
    • Dai, H.1    Chow, T.Y.2    Liao, H.J.3    Chen, Z.Y.4    Chiang, K.S.5
  • 151
    • 0034943923 scopus 로고    scopus 로고
    • A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates
    • Dillard JP, Seifert HS. 2001. A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol Microbiol 41:263-277.
    • (2001) Mol Microbiol , vol.41 , pp. 263-277
    • Dillard, J.P.1    Seifert, H.S.2
  • 152
    • 0030057090 scopus 로고    scopus 로고
    • Lysogenic conversion by a filamentous phage encoding cholera toxin
    • Waldor MK, Mekalanos JJ. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910-1914.
    • (1996) Science , vol.272 , pp. 1910-1914
    • Waldor, M.K.1    Mekalanos, J.J.2
  • 153
    • 0037030684 scopus 로고    scopus 로고
    • Filamentous phage integration requires the host recombinases XerC and XerD
    • Huber KE, Waldor MK. 2002. Filamentous phage integration requires the host recombinases XerC and XerD. Nature 417:656-659.
    • (2002) Nature , vol.417 , pp. 656-659
    • Huber, K.E.1    Waldor, M.K.2
  • 154
    • 0036838014 scopus 로고    scopus 로고
    • Conserved filamentous prophage in Escherichia coli O18:K1:H7 and Yersinia pestis biovar orientalis
    • Gonzalez MD, Lichtensteiger CA, Caughlan R, Vimr ER. 2002. Conserved filamentous prophage in Escherichia coli O18:K1:H7 and Yersinia pestis biovar orientalis. J Bacteriol 184:6050-6055.
    • (2002) J Bacteriol , vol.184 , pp. 6050-6055
    • Gonzalez, M.D.1    Lichtensteiger, C.A.2    Caughlan, R.3    Vimr, E.R.4
  • 156
    • 23744489154 scopus 로고    scopus 로고
    • The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae
    • Val M-E, Bouvier M, Campos J, Sherratt D, Cornet F, Mazel D, Barre F-X. 2005. The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. Mol Cell 19:559-566.
    • (2005) Mol Cell , vol.19 , pp. 559-566
    • Val, M.-E.1    Bouvier, M.2    Campos, J.3    Sherratt, D.4    Cornet, F.5    Mazel, D.6    Barre, F.-X.7
  • 157
    • 79952296023 scopus 로고    scopus 로고
    • VGJphi integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains
    • Das B, Bischerour J, Barre F-X. 2011. VGJphi integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains. Proc Natl Acad Sci U S A 108:2516-2521.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 2516-2521
    • Das, B.1    Bischerour, J.2    Barre, F.-X.3
  • 158
    • 84912050946 scopus 로고    scopus 로고
    • XerD-mediated FtsK-independent integration of TLCφ into the Vibrio cholerae genome
    • pii:201404047. [Epub ahead of print]
    • Midonet C, Das B, Paly E, Barre F-X. 2014. XerD-mediated FtsK-independent integration of TLCφ into the Vibrio cholerae genome. Proc Natl Acad Sci U S A pii:201404047. [Epub ahead of print]
    • (2014) Proc Natl Acad Sci U S A
    • Midonet, C.1    Das, B.2    Paly, E.3    Barre, F.-X.4
  • 161
    • 0344235387 scopus 로고    scopus 로고
    • Novel type of specialized transduction for CTX phi or its satellite phage RS1 mediated by filamentous phage VGJ phi in Vibrio cholerae
    • Campos J, Martinez E, Marrero K, Silva Y, Rodriguez BL, Suzarte E, Ledon T, Fando R. 2003. Novel type of specialized transduction for CTX phi or its satellite phage RS1 mediated by filamentous phage VGJ phi in Vibrio cholerae. J Bacteriol 185:7231-7240.
    • (2003) J Bacteriol , vol.185 , pp. 7231-7240
    • Campos, J.1    Martinez, E.2    Marrero, K.3    Silva, Y.4    Rodriguez, B.L.5    Suzarte, E.6    Ledon, T.7    Fando, R.8
  • 162
    • 78049303152 scopus 로고    scopus 로고
    • Satellite phage TLCphi enables toxigenic conversion by CTX phage through dif site alteration
    • Hassan F, Kamruzzaman M, Mekalanos JJ, Faruque SM. 2010. Satellite phage TLCphi enables toxigenic conversion by CTX phage through dif site alteration. Nature 467:982-985.
    • (2010) Nature , vol.467 , pp. 982-985
    • Hassan, F.1    Kamruzzaman, M.2    Mekalanos, J.J.3    Faruque, S.M.4
  • 163
    • 0031776324 scopus 로고    scopus 로고
    • Replication and integration of a Vibrio cholerae cryptic plasmid linked to the CTX prophage
    • Rubin EJ, Lin W, Mekalanos JJ, Waldor MK. 1998. Replication and integration of a Vibrio cholerae cryptic plasmid linked to the CTX prophage. Mol Microbiol 28:1247-1254.
    • (1998) Mol Microbiol , vol.28 , pp. 1247-1254
    • Rubin, E.J.1    Lin, W.2    Mekalanos, J.J.3    Waldor, M.K.4
  • 164
    • 0034902818 scopus 로고    scopus 로고
    • Evidence for a rollingcircle mechanism of phage DNA synthesis from both replicative and integrated forms of CTXphi
    • Moyer KE, Kimsey HH, Waldor MK. 2001. Evidence for a rollingcircle mechanism of phage DNA synthesis from both replicative and integrated forms of CTXphi. Mol Microbiol 41:311-323.
    • (2001) Mol Microbiol , vol.41 , pp. 311-323
    • Moyer, K.E.1    Kimsey, H.H.2    Waldor, M.K.3
  • 165
    • 0026480991 scopus 로고
    • Chromosomal insertion sites for phages and plasmids
    • Campbell AM. 1992. Chromosomal insertion sites for phages and plasmids. J Bacteriol 174:7495-7499.
    • (1992) J Bacteriol , vol.174 , pp. 7495-7499
    • Campbell, A.M.1
  • 166
    • 0024967060 scopus 로고
    • Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements
    • Reiter WD, Palm P, Yeats S. 1989. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res 17:1907-1914.
    • (1989) Nucleic Acids Res , vol.17 , pp. 1907-1914
    • Reiter, W.D.1    Palm, P.2    Yeats, S.3
  • 169
    • 8544246412 scopus 로고    scopus 로고
    • Characterization of XerC- and XerD-dependent CTX phage integration in Vibrio cholerae
    • McLeod SM, Waldor MK. 2004. Characterization of XerC- and XerD-dependent CTX phage integration in Vibrio cholerae. Mol Microbiol 54:935-947.
    • (2004) Mol Microbiol , vol.54 , pp. 935-947
    • McLeod, S.M.1    Waldor, M.K.2
  • 170
    • 12344324892 scopus 로고    scopus 로고
    • LexA cleavage is required for CTX prophage induction
    • Quinones M, Kimsey HH, Waldor MK. 2005. LexA cleavage is required for CTX prophage induction. Mol Cell 17:291-300.
    • (2005) Mol Cell , vol.17 , pp. 291-300
    • Quinones, M.1    Kimsey, H.H.2    Waldor, M.K.3
  • 171
    • 33845993963 scopus 로고    scopus 로고
    • LexA represses CTXphi transcription by blocking access of the alpha C-terminal domain of RNA polymerase to promoter DNA
    • Quinones M, Kimsey HH, Ross W, Gourse RL, Waldor MK. 2006. LexA represses CTXphi transcription by blocking access of the alpha C-terminal domain of RNA polymerase to promoter DNA. J Biol Chem 281:39407-39412.
    • (2006) J Biol Chem , vol.281 , pp. 39407-39412
    • Quinones, M.1    Kimsey, H.H.2    Ross, W.3    Gourse, R.L.4    Waldor, M.K.5
  • 172
    • 84866380537 scopus 로고    scopus 로고
    • Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration
    • Bischerour J, Spangenberg C, Barre F-X. 2012. Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration. EMBO J 31:3757-3767.
    • (2012) EMBO J , vol.31 , pp. 3757-3767
    • Bischerour, J.1    Spangenberg, C.2    Barre, F.-X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.