-
1
-
-
0030816550
-
The integrase family of tyrosine recombinases: evolution of a conserved active site domain
-
Esposito D., Scocca J.J. The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res. 1997, 25:3605-3614.
-
(1997)
Nucleic Acids Res.
, vol.25
, pp. 3605-3614
-
-
Esposito, D.1
Scocca, J.J.2
-
2
-
-
0038659759
-
Similarities and differences among 105 members of the Int family of site-specific recombinases
-
Nunes-Duby S.E., et al. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res. 1998, 26:391-406.
-
(1998)
Nucleic Acids Res.
, vol.26
, pp. 391-406
-
-
Nunes-Duby, S.E.1
-
3
-
-
84864810701
-
Site-specific recombination systems in filamentous phages
-
Askora A., et al. Site-specific recombination systems in filamentous phages. Mol. Genet. Genomics 2012, 287:525-530.
-
(2012)
Mol. Genet. Genomics
, vol.287
, pp. 525-530
-
-
Askora, A.1
-
4
-
-
0001177771
-
A correlation of ring-shaped chromosomes with variegation in Zea mays
-
McClintock B. A correlation of ring-shaped chromosomes with variegation in Zea mays. Proc. Natl. Acad. Sci. U.S.A. 1932, 18:677-681.
-
(1932)
Proc. Natl. Acad. Sci. U.S.A.
, vol.18
, pp. 677-681
-
-
McClintock, B.1
-
5
-
-
0027422093
-
Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12
-
Blakely G., et al. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 1993, 75:351-361.
-
(1993)
Cell
, vol.75
, pp. 351-361
-
-
Blakely, G.1
-
6
-
-
52949114581
-
FtsK-dependent dimer resolution on multiple chromosomes in the pathogen Vibrio cholerae
-
Val M-E., et al. FtsK-dependent dimer resolution on multiple chromosomes in the pathogen Vibrio cholerae. PLoS Genet. 2008, 4:e1000201.
-
(2008)
PLoS Genet.
, vol.4
-
-
Val, M.-E.1
-
7
-
-
0028225930
-
Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmid multimers and to substitute for the analogous chromosomal Escherichia coli site dif
-
Cornet F., et al. Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmid multimers and to substitute for the analogous chromosomal Escherichia coli site dif. J. Bacteriol. 1994, 176:3188-3195.
-
(1994)
J. Bacteriol.
, vol.176
, pp. 3188-3195
-
-
Cornet, F.1
-
8
-
-
0025602270
-
Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases
-
Colloms S.D., et al. Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases. J. Bacteriol. 1990, 172:6973-6980.
-
(1990)
J. Bacteriol.
, vol.172
, pp. 6973-6980
-
-
Colloms, S.D.1
-
9
-
-
0033636814
-
FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation
-
Barre F.X., et al. FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation. Genes Dev. 2000, 14:2976-2988.
-
(2000)
Genes Dev.
, vol.14
, pp. 2976-2988
-
-
Barre, F.X.1
-
10
-
-
34250005713
-
FtsK, a literate chromosome segregation machine
-
Bigot S., et al. FtsK, a literate chromosome segregation machine. Mol. Microbiol. 2007, 64:1434-1441.
-
(2007)
Mol. Microbiol.
, vol.64
, pp. 1434-1441
-
-
Bigot, S.1
-
11
-
-
33750595603
-
Oriented loading of FtsK on KOPS
-
Bigot S., et al. Oriented loading of FtsK on KOPS. Nat. Struct. Mol. Biol. 2006, 13:1026-1028.
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 1026-1028
-
-
Bigot, S.1
-
12
-
-
78650535019
-
Sequence-specific assembly of FtsK hexamers establishes directional translocation on DNA
-
Graham J.E., et al. Sequence-specific assembly of FtsK hexamers establishes directional translocation on DNA. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:20263-20268.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 20263-20268
-
-
Graham, J.E.1
-
13
-
-
60349124253
-
KOPS-guided DNA translocation by FtsK safeguards Escherichia coli chromosome segregation
-
Sivanathan V., et al. KOPS-guided DNA translocation by FtsK safeguards Escherichia coli chromosome segregation. Mol. Microbiol. 2009, 71:1031-1042.
-
(2009)
Mol. Microbiol.
, vol.71
, pp. 1031-1042
-
-
Sivanathan, V.1
-
14
-
-
79960223131
-
Activation of XerCD-dif recombination by the FtsK DNA translocase
-
Grainge I., et al. Activation of XerCD-dif recombination by the FtsK DNA translocase. Nucleic Acids Res. 2011, 39:5140-5148.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 5140-5148
-
-
Grainge, I.1
-
15
-
-
33645462819
-
Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinase
-
Yates J., et al. Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinase. Mol. Microbiol. 2006, 59:1754-1766.
-
(2006)
Mol. Microbiol.
, vol.59
, pp. 1754-1766
-
-
Yates, J.1
-
16
-
-
0037169328
-
FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases
-
Aussel L., et al. FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 2002, 108:195-205.
-
(2002)
Cell
, vol.108
, pp. 195-205
-
-
Aussel, L.1
-
17
-
-
78649592020
-
Multiple regions along the Escherichia coli FtsK protein are implicated in cell division
-
Dubarry N., et al. Multiple regions along the Escherichia coli FtsK protein are implicated in cell division. Mol. Mic. 2010, 78:1088-1100.
-
(2010)
Mol. Mic.
, vol.78
, pp. 1088-1100
-
-
Dubarry, N.1
-
18
-
-
76349104603
-
Fully efficient chromosome dimer resolution in Escherichia coli cells lacking the integral membrane domain of FtsK
-
Dubarry N., Barre F.X. Fully efficient chromosome dimer resolution in Escherichia coli cells lacking the integral membrane domain of FtsK. EMBO J. 2010, 29:597-605.
-
(2010)
EMBO J.
, vol.29
, pp. 597-605
-
-
Dubarry, N.1
Barre, F.X.2
-
19
-
-
58149142956
-
Asymmetry of chromosome Replichores renders the DNA translocase activity of FtsK essential for cell division and cell shape maintenance in Escherichia coli
-
Lesterlin C., et al. Asymmetry of chromosome Replichores renders the DNA translocase activity of FtsK essential for cell division and cell shape maintenance in Escherichia coli. PLoS Genet. 2008, 4:e1000288.
-
(2008)
PLoS Genet.
, vol.4
-
-
Lesterlin, C.1
-
20
-
-
42549161198
-
Delayed activation of Xer recombination at dif by FtsK during septum assembly in Escherichia coli
-
Kennedy S.P., et al. Delayed activation of Xer recombination at dif by FtsK during septum assembly in Escherichia coli. Mol. Microbiol. 2008, 68:1018-1028.
-
(2008)
Mol. Microbiol.
, vol.68
, pp. 1018-1028
-
-
Kennedy, S.P.1
-
21
-
-
0030943173
-
Topological selectivity in Xer site-specific recombination
-
Colloms S.D., et al. Topological selectivity in Xer site-specific recombination. Cell 1997, 88:855-864.
-
(1997)
Cell
, vol.88
, pp. 855-864
-
-
Colloms, S.D.1
-
22
-
-
0037099579
-
Accessory factors determine the order of strand exchange in Xer recombination at psi
-
Bregu M., et al. Accessory factors determine the order of strand exchange in Xer recombination at psi. Embo J. 2002, 21:3888-3897.
-
(2002)
Embo J.
, vol.21
, pp. 3888-3897
-
-
Bregu, M.1
-
23
-
-
23744489154
-
The single stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae
-
Val M-E., et al. The single stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. Mol. Cell 2005, 19:559-566.
-
(2005)
Mol. Cell
, vol.19
, pp. 559-566
-
-
Val, M.-E.1
-
24
-
-
29244454620
-
Integron cassette insertion: a recombination process involving a folded single strand substrate
-
Bouvier M., et al. Integron cassette insertion: a recombination process involving a folded single strand substrate. Embo J. 2005, 24:4356-4367.
-
(2005)
Embo J.
, vol.24
, pp. 4356-4367
-
-
Bouvier, M.1
-
25
-
-
77749297944
-
Molecular keys of the tropism of integration of the cholera toxin phage
-
Das B., et al. Molecular keys of the tropism of integration of the cholera toxin phage. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:4377-4382.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 4377-4382
-
-
Das, B.1
-
26
-
-
33646337441
-
Structural basis for broad DNA-specificity in integron recombination
-
MacDonald D., et al. Structural basis for broad DNA-specificity in integron recombination. Nature 2006, 440:1157-1162.
-
(2006)
Nature
, vol.440
, pp. 1157-1162
-
-
MacDonald, D.1
-
27
-
-
84866948138
-
Replicative resolution of integron cassette insertion
-
Loot C., et al. Replicative resolution of integron cassette insertion. Nucleic Acids Res. 2012, 40:8361-8370.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 8361-8370
-
-
Loot, C.1
-
28
-
-
0034595513
-
Coordinated control of XerC and XerD catalytic activities during Holliday junction resolution
-
Arciszewska L.K., et al. Coordinated control of XerC and XerD catalytic activities during Holliday junction resolution. J. Mol. Biol. 2000, 299:391-403.
-
(2000)
J. Mol. Biol.
, vol.299
, pp. 391-403
-
-
Arciszewska, L.K.1
-
29
-
-
0033382191
-
Reciprocal control of catalysis by the tyrosine recombinases XerC and XerD: an enzymatic switch in site-specific recombination
-
Hallet B., et al. Reciprocal control of catalysis by the tyrosine recombinases XerC and XerD: an enzymatic switch in site-specific recombination. Mol. Cell 1999, 4:949-959.
-
(1999)
Mol. Cell
, vol.4
, pp. 949-959
-
-
Hallet, B.1
-
30
-
-
84866380537
-
Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration
-
Bischerour J., et al. Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration. EMBO J. 2012, 31:3757-3767.
-
(2012)
EMBO J.
, vol.31
, pp. 3757-3767
-
-
Bischerour, J.1
-
31
-
-
0034902818
-
Evidence for a rolling-circle mechanism of phage DNA synthesis from both replicative and integrated forms of CTXphi
-
Moyer K.E., et al. Evidence for a rolling-circle mechanism of phage DNA synthesis from both replicative and integrated forms of CTXphi. Mol. Microbiol. 2001, 41:311-323.
-
(2001)
Mol. Microbiol.
, vol.41
, pp. 311-323
-
-
Moyer, K.E.1
-
32
-
-
79952296023
-
VGJφ-integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains
-
Das B., et al. VGJφ-integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:2516-2521.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 2516-2521
-
-
Das, B.1
-
33
-
-
78049303152
-
Satellite phage TLCphi enables toxigenic conversion by CTX phage through dif site alteration
-
Hassan F., et al. Satellite phage TLCphi enables toxigenic conversion by CTX phage through dif site alteration. Nature 2010, 467:982-985.
-
(2010)
Nature
, vol.467
, pp. 982-985
-
-
Hassan, F.1
-
34
-
-
76849085872
-
VEJ{phi}, a novel filamentous phage of Vibrio cholerae able to transduce the cholera toxin genes
-
Campos J., et al. VEJ{phi}, a novel filamentous phage of Vibrio cholerae able to transduce the cholera toxin genes. Microbiology 2010, 156:108-115.
-
(2010)
Microbiology
, vol.156
, pp. 108-115
-
-
Campos, J.1
-
35
-
-
0344235387
-
Novel type of specialized transduction for CTX phi or its satellite phage RS1 mediated by filamentous phage VGJ phi in Vibrio cholerae
-
Campos J., et al. Novel type of specialized transduction for CTX phi or its satellite phage RS1 mediated by filamentous phage VGJ phi in Vibrio cholerae. J. Bacteriol. 2003, 185:7231-7240.
-
(2003)
J. Bacteriol.
, vol.185
, pp. 7231-7240
-
-
Campos, J.1
-
36
-
-
0141615773
-
VGJ phi, a novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTX phi
-
Campos J., et al. VGJ phi, a novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTX phi. J. Bacteriol. 2003, 185:5685-5696.
-
(2003)
J. Bacteriol.
, vol.185
, pp. 5685-5696
-
-
Campos, J.1
-
37
-
-
0031776324
-
Replication and integration of a Vibrio cholerae cryptic plasmid linked to the CTX prophage
-
Rubin E.J., et al. Replication and integration of a Vibrio cholerae cryptic plasmid linked to the CTX prophage. Mol. Microbiol. 1998, 28:1247-1254.
-
(1998)
Mol. Microbiol.
, vol.28
, pp. 1247-1254
-
-
Rubin, E.J.1
-
38
-
-
70349304423
-
Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae
-
Chun J., et al. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:15442-15447.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 15442-15447
-
-
Chun, J.1
-
39
-
-
0030057090
-
Lysogenic conversion by a filamentous phage encoding cholera toxin
-
Waldor M.K., Mekalanos J.J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 1996, 272:1910-1914.
-
(1996)
Science
, vol.272
, pp. 1910-1914
-
-
Waldor, M.K.1
Mekalanos, J.J.2
-
40
-
-
0037030684
-
Filamentous phage integration requires the host recombinases XerC and XerD
-
Huber K.E., Waldor M.K. Filamentous phage integration requires the host recombinases XerC and XerD. Nature 2002, 417:656-659.
-
(2002)
Nature
, vol.417
, pp. 656-659
-
-
Huber, K.E.1
Waldor, M.K.2
-
41
-
-
80053133499
-
Evidence for several waves of global transmission in the seventh cholera pandemic
-
Mutreja A., et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 2011, 477:462-465.
-
(2011)
Nature
, vol.477
, pp. 462-465
-
-
Mutreja, A.1
-
42
-
-
79952940896
-
Molecular mechanism of acquisition of the cholera toxin genes
-
Das B., et al. Molecular mechanism of acquisition of the cholera toxin genes. Indian J. Med. Res. 2011, 133:195-200.
-
(2011)
Indian J. Med. Res.
, vol.133
, pp. 195-200
-
-
Das, B.1
-
43
-
-
33846686822
-
A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus
-
Derbise A., et al. A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus. Mol. Microbiol. 2007, 63:1145-1157.
-
(2007)
Mol. Microbiol.
, vol.63
, pp. 1145-1157
-
-
Derbise, A.1
-
44
-
-
0036838014
-
Conserved filamentous prophage in Escherichia coli O18:K1:H7 and Yersinia pestis biovar orientalis
-
Gonzalez M.D., et al. Conserved filamentous prophage in Escherichia coli O18:K1:H7 and Yersinia pestis biovar orientalis. J. Bacteriol. 2002, 184:6050-6055.
-
(2002)
J. Bacteriol.
, vol.184
, pp. 6050-6055
-
-
Gonzalez, M.D.1
-
45
-
-
0024250708
-
Nucleotide sequences involved in the neolysogenic insertion of filamentous phage Cf16-v1 into the Xanthomonas campestris pv. citri chromosome
-
Dai H., et al. Nucleotide sequences involved in the neolysogenic insertion of filamentous phage Cf16-v1 into the Xanthomonas campestris pv. citri chromosome. Virology 1988, 167:613-620.
-
(1988)
Virology
, vol.167
, pp. 613-620
-
-
Dai, H.1
-
46
-
-
0034756363
-
Plasmids carrying cloned fragments of RF DNA from the filamentous phage (phi)Lf can be integrated into the host chromosome via site-specific integration and homologous recombination
-
Lin N.T., et al. Plasmids carrying cloned fragments of RF DNA from the filamentous phage (phi)Lf can be integrated into the host chromosome via site-specific integration and homologous recombination. Mol. Genet. Genomics 2001, 266:425-435.
-
(2001)
Mol. Genet. Genomics
, vol.266
, pp. 425-435
-
-
Lin, N.T.1
-
47
-
-
0034644159
-
The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis
-
Simpson A.J., et al. The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis. Nature 2000, 406:151-159.
-
(2000)
Nature
, vol.406
, pp. 151-159
-
-
Simpson, A.J.1
-
48
-
-
78650868871
-
XerCD-mediated site-specific recombination leads to loss of the 57kb gonococcal genetic island
-
Dominguez N.M., et al. XerCD-mediated site-specific recombination leads to loss of the 57kb gonococcal genetic island. J. Bacteriol. 2010, 193:377-388.
-
(2010)
J. Bacteriol.
, vol.193
, pp. 377-388
-
-
Dominguez, N.M.1
-
49
-
-
0034943923
-
A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates
-
Dillard J.P., Seifert H.S. A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol. Microbiol. 2001, 41:263-277.
-
(2001)
Mol. Microbiol.
, vol.41
, pp. 263-277
-
-
Dillard, J.P.1
Seifert, H.S.2
|