메뉴 건너뛰기




Volumn 75, Issue 5, 2016, Pages 1-12

Expression of Concern: A hybrid computational intelligence method for predicting dew point temperature (Environmental Earth Sciences, (2016), 75, 5, (415), 10.1007/s12665-015-5135-7);A hybrid computational intelligence method for predicting dew point temperature

Author keywords

Daily dew point temperature; Extreme learning machine (ELM); Hybrid approach; Prediction; Statistical analysis; Wavelet transform (WT) algorithm

Indexed keywords

COUPLINGS; ERRORS; FORECASTING; KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; MEAN SQUARE ERROR; NEURAL NETWORKS; STATISTICAL METHODS; SUPPORT VECTOR MACHINES; WAVELET TRANSFORMS;

EID: 84959104448     PISSN: 18666280     EISSN: 18666299     Source Type: Journal    
DOI: 10.1007/s12665-020-09032-0     Document Type: Erratum
Times cited : (17)

References (61)
  • 1
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407(1):28–40
    • (2011) J Hydrol , vol.407 , Issue.1 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 2
    • 33644624434 scopus 로고    scopus 로고
    • Dew formation and water vapor absorption in semi-arid environments—a review
    • Agam N, Berliner PR (2006) Dew formation and water vapor absorption in semi-arid environments—a review. J Arid Environ 65:572–590
    • (2006) J Arid Environ , vol.65 , pp. 572-590
    • Agam, N.1    Berliner, P.R.2
  • 3
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: the support vector machines approach
    • Asefa T, Kemblowski M, McKee M, Khalil A (2006) Multi-time scale stream flow predictions: the support vector machines approach. J Hydrol 318:7–16
    • (2006) J Hydrol , vol.318 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 4
    • 0025659366 scopus 로고
    • Moisture distribution within a maize crop due to dew
    • Atzema AJ, Jacobs AFG, Wartena L (1990) Moisture distribution within a maize crop due to dew. Neth J Agric Sci 38:117–129
    • (1990) Neth J Agric Sci , vol.38 , pp. 117-129
    • Atzema, A.J.1    Jacobs, A.F.G.2    Wartena, L.3
  • 5
    • 0026836829 scopus 로고
    • Neural-network approach to the determination of aquifer parameters
    • Aziz A, Wong K (1992) Neural-network approach to the determination of aquifer parameters. Ground Water GRWAAP 30:164–166
    • (1992) Ground Water GRWAAP , vol.30 , pp. 164-166
    • Aziz, A.1    Wong, K.2
  • 6
    • 0037199710 scopus 로고    scopus 로고
    • Aquifer parameters determination for large diameter wells using neural network approach
    • Balkhair K (2002) Aquifer parameters determination for large diameter wells using neural network approach. J Hydrol 265:118–128
    • (2002) J Hydrol , vol.265 , pp. 118-128
    • Balkhair, K.1
  • 8
    • 33751206531 scopus 로고    scopus 로고
    • Reliability and performance-based design by artificial neural network
    • Chau K (2007) Reliability and performance-based design by artificial neural network. Adv Eng Softw 38:145–149
    • (2007) Adv Eng Softw , vol.38 , pp. 145-149
    • Chau, K.1
  • 9
    • 84856386944 scopus 로고    scopus 로고
    • Sunshine-based estimation of global solar radiation on horizontal surface at Lake Van region (Turkey)
    • Duzen H, Aydin H (2012) Sunshine-based estimation of global solar radiation on horizontal surface at Lake Van region (Turkey). Energy Convers Manag 58:35–46
    • (2012) Energy Convers Manag , vol.58 , pp. 35-46
    • Duzen, H.1    Aydin, H.2
  • 10
    • 84896908699 scopus 로고    scopus 로고
    • Mobility prediction in mobile ad hoc networks using extreme learning machines
    • Ghouti L, Sheltami TR, Alutaibi KS (2013) Mobility prediction in mobile ad hoc networks using extreme learning machines. Proc Comput Sci 19:305–312
    • (2013) Proc Comput Sci , vol.19 , pp. 305-312
    • Ghouti, L.1    Sheltami, T.R.2    Alutaibi, K.S.3
  • 11
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: a new learning scheme of feedforward neural networks
    • Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. Int Jt Conf Neural Netw 2:985–990
    • (2004) Int Jt Conf Neural Netw , vol.2 , pp. 985-990
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 12
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang GB, Zhu QY, Siew CK (2006a) Extreme learning machine: theory and applications. Neurocomputing 70:489–501
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 13
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang GB, Chen L, Siew CK (2006b) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17:879–892
    • (2006) IEEE Trans Neural Netw , vol.17 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 14
    • 84908682236 scopus 로고    scopus 로고
    • Trends in extreme learning machines: a review
    • Huang G, Huang GB, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48
    • (2015) Neural Netw , vol.61 , pp. 32-48
    • Huang, G.1    Huang, G.B.2    Song, S.3    You, K.4
  • 15
    • 0037346516 scopus 로고    scopus 로고
    • Estimating daily dew point temperature for the northern Great Plains using maximum and minimum temperature
    • Hubbard KG, Mahmood R, Carlson C (2003) Estimating daily dew point temperature for the northern Great Plains using maximum and minimum temperature. Agron J 95(2):323–328
    • (2003) Agron J , vol.95 , Issue.2 , pp. 323-328
    • Hubbard, K.G.1    Mahmood, R.2    Carlson, C.3
  • 16
    • 0028496320 scopus 로고
    • An overview of wavelet based multiresolution analyses
    • Jawerth B, Sweldens W (1994) An overview of wavelet based multiresolution analyses. SIAM Rev 36(3):377–412
    • (1994) SIAM Rev , vol.36 , Issue.3 , pp. 377-412
    • Jawerth, B.1    Sweldens, W.2
  • 17
    • 84870238942 scopus 로고    scopus 로고
    • Multitask multiclass support vector machines: model and experiments
    • Ji Y, Sun S (2013) Multitask multiclass support vector machines: model and experiments. Pattern Recogn 46(3):914–924
    • (2013) Pattern Recogn , vol.46 , Issue.3 , pp. 914-924
    • Ji, Y.1    Sun, S.2
  • 18
    • 84874509284 scopus 로고    scopus 로고
    • Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform
    • Kalteh AM (2013) Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Comput Geosci 54:1–8
    • (2013) Comput Geosci , vol.54 , pp. 1-8
    • Kalteh, A.M.1
  • 19
    • 84899800725 scopus 로고    scopus 로고
    • A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting
    • Kavousi-Fard A, Samet H, Marzbani F (2014) A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Syst Appl 41:6047–6056
    • (2014) Expert Syst Appl , vol.41 , pp. 6047-6056
    • Kavousi-Fard, A.1    Samet, H.2    Marzbani, F.3
  • 20
    • 84939264491 scopus 로고    scopus 로고
    • Modeling the physical dynamics of daily dew point temperature using soft computing techniques
    • Kim S, Singh VP, Lee CJ, Seo Y (2014) Modeling the physical dynamics of daily dew point temperature using soft computing techniques. KSCE J Civ Eng. doi:10.1007/s12205-014-1197-4
    • (2014) KSCE J Civ Eng
    • Kim, S.1    Singh, V.P.2    Lee, C.J.3    Seo, Y.4
  • 21
    • 0030812880 scopus 로고    scopus 로고
    • An improved method for estimating surface humidity from daily minimum temperature
    • Kimball JS, Running SW, Nemani R (1997) An improved method for estimating surface humidity from daily minimum temperature. Agric For Meteorol 85:87–98
    • (1997) Agric For Meteorol , vol.85 , pp. 87-98
    • Kimball, J.S.1    Running, S.W.2    Nemani, R.3
  • 22
    • 84859425235 scopus 로고    scopus 로고
    • Precipitation forecasting by using wavelet-support vector machine conjunction model
    • Kisi O, Cimen M (2012) Precipitation forecasting by using wavelet-support vector machine conjunction model. Eng Appl Artif Intell 25:783–792
    • (2012) Eng Appl Artif Intell , vol.25 , pp. 783-792
    • Kisi, O.1    Cimen, M.2
  • 23
    • 33745866181 scopus 로고    scopus 로고
    • World map of the Koppen–Geiger climate classification updated
    • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Koppen–Geiger climate classification updated. Meteorol Z 15(3):259–263
    • (2006) Meteorol Z , vol.15 , Issue.3 , pp. 259-263
    • Kottek, M.1    Grieser, J.2    Beck, C.3    Rudolf, B.4    Rubel, F.5
  • 26
    • 84855979832 scopus 로고    scopus 로고
    • A novel algorithm combining support vector machine with the discrete wavelet transform for the prediction of protein sub cellular localization
    • Liang R-P, Huang S-Y, Shi S-P, Sun X-Y, Suo S-B, Qiu J-D (2012) A novel algorithm combining support vector machine with the discrete wavelet transform for the prediction of protein sub cellular localization. Comput Biol Med 42:180–187
    • (2012) Comput Biol Med , vol.42 , pp. 180-187
    • Liang, R.-P.1    Huang, S.-Y.2    Shi, S.-P.3    Sun, X.-Y.4    Suo, S.-B.5    Qiu, J.-D.6
  • 27
    • 15544389367 scopus 로고    scopus 로고
    • Potential assessment of the “support vector machine” method in forecasting ambient air pollutant trends
    • Lu WZ, Wang WJ (2005) Potential assessment of the “support vector machine” method in forecasting ambient air pollutant trends. Chemosphere 59:693–701
    • (2005) Chemosphere , vol.59 , pp. 693-701
    • Lu, W.Z.1    Wang, W.J.2
  • 28
    • 0024700097 scopus 로고
    • Theory for multiresolution signal decomposition: the wavelet representation
    • Mallat SGA (1989) Theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693
    • (1989) IEEE Trans Pattern Anal Mach Intell , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.A.1
  • 31
    • 84954498069 scopus 로고    scopus 로고
    • Using ANFIS for selection of more relevant parameters to predict dew point temperature
    • Mohammadi K, Shamshirband S, Petkovic D, Yee PL, Mansor Z (2016) Using ANFIS for selection of more relevant parameters to predict dew point temperature. Appl Therm Eng 96:311–319
    • (2016) Appl Therm Eng , vol.96 , pp. 311-319
    • Mohammadi, K.1    Shamshirband, S.2    Petkovic, D.3    Yee, P.L.4    Mansor, Z.5
  • 32
    • 84882829483 scopus 로고    scopus 로고
    • Comparison of individual and combined ANN models for prediction of air and dew point temperature
    • Nadig K, Potter W, Hoogenboom G, McClendon R (2013) Comparison of individual and combined ANN models for prediction of air and dew point temperature. Appl Intell 39:354–366. doi:10.1007/s10489-012-0417-1
    • (2013) Appl Intell , vol.39 , pp. 354-366
    • Nadig, K.1    Potter, W.2    Hoogenboom, G.3    McClendon, R.4
  • 33
    • 84893147895 scopus 로고    scopus 로고
    • Extreme learning machine towards dynamic model hypothesis in fish ethology research
    • Nian R, He B, Zheng B, Heeswijk MV, Yu Q, Miche Y et al (2014) Extreme learning machine towards dynamic model hypothesis in fish ethology research. Neurocomputing 128:273–284
    • (2014) Neurocomputing , vol.128 , pp. 273-284
    • Nian, R.1    He, B.2    Zheng, B.3    Heeswijk, M.V.4    Yu, Q.5    Miche, Y.6
  • 35
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal T, Kisi O (2007) Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J Hydrol 342:199–212
    • (2007) J Hydrol , vol.342 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 36
    • 0346306460 scopus 로고    scopus 로고
    • Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography
    • Peng Z, Chu F (2004) Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mech Syst Signal Process 18(2):199–221
    • (2004) Mech Syst Signal Process , vol.18 , Issue.2 , pp. 199-221
    • Peng, Z.1    Chu, F.2
  • 37
    • 54549091989 scopus 로고    scopus 로고
    • Support vector regression methodology for storm surge predictions
    • Rajasekaran S, Gayathri S, Lee TL (2008) Support vector regression methodology for storm surge predictions. Ocean Eng 35(16):1578–1587
    • (2008) Ocean Eng , vol.35 , Issue.16 , pp. 1578-1587
    • Rajasekaran, S.1    Gayathri, S.2    Lee, T.L.3
  • 41
    • 78649897490 scopus 로고    scopus 로고
    • Dew point temperature prediction using artificial neural networks, MS thesis
    • Shank DB (2006) Dew point temperature prediction using artificial neural networks, MS thesis. Harding University
    • (2006) Harding University
    • Shank, D.B.1
  • 42
    • 48849113389 scopus 로고    scopus 로고
    • Dew point temperature prediction using artificial neural networks
    • Shank DB, Hoogenboom G, McClendon RW (2008) Dew point temperature prediction using artificial neural networks. Appl Meteorol Climatol 47:1757–1769
    • (2008) Appl Meteorol Climatol , vol.47 , pp. 1757-1769
    • Shank, D.B.1    Hoogenboom, G.2    McClendon, R.W.3
  • 43
    • 84899493198 scopus 로고    scopus 로고
    • Estimation of daily dew point temperature using genetic programming and neural networks approaches
    • Shiri J, Kim S, Kisi O (2014) Estimation of daily dew point temperature using genetic programming and neural networks approaches. Hydrol Res 45(2):165–181
    • (2014) Hydrol Res , vol.45 , Issue.2 , pp. 165-181
    • Shiri, J.1    Kim, S.2    Kisi, O.3
  • 44
    • 84884747809 scopus 로고    scopus 로고
    • A hybrid wavelet-ELM based short term price forecasting for electricity Markets
    • Shrivastava NA, Panigrahi BK (2014) A hybrid wavelet-ELM based short term price forecasting for electricity Markets. Electr Power Energy Syst 55:41–50
    • (2014) Electr Power Energy Syst , vol.55 , pp. 41-50
    • Shrivastava, N.A.1    Panigrahi, B.K.2
  • 47
    • 84893812050 scopus 로고    scopus 로고
    • A support vector machine-firefly algorithm based forecasting model to determine malaria transmission
    • Sudheer C, Sohani SK, Kumar D, Malik A, Chahar BR, Nema AK et al (2014) A support vector machine-firefly algorithm based forecasting model to determine malaria transmission. Neurocomputing 129:279–288
    • (2014) Neurocomputing , vol.129 , pp. 279-288
    • Sudheer, C.1    Sohani, S.K.2    Kumar, D.3    Malik, A.4    Chahar, B.R.5    Nema, A.K.6
  • 48
    • 84887452388 scopus 로고    scopus 로고
    • A survey of multi-view machine learning
    • Sun S (2013) A survey of multi-view machine learning. Neural Comput Appl 23(7–8):2031–2038
    • (2013) Neural Comput Appl , vol.23 , Issue.7-8 , pp. 2031-2038
    • Sun, S.1
  • 51
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang W, Ding J (2003) Wavelet network model and its application to the prediction of hydrology. Nat Sci 1(1):67–71
    • (2003) Nat Sci , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 52
    • 84906938183 scopus 로고    scopus 로고
    • Online sequential extreme learning machine with kernels for nonstationary time series prediction
    • Wang X, Han M (2014) Online sequential extreme learning machine with kernels for nonstationary time series prediction. Neurocomputing 145:90–97
    • (2014) Neurocomputing , vol.145 , pp. 90-97
    • Wang, X.1    Han, M.2
  • 53
    • 84893651255 scopus 로고    scopus 로고
    • Fast prediction of protein–protein interaction sites based on Extreme Learning Machines
    • Wang DD, Wang R, Yan H (2014) Fast prediction of protein–protein interaction sites based on Extreme Learning Machines. Neurocomputing 128:258–266
    • (2014) Neurocomputing , vol.128 , pp. 258-266
    • Wang, D.D.1    Wang, R.2    Yan, H.3
  • 55
    • 84907483639 scopus 로고    scopus 로고
    • Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search
    • Wong PK, Wong KI, Vong CM, Cheung CS (2015) Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renew Energy 74:640–647
    • (2015) Renew Energy , vol.74 , pp. 640-647
    • Wong, P.K.1    Wong, K.I.2    Vong, C.M.3    Cheung, C.S.4
  • 56
    • 58249083168 scopus 로고    scopus 로고
    • Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space
    • Wu KP, Wang SD (2009) Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space. Pattern Recogn 42(5):710–717
    • (2009) Pattern Recogn , vol.42 , Issue.5 , pp. 710-717
    • Wu, K.P.1    Wang, S.D.2
  • 57
    • 84888287824 scopus 로고    scopus 로고
    • Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
    • Xiong T, Bao Y, Hu Z (2014) Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting. Knowl Based Syst 55:87–100
    • (2014) Knowl Based Syst , vol.55 , pp. 87-100
    • Xiong, T.1    Bao, Y.2    Hu, Z.3
  • 58
    • 67349170327 scopus 로고    scopus 로고
    • Localized support vector regression for time series prediction
    • Yang H, Huang K, King I, Lyu MR (2009) Localized support vector regression for time series prediction. Neurocomputing 72(10):2659–2669
    • (2009) Neurocomputing , vol.72 , Issue.10 , pp. 2659-2669
    • Yang, H.1    Huang, K.2    King, I.3    Lyu, M.R.4
  • 59
    • 84893091209 scopus 로고    scopus 로고
    • Bankruptcy prediction using extreme learning machine and financial expertise
    • Yu Q, Miche Y, Séverin E, Lendasse A (2014) Bankruptcy prediction using extreme learning machine and financial expertise. Neurocomputing 128:296–302
    • (2014) Neurocomputing , vol.128 , pp. 296-302
    • Yu, Q.1    Miche, Y.2    Séverin, E.3    Lendasse, A.4
  • 60
    • 84885971266 scopus 로고    scopus 로고
    • Forecasting model of coal mine water inrush based on extreme learning machine
    • Zhao Z, Li P, Xu X (2013) Forecasting model of coal mine water inrush based on extreme learning machine. Appl Math Inf Sci 7:1243–1250
    • (2013) Appl Math Inf Sci , vol.7 , pp. 1243-1250
    • Zhao, Z.1    Li, P.2    Xu, X.3
  • 61
    • 84865770172 scopus 로고    scopus 로고
    • Hourly predictive Levenberg–Marquardt ANN and multi linear regression models for predicting of dew point temperature
    • Zounemat-Kermani M (2012) Hourly predictive Levenberg–Marquardt ANN and multi linear regression models for predicting of dew point temperature. Meteorol Atmos Phys 117:181–192
    • (2012) Meteorol Atmos Phys , vol.117 , pp. 181-192
    • Zounemat-Kermani, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.