메뉴 건너뛰기




Volumn 96, Issue , 2016, Pages 311-319

Using ANFIS for selection of more relevant parameters to predict dew point temperature

Author keywords

ANFIS; Dew point temperature; Prediction; Variable selection

Indexed keywords

ATMOSPHERIC HUMIDITY; ATMOSPHERIC PRESSURE; ATMOSPHERIC TEMPERATURE; FORECASTING; FUZZY SYSTEMS; RADIATION EFFECTS; SOFT COMPUTING;

EID: 84954498069     PISSN: 13594311     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.applthermaleng.2015.11.081     Document Type: Article
Times cited : (46)

References (49)
  • 2
    • 0025659366 scopus 로고
    • Moisture distribution within a maize crop due to dew
    • A.J. Atzema, A.F.G. Jacobs, and L. Wartena Moisture distribution within a maize crop due to dew Neth. J. Agric. Sci 38 1990 117 129
    • (1990) Neth. J. Agric. Sci , vol.38 , pp. 117-129
    • Atzema, A.J.1    Jacobs, A.F.G.2    Wartena, L.3
  • 3
    • 84899493198 scopus 로고    scopus 로고
    • Estimation of daily dew point temperature using genetic programming and neural networks approaches
    • J. Shiri, S. Kim, and O. Kisi Estimation of daily dew point temperature using genetic programming and neural networks approaches Hydrol. Res 45 2 2014 165 181
    • (2014) Hydrol. Res , vol.45 , Issue.2 , pp. 165-181
    • Shiri, J.1    Kim, S.2    Kisi, O.3
  • 5
    • 0030812880 scopus 로고    scopus 로고
    • An improved method for estimating surface humidity from daily minimum temperature
    • J.S. Kimball, S.W. Running, and R. Nemani An improved method for estimating surface humidity from daily minimum temperature Agric. Forest Meteorol 85 1997 87 98
    • (1997) Agric. Forest Meteorol , vol.85 , pp. 87-98
    • Kimball, J.S.1    Running, S.W.2    Nemani, R.3
  • 6
    • 33644624434 scopus 로고    scopus 로고
    • Dew formation and water vapor absorption in semi-arid environments - A review
    • N. Agam, and P.R. Berliner Dew formation and water vapor absorption in semi-arid environments - a review J. Arid Environ 65 2006 572 590
    • (2006) J. Arid Environ , vol.65 , pp. 572-590
    • Agam, N.1    Berliner, P.R.2
  • 7
    • 0037346516 scopus 로고    scopus 로고
    • Estimating daily dew point temperature for the northern Great Plains using maximum and minimum temperature
    • K.G. Hubbard, R. Mahmood, and C. Carlson Estimating daily dew point temperature for the northern Great Plains using maximum and minimum temperature Agron. J. 95 2 2003 323 328
    • (2003) Agron. J. , vol.95 , Issue.2 , pp. 323-328
    • Hubbard, K.G.1    Mahmood, R.2    Carlson, C.3
  • 8
    • 84868210863 scopus 로고    scopus 로고
    • Monthly precipitation forecasting with a neuro-fuzzy model
    • C. Jeong, J.Y. Shin, T. Kim, and J.H. Heo Monthly precipitation forecasting with a neuro-fuzzy model Water Resour. Manage 26 2012 4467 4483
    • (2012) Water Resour. Manage , vol.26 , pp. 4467-4483
    • Jeong, C.1    Shin, J.Y.2    Kim, T.3    Heo, J.H.4
  • 9
    • 84957940256 scopus 로고    scopus 로고
    • Prediction of long-term monthly precipitation using several soft computing methods without climatic data
    • O. Kisi, and H. Sanikhani Prediction of long-term monthly precipitation using several soft computing methods without climatic data Int. J. Climatol 2015 10.1002/joc.4273
    • (2015) Int. J. Climatol
    • Kisi, O.1    Sanikhani, H.2
  • 10
    • 84897363857 scopus 로고    scopus 로고
    • A comparative study of support vector machines and artificial neural networks for predicting precipitation in Iran
    • O. Hamidi, J. Poorolajal, M. Sadeghifar, H. Abbasi, Z. Maryanaji, H.R. Faridi, and et al. A comparative study of support vector machines and artificial neural networks for predicting precipitation in Iran Theor. Appl. Climatol 119 2015 723 731 10.1007/s00704-014-1141-z
    • (2015) Theor. Appl. Climatol , vol.119 , pp. 723-731
    • Hamidi, O.1    Poorolajal, J.2    Sadeghifar, M.3    Abbasi, H.4    Maryanaji, Z.5    Faridi, H.R.6
  • 11
    • 84890876888 scopus 로고    scopus 로고
    • Estimation of monthly mean reference evapotranspiration in Turkey
    • H. Citakoglu, M. Cobaner, T. Haktanir, and O. Kisi Estimation of monthly mean reference evapotranspiration in Turkey Water Resour. Manage 28 2014 99 113
    • (2014) Water Resour. Manage , vol.28 , pp. 99-113
    • Citakoglu, H.1    Cobaner, M.2    Haktanir, T.3    Kisi, O.4
  • 12
    • 84936933519 scopus 로고    scopus 로고
    • Short-term forecasting of soil temperature using artificial neural network
    • H. Tabari, P.H. Talaee, and P. Willems Short-term forecasting of soil temperature using artificial neural network Meteorol. Appl 2014 10.1002/met.1489
    • (2014) Meteorol. Appl
    • Tabari, H.1    Talaee, P.H.2    Willems, P.3
  • 13
    • 84931568449 scopus 로고    scopus 로고
    • Modeling soil temperatures at different depths by using three different neural computing techniques
    • O. Kisi, M. Tombul, and M. Zounemat-Kermani Modeling soil temperatures at different depths by using three different neural computing techniques Theor. Appl. Climatol 2014 10.1007/s00704-014-1232-x
    • (2014) Theor. Appl. Climatol
    • Kisi, O.1    Tombul, M.2    Zounemat-Kermani, M.3
  • 14
    • 84891640254 scopus 로고    scopus 로고
    • Daily soil temperature modeling using neuro-fuzzy approach
    • P.H. Talaee Daily soil temperature modeling using neuro-fuzzy approach Theor. Appl. Climatol 118 2014 481 489
    • (2014) Theor. Appl. Climatol , vol.118 , pp. 481-489
    • Talaee, P.H.1
  • 16
    • 48849113389 scopus 로고    scopus 로고
    • Dew point temperature prediction using artificial neural networks
    • D.B. Shank, G. Hoogenboom, and R.W. McClendon Dew point temperature prediction using artificial neural networks Appl. Meteorol. Climatol 47 2008 1757 1769
    • (2008) Appl. Meteorol. Climatol , vol.47 , pp. 1757-1769
    • Shank, D.B.1    Hoogenboom, G.2    McClendon, R.W.3
  • 17
    • 84865770172 scopus 로고    scopus 로고
    • Hourly predictive Levenberg-Marquardt ANN and multi linear regression models for predicting of dew point temperature
    • M. Zounemat-Kermani Hourly predictive Levenberg-Marquardt ANN and multi linear regression models for predicting of dew point temperature Meteorol. Atmos Phys 117 2012 181 192
    • (2012) Meteorol. Atmos Phys , vol.117 , pp. 181-192
    • Zounemat-Kermani, M.1
  • 18
    • 84882829483 scopus 로고    scopus 로고
    • Comparison of individual and combined ANN models for prediction of air and dew point temperature
    • K. Nadig, W. Potter, G. Hoogenboom, and R. McClendon Comparison of individual and combined ANN models for prediction of air and dew point temperature Appl. Intell 39 2 2013 354 366
    • (2013) Appl. Intell , vol.39 , Issue.2 , pp. 354-366
    • Nadig, K.1    Potter, W.2    Hoogenboom, G.3    McClendon, R.4
  • 19
    • 84939264491 scopus 로고    scopus 로고
    • Modeling the physical dynamics of daily dew point temperature using soft computing techniques
    • S. Kim, V.P. Singh, C.J. Lee, and Y. Seo Modeling the physical dynamics of daily dew point temperature using soft computing techniques KSCE J. Civil Eng 2014 10.1007/s12205-014-1197-4
    • (2014) KSCE J. Civil Eng
    • Kim, S.1    Singh, V.P.2    Lee, C.J.3    Seo, Y.4
  • 20
    • 84954510486 scopus 로고    scopus 로고
    • accessed 30.02.15
    • Wikipedia Kerman http://en.wikipedia.org/wiki/Kerman 2015 accessed 30.02.15
    • (2015) Kerman
  • 21
    • 33745866181 scopus 로고    scopus 로고
    • World map of the Koppen-Geiger climate classification updated
    • M. Kottek, J. Grieser, C. Beck, B. Rudolf, and F. Rubel World map of the Koppen-Geiger climate classification updated Meteorol. Z. 15 3 2006 259 263
    • (2006) Meteorol. Z. , vol.15 , Issue.3 , pp. 259-263
    • Kottek, M.1    Grieser, J.2    Beck, C.3    Rudolf, B.4    Rubel, F.5
  • 23
    • 0030608136 scopus 로고    scopus 로고
    • Variable selection with neural networks
    • T. Cibas, and F.F. Soulie Variable selection with neural networks Neurocomputing 12 1996 223 248
    • (1996) Neurocomputing , vol.12 , pp. 223-248
    • Cibas, T.1    Soulie, F.F.2
  • 24
    • 0034621370 scopus 로고    scopus 로고
    • Algorithmic approaches for studies of variable influence, contribution and selection in neural networks
    • F.O. Anderson, M. Aberg, and S.P. Jacobsson Algorithmic approaches for studies of variable influence, contribution and selection in neural networks Chemometr. Intell. Lab. Syst 51 2000 61 72
    • (2000) Chemometr. Intell. Lab. Syst , vol.51 , pp. 61-72
    • Anderson, F.O.1    Aberg, M.2    Jacobsson, S.P.3
  • 25
    • 0034061686 scopus 로고    scopus 로고
    • Variable selection using neural-network models
    • G. Castellano, and A.M. Fanelli Variable selection using neural-network models Neurocomputing 31 2000 1 13
    • (2000) Neurocomputing , vol.31 , pp. 1-13
    • Castellano, G.1    Fanelli, A.M.2
  • 26
    • 0142071011 scopus 로고    scopus 로고
    • Growing neural networks for a multivariate calibration and variable selection of time-resolved measurements
    • F. Dieterle, S. Busche, and G. Gauglitz Growing neural networks for a multivariate calibration and variable selection of time-resolved measurements Anal. Chim. Acta 490 2003 71 83
    • (2003) Anal. Chim. Acta , vol.490 , pp. 71-83
    • Dieterle, F.1    Busche, S.2    Gauglitz, G.3
  • 27
    • 84944104542 scopus 로고    scopus 로고
    • Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; Case study: City of Kerman, Iran
    • K. Mohammadi, S. Shamshirband, D. Petković, and H. Khorasanizadeh Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran Renew. Sustain. Energy Rev 53 2016 1570 1579
    • (2016) Renew. Sustain. Energy Rev , vol.53 , pp. 1570-1579
    • Mohammadi, K.1    Shamshirband, S.2    Petković, D.3    Khorasanizadeh, H.4
  • 28
  • 29
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference systems
    • J.S.R. Jang ANFIS: adaptive-network-based fuzzy inference systems IEEE Trans. Syst. Man Cybern 23 1993 665 685
    • (1993) IEEE Trans. Syst. Man Cybern , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 30
    • 84912549617 scopus 로고    scopus 로고
    • Electricity consumption in the industrial sector of Jordan: Application of multivariate linear regression and adaptive neuro-fuzzy techniques
    • A. Al-Ghandoor, and M. Samhouri Electricity consumption in the industrial sector of Jordan: application of multivariate linear regression and adaptive neuro-fuzzy techniques Jordan J. Mech. Ind. Eng 3 2009 69 76
    • (2009) Jordan J. Mech. Ind. Eng , vol.3 , pp. 69-76
    • Al-Ghandoor, A.1    Samhouri, M.2
  • 31
    • 84939514333 scopus 로고    scopus 로고
    • Evaluation of the most influential parameters of heat load in district heating systems
    • D. Petković, M. Protić, S. Shamshirband, S. Akib, M. Raos, and D. Marković Evaluation of the most influential parameters of heat load in district heating systems Energy Build 104 2015 264 274
    • (2015) Energy Build , vol.104 , pp. 264-274
    • Petković, D.1    Protić, M.2    Shamshirband, S.3    Akib, S.4    Raos, M.5    Marković, D.6
  • 32
    • 81155139125 scopus 로고    scopus 로고
    • Estimation of elastic constant of rocks using an ANFIS approach
    • R. Singh, A. Kianthola, and T.N. Singh Estimation of elastic constant of rocks using an ANFIS approach Appl. Soft Comput 12 2012 40 45
    • (2012) Appl. Soft Comput , vol.12 , pp. 40-45
    • Singh, R.1    Kianthola, A.2    Singh, T.N.3
  • 34
    • 84921433190 scopus 로고    scopus 로고
    • Wind wake influence estimation on energy production of wind farm by adaptive neuro-fuzzy methodology
    • V. Nikolic, S. Shamshirband, D. Petkovic, K. Mohammadi, Z. Cojbasic, T.A. Altameem, and et al. Wind wake influence estimation on energy production of wind farm by adaptive neuro-fuzzy methodology Energy 80 2015 361 372
    • (2015) Energy , vol.80 , pp. 361-372
    • Nikolic, V.1    Shamshirband, S.2    Petkovic, D.3    Mohammadi, K.4    Cojbasic, Z.5    Altameem, T.A.6
  • 36
    • 79959990525 scopus 로고    scopus 로고
    • An adaptive neuro-fuzzy inference system model for predicting the performance of a refrigeration system with a cooling tower
    • M. Hosoz, H.M. Ertunc, and H. Bulgurcu An adaptive neuro-fuzzy inference system model for predicting the performance of a refrigeration system with a cooling tower Expert Syst. Appl 38 2011 14148 14155
    • (2011) Expert Syst. Appl , vol.38 , pp. 14148-14155
    • Hosoz, M.1    Ertunc, H.M.2    Bulgurcu, H.3
  • 37
    • 25144521099 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy control of a flexible manipulator
    • L. Tian, and C. Collins Adaptive neuro-fuzzy control of a flexible manipulator Mechatronics 15 2005 1305 1320
    • (2005) Mechatronics , vol.15 , pp. 1305-1320
    • Tian, L.1    Collins, C.2
  • 38
  • 39
    • 71749102585 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles
    • S. Kurnaz, O. Cetin, and O. Kaynak Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles Expert Syst. Appl 37 2010 1229 1234
    • (2010) Expert Syst. Appl , vol.37 , pp. 1229-1234
    • Kurnaz, S.1    Cetin, O.2    Kaynak, O.3
  • 40
    • 81555204200 scopus 로고    scopus 로고
    • Design of intelligent self-tuning GA ANFIS temperature controller for plastic extrusion system
    • S. Ravi, M. Sudha, and P.A. Balakrishnan Design of intelligent self-tuning GA ANFIS temperature controller for plastic extrusion system Model. Simul. Eng 2011 1 8
    • (2011) Model. Simul. Eng , pp. 1-8
    • Ravi, S.1    Sudha, M.2    Balakrishnan, P.A.3
  • 41
    • 79959456975 scopus 로고    scopus 로고
    • Design an intelligent controller for full vehicle nonlinear active suspension systems
    • A.A. Aldair, and W.J. Wang Design an intelligent controller for full vehicle nonlinear active suspension systems Int. J. Smart Sens. Intell. Syst 4 2011 224 243
    • (2011) Int. J. Smart Sens. Intell. Syst , vol.4 , pp. 224-243
    • Aldair, A.A.1    Wang, W.J.2
  • 43
    • 70349406763 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system-based controllers for smart material actuator modeling
    • T.L. Grigorie, and R.M. Botez Adaptive neuro-fuzzy inference system-based controllers for smart material actuator modeling Aerosp. Eng 223 2009 655 668
    • (2009) Aerosp. Eng , vol.223 , pp. 655-668
    • Grigorie, T.L.1    Botez, R.M.2
  • 44
    • 84857160010 scopus 로고    scopus 로고
    • Identification and control of nonlinear systems using soft computing techniques
    • R.S.D. Wahida Banu, A. Shakila Banu, and D. Manoj Identification and control of nonlinear systems using soft computing techniques Int. J. Model. Optim 1 2011 24 28
    • (2011) Int. J. Model. Optim , vol.1 , pp. 24-28
    • Wahida Banu, R.S.D.1    Shakila Banu, A.2    Manoj, D.3
  • 46
    • 2442571794 scopus 로고    scopus 로고
    • Application of adaptive neuro-fuzzy controller for SRM
    • M.A. Akcayol Application of adaptive neuro-fuzzy controller for SRM Adv. Eng. Softw 35 2004 129 137
    • (2004) Adv. Eng. Softw , vol.35 , pp. 129-137
    • Akcayol, M.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.