-
1
-
-
0016355478
-
New look at statistical-model identification
-
Akaike H. (1974). “New look at statistical-model identification.” IEEE Transactions on Automatic Control, Vol. 19, No. 6, pp. 716–723, DOI: 10.1109/TAC.1974.1100705.
-
(1974)
IEEE Transactions on Automatic Control
, vol.19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
3
-
-
0034993945
-
Artificial neural network modeling of water table depth fluctuations
-
Coulibaly P., Anctil F., Aravena R., Bobée B. (2001). “Artificial neural network modeling of water table depth fluctuations.” Water Resources Research, Vol. 37, No. 4, pp. 885–896, DOI: 10.1029/2000WR900368.
-
(2001)
Water Resources Research
, vol.37
, Issue.4
, pp. 885-896
-
-
Coulibaly, P.1
Anctil, F.2
Aravena, R.3
Bobée, B.4
-
5
-
-
0033441612
-
Weather prediction using fuzzy sets and inference methodology
-
Diab H. B. Saade J. J. (1999). “Weather prediction using fuzzy sets and inference methodology.” Journal of Intelligent and Fuzzy Systems, Vol. 7, No. 3, pp. 283–305.
-
(1999)
Journal of Intelligent and Fuzzy Systems
, vol.7
, Issue.3
, pp. 283-305
-
-
Diab, H.B.1
Saade, J.J.2
-
6
-
-
0039988139
-
Time series forecasting with neural networks: A comparative study using the airline data
-
Faraway J. Chatfield C. (1998). “Time series forecasting with neural networks: A comparative study using the airline data.” Applied Statistics, Vol. 47, No. 2, pp. 231–250, DOI: 10.1111/1467-9876.00109.
-
(1998)
Applied Statistics
, vol.47
, Issue.2
, pp. 231-250
-
-
Faraway, J.1
Chatfield, C.2
-
7
-
-
0000615669
-
Function minimization by conjugate gradients
-
Fletcher R. Reeves C. M. (1964). “Function minimization by conjugate gradients.” Computer Journal, Vol. 7, No. 2, pp. 149–153, DOI: 10.1093/comjnl/7.2.149.
-
(1964)
Computer Journal
, vol.7
, Issue.2
, pp. 149-153
-
-
Fletcher, R.1
Reeves, C.M.2
-
9
-
-
0037346516
-
Estimating daily dew point temperature for the Northern Great Plains using maximum and minimum temperature
-
Hubbard K. G., Mahmood R., Carlson C. (2003). “Estimating daily dew point temperature for the Northern Great Plains using maximum and minimum temperature.” Agronomy Journal, Vol. 95, No. 2, pp. 323–328, DOI: 10.2134/agronj2003.3230.
-
(2003)
Agronomy Journal
, vol.95
, Issue.2
, pp. 323-328
-
-
Hubbard, K.G.1
Mahmood, R.2
Carlson, C.3
-
10
-
-
46449089657
-
Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation
-
Jain S. K., Nayak P. C., Sudheer K. P. (2008). “Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation.” Hydrological Processes, Vol. 22, No. 13, pp. 2225–2234, DOI: 10.1002/hyp.6819.
-
(2008)
Hydrological Processes
, vol.22
, Issue.13
, pp. 2225-2234
-
-
Jain, S.K.1
Nayak, P.C.2
Sudheer, K.P.3
-
11
-
-
85018090113
-
The climatology of Missouri region dew points and the relationship to ENSO
-
Lupo A. R., Smith N. B., Guinan P. E., Chesser M. D. (2012). “The climatology of Missouri region dew points and the relationship to ENSO.” National Weather Digest, Vol. 36, No. 2, pp. 81–91.
-
(2012)
National Weather Digest
, vol.36
, Issue.2
, pp. 81-91
-
-
Lupo, A.R.1
Smith, N.B.2
Guinan, P.E.3
Chesser, M.D.4
-
12
-
-
39849084753
-
Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
-
Kim S. Kim H. S. (2008). “Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling.” Journal of Hydrology, Vol. 351, Issues 3–4, pp. 299–317, DOI: 10.1016/j.jhydrol.2007.12.014.
-
(2008)
Journal of Hydrology
, vol.351
, Issue.3-4
, pp. 299-317
-
-
Kim, S.1
Kim, H.S.2
-
13
-
-
85018109599
-
Nonlinear evapotranspiration modeling using MLP-NNM and SVM-NNM
-
Kim S. Kim H. S. (2011). “Nonlinear evapotranspiration modeling using MLP-NNM and SVM-NNM.” Evapotranspiration, INTECH, pp. 123–147.
-
(2011)
Evapotranspiration, INTECH
, pp. 123-147
-
-
Kim, S.1
Kim, H.S.2
-
14
-
-
84865479667
-
Pan evaporation modeling using neural computing approach for different climatic zones
-
Kim S., Shiri J., Kisi O. (2012). “Pan evaporation modeling using neural computing approach for different climatic zones.” Water Resources Management, Vol. 26, No. 11, pp. 3231–3249, DOI: 10.1007/s11269-012-0069-2.
-
(2012)
Water Resources Management
, vol.26
, Issue.11
, pp. 3231-3249
-
-
Kim, S.1
Shiri, J.2
Kisi, O.3
-
15
-
-
84876427289
-
Estimating daily pan evaporation using different data-driven methods and lag-time patterns
-
Kim S., Shiri J., Kisi O., Singh, V. P. (2013). “Estimating daily pan evaporation using different data-driven methods and lag-time patterns.” Water Resources Management, Vol. 27, No. 7, pp. 22672286, DOI: 10.1007/s11269-013-0287-2.
-
(2013)
Water Resources Management
, vol.27
, Issue.7
, pp. 22672286
-
-
Kim, S.1
Shiri, J.2
Kisi, O.3
Singh, V.P.4
-
16
-
-
84890866839
-
Modeling nonlinear monthly evapotranspiration using soft computing and data reconstruction techniques
-
Kim S., Singh V. P., Seo Y., Kim, H. S. (2014). “Modeling nonlinear monthly evapotranspiration using soft computing and data reconstruction techniques.” Water Resources Management, Vol. 28, No. 1, pp. 185–206, DOI: 10.1007/s11269-013-0479-9.
-
(2014)
Water Resources Management
, vol.28
, Issue.1
, pp. 185-206
-
-
Kim, S.1
Singh, V.P.2
Seo, Y.3
Kim, H.S.4
-
17
-
-
0030812880
-
An improved method for estimating surface humidity from daily minimum temperature
-
Kimball J. S., Running S. W., Nemani, R. (1997). “An improved method for estimating surface humidity from daily minimum temperature.” Agricultural and Forest Meteorology, Vol. 85, Issues 1–2, pp. 87–98, DOI: 10.1016/S0168-1923(96)02366-0.
-
(1997)
Agricultural and Forest Meteorology
, vol.85
, Issue.1-2
, pp. 87-98
-
-
Kimball, J.S.1
Running, S.W.2
Nemani, R.3
-
18
-
-
84887318010
-
Estimation of dew point temperature using neuro-fuzzy and neural network techniques
-
Kisi O., Kim S., Shiri J. (2013). “Estimation of dew point temperature using neuro-fuzzy and neural network techniques.” Theoretical and Applied Climatology, Vol. 114, Issues 3–4, pp. 365–373, DOI: 10.1007/s00704-013-0845-9.
-
(2013)
Theoretical and Applied Climatology
, vol.114
, Issue.3-4
, pp. 365-373
-
-
Kisi, O.1
Kim, S.2
Shiri, J.3
-
20
-
-
79952994073
-
Dynamic characteristics of monthly rainfall in the Korean Peninsula under climate change
-
Kyoung M. S., Kim H. S., Sivakumar B., Singh V. P., Ahn K. S. (2011). “Dynamic characteristics of monthly rainfall in the Korean Peninsula under climate change.” Stochastic Environmental Research and Risk Assessment, Vol. 25, No. 4, pp. 613–625, DOI: 10.1007/s00477-010-0425-9.
-
(2011)
Stochastic Environmental Research and Risk Assessment
, vol.25
, Issue.4
, pp. 613-625
-
-
Kyoung, M.S.1
Kim, H.S.2
Sivakumar, B.3
Singh, V.P.4
Ahn, K.S.5
-
21
-
-
20444401963
-
Assessing bias in evapotranspiration and soil moisture estimates due to the use of modeled solar radiation and dew point temperature data
-
Mahmood R., Hubbard K. G. (2005). “Assessing bias in evapotranspiration and soil moisture estimates due to the use of modeled solar radiation and dew point temperature data.” Agricultural and Forest Meteorology, Vol. 130, Issues 1–2, pp. 71–84, DOI: 10.1016/j.agrformet.2005.02.004.
-
(2005)
Agricultural and Forest Meteorology
, vol.130
, Issue.1-2
, pp. 71-84
-
-
Mahmood, R.1
Hubbard, K.G.2
-
24
-
-
0038122835
-
Artificial neural network-based psychrometric predictor
-
Mittal G. S. Zhang J. (2003). “Artificial neural network-based psychrometric predictor.” BiosystemsEngineering, Vol. 85, No. 3, pp. 283–289, DOI: 10.1016/S1537-5110(03)00071-0.
-
(2003)
BiosystemsEngineering
, vol.85
, Issue.3
, pp. 283-289
-
-
Mittal, G.S.1
Zhang, J.2
-
25
-
-
84882829483
-
Comparison of individual and combined ANN models for prediction of air and dew point temperature
-
Nadig K., Potter W., Hoogenboom G., McClendon R. W. (2013). “Comparison of individual and combined ANN models for prediction of air and dew point temperature.” Applied Intelligence, Vol. 39, No. 2, pp. 354–366, DOI: 10.1007/s10489-012-0417-1.
-
(2013)
Applied Intelligence
, vol.39
, Issue.2
, pp. 354-366
-
-
Nadig, K.1
Potter, W.2
Hoogenboom, G.3
McClendon, R.W.4
-
26
-
-
84912121877
-
Searching most efficient neural network architecture using Akaike’s Information Criterion (AIC)
-
Panchal G., Ganatra A., Kosta Y. P., Panchal D. (2010). “Searching most efficient neural network architecture using Akaike’s Information Criterion (AIC).” International Journal of Computer Applications, Vol. 1, No. 5, pp. 41–44, DOI: 10.5120/126-242.
-
(2010)
International Journal of Computer Applications
, vol.1
, Issue.5
, pp. 41-44
-
-
Panchal, G.1
Ganatra, A.2
Kosta, Y.P.3
Panchal, D.4
-
27
-
-
0033942969
-
An extended version of the Richardson model for simulating daily weather variables
-
Parlange M. B. Katz R. W. (2000). “An extended version of the Richardson model for simulating daily weather variables.” Journal of Applied Meteorology, Vol. 39, No. 5, pp. 610–622, DOI: 10.1175/1520-0450-39.5.610.
-
(2000)
Journal of Applied Meteorology
, vol.39
, Issue.5
, pp. 610-622
-
-
Parlange, M.B.1
Katz, R.W.2
-
28
-
-
0032583317
-
Monthly variations of dew point temperature in the coterminous united states
-
Robinson P. J. (1998). “Monthly variations of dew point temperature in the coterminous united states.” International Journal of Climatology, Vol. 18, No. 14, pp. 1539–1556, DOI: 10.1002/(SICI)1097-0088(19981130)18:14<1539::AID-JOC326>3.0.CO;2-L.
-
(1998)
International Journal of Climatology
, vol.18
, Issue.14
, pp. 1539-1556
-
-
Robinson, P.J.1
-
29
-
-
0033884085
-
Temporal trends in United States dew point temperatures
-
Robinson P. J. (2000). “Temporal trends in United States dew point temperatures.” International Journal of Climatology, Vol. 20, No. 9, pp. 985–1002, DOI: 10.1002/1097-0088(200007)20:9<985::AID-JOC513>3.0.CO;2-W.
-
(2000)
International Journal of Climatology
, vol.20
, Issue.9
, pp. 985-1002
-
-
Robinson, P.J.1
-
30
-
-
12444337588
-
A central-U.S. summer extreme dew-point climatology (1949–2000)
-
Sandstrom M. A., Lauritsen R. G., Changnon D. (2004). “A central-U.S. summer extreme dew-point climatology (1949–2000).” Physical Geography, Vol. 25, No. 3, pp. 191–207, DOI: 10.2747/0272-3646.25.3.191.
-
(2004)
Physical Geography
, vol.25
, Issue.3
, pp. 191-207
-
-
Sandstrom, M.A.1
Lauritsen, R.G.2
Changnon, D.3
-
31
-
-
48849113389
-
Dew point temperature prediction using artificial neural networks
-
Shank D. B., Hoogenboom G., McClendon R. W. (2008a). “Dew point temperature prediction using artificial neural networks.” Journal of Applied Meteorology and Climatology, Vol. 47, No. 6, pp. 1757–1769, DOI: 10.1175/2007JAMC1693.1.
-
(2008)
Journal of Applied Meteorology and Climatology
, vol.47
, Issue.6
, pp. 1757-1769
-
-
Shank, D.B.1
Hoogenboom, G.2
McClendon, R.W.3
-
32
-
-
48849095634
-
Ensemble artificial neural networks for prediction of dew point temperature
-
Shank D. B., McClendon R. W., Paz J., Hoogenboom G. (2008b). “Ensemble artificial neural networks for prediction of dew point temperature.” Applied Artificial Intelligence, Vol. 22, No. 6, pp. 523–542, DOI: 10.1080/08839510802226785.
-
(2008)
Applied Artificial Intelligence
, vol.22
, Issue.6
, pp. 523-542
-
-
Shank, D.B.1
McClendon, R.W.2
Paz, J.3
Hoogenboom, G.4
-
33
-
-
84899493198
-
Estimation of daily dew point temperature using genetic programming and neural networks approaches
-
Shiri J., Kim S., Kisi O. (2014). “Estimation of daily dew point temperature using genetic programming and neural networks approaches.” Hydrology Research, Vol. 45, No. 2, pp. 165–181, DOI: 10.2166/nh.2013.229.
-
(2014)
Hydrology Research
, vol.45
, Issue.2
, pp. 165-181
-
-
Shiri, J.1
Kim, S.2
Kisi, O.3
-
35
-
-
84904788612
-
-
ASCE Press, Reston, V.A
-
Singh V. P., Jain S. K., Tyagi A. (2007). Risk and reliability analysis: A handbook for civil and environmental engineers, ASCE Press, Reston, V.A.
-
(2007)
Risk and reliability analysis: A handbook for civil and environmental engineers
-
-
Singh, V.P.1
Jain, S.K.2
Tyagi, A.3
-
36
-
-
0037199712
-
River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
-
Sivakumar B., Jayawardena A. W., Fernando T. M. K. G. (2002). “River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches.” Journal of Hydrology, Vol. 265, pp. 225–245, DOI: 10.1016/S0022-1694(02)00112-9.
-
(2002)
Journal of Hydrology
, vol.265
, pp. 225-245
-
-
Sivakumar, B.1
Jayawardena, A.W.2
Fernando, T.M.K.G.3
-
37
-
-
0026254768
-
A general regression neural network
-
Specht D. F. (1991). “A general regression neural network.” IEEE Transactions on Neural Networks, Vol. 2, No. 6, pp. 568–576, DOI: 10.1109/72.97934.
-
(1991)
IEEE Transactions on Neural Networks
, vol.2
, Issue.6
, pp. 568-576
-
-
Specht, D.F.1
-
38
-
-
0036843660
-
Modeling evaporation using an artificial neural network algorithm
-
Sudheer K. P., Gosain A. K., Rangan D. M., Saheb S. M. (2002). “Modeling evaporation using an artificial neural network algorithm.” Hydrological Processes, Vol. 16, No. 16, pp. 3189–3202, DOI: 10.1002/hyp.1096.
-
(2002)
Hydrological Processes
, vol.16
, Issue.16
, pp. 3189-3202
-
-
Sudheer, K.P.1
Gosain, A.K.2
Rangan, D.M.3
Saheb, S.M.4
-
39
-
-
0038546820
-
Estimating actual evapotranspiration from limited climatic data using neural computing technique
-
Sudheer K. P., Gosain A. K., Ramasastri K. S. (2003). “Estimating actual evapotranspiration from limited climatic data using neural computing technique.” ASCE Journal of Irrigation and Drainage Engineering, Vol. 129, Issue 3, pp. 214–218, DOI: 10.1061/(ASCE)0733-9437(2003)129:3(214).
-
(2003)
ASCE Journal of Irrigation and Drainage Engineering
, vol.129
, Issue.3
, pp. 214-218
-
-
Sudheer, K.P.1
Gosain, A.K.2
Ramasastri, K.S.3
-
40
-
-
0033167344
-
Rainfall-runoff modeling using artificial neural networks
-
Tokar A. S. Johnson P. A. (1999). “Rainfall-runoff modeling using artificial neural networks.” ASCE Journal of Hydrologic Engineering, Vol. 4, Issue 3, pp. 232–239, DOI: 10.1061/(ASCE)1084-0699(1999)4:3(232).
-
(1999)
ASCE Journal of Hydrologic Engineering
, vol.4
, Issue.3
, pp. 232-239
-
-
Tokar, A.S.1
Johnson, P.A.2
|