메뉴 건너뛰기




Volumn 19, Issue 6, 2015, Pages 1930-1940

Modeling the physical dynamics of daily dew point temperature using soft computing techniques

Author keywords

California; dew point temperature; generalized regression neural networks; multilayer perceptron; multiple linear regression

Indexed keywords

LINEAR REGRESSION; MULTILAYERS; SOFT COMPUTING;

EID: 84939264491     PISSN: 12267988     EISSN: 19763808     Source Type: Journal    
DOI: 10.1007/s12205-014-1197-4     Document Type: Article
Times cited : (29)

References (41)
  • 1
    • 0016355478 scopus 로고
    • New look at statistical-model identification
    • Akaike H. (1974). “New look at statistical-model identification.” IEEE Transactions on Automatic Control, Vol. 19, No. 6, pp. 716–723, DOI: 10.1109/TAC.1974.1100705.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 3
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • Coulibaly P., Anctil F., Aravena R., Bobée B. (2001). “Artificial neural network modeling of water table depth fluctuations.” Water Resources Research, Vol. 37, No. 4, pp. 885–896, DOI: 10.1029/2000WR900368.
    • (2001) Water Resources Research , vol.37 , Issue.4 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobée, B.4
  • 5
    • 0033441612 scopus 로고    scopus 로고
    • Weather prediction using fuzzy sets and inference methodology
    • Diab H. B. Saade J. J. (1999). “Weather prediction using fuzzy sets and inference methodology.” Journal of Intelligent and Fuzzy Systems, Vol. 7, No. 3, pp. 283–305.
    • (1999) Journal of Intelligent and Fuzzy Systems , vol.7 , Issue.3 , pp. 283-305
    • Diab, H.B.1    Saade, J.J.2
  • 6
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks: A comparative study using the airline data
    • Faraway J. Chatfield C. (1998). “Time series forecasting with neural networks: A comparative study using the airline data.” Applied Statistics, Vol. 47, No. 2, pp. 231–250, DOI: 10.1111/1467-9876.00109.
    • (1998) Applied Statistics , vol.47 , Issue.2 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 7
    • 0000615669 scopus 로고
    • Function minimization by conjugate gradients
    • Fletcher R. Reeves C. M. (1964). “Function minimization by conjugate gradients.” Computer Journal, Vol. 7, No. 2, pp. 149–153, DOI: 10.1093/comjnl/7.2.149.
    • (1964) Computer Journal , vol.7 , Issue.2 , pp. 149-153
    • Fletcher, R.1    Reeves, C.M.2
  • 9
    • 0037346516 scopus 로고    scopus 로고
    • Estimating daily dew point temperature for the Northern Great Plains using maximum and minimum temperature
    • Hubbard K. G., Mahmood R., Carlson C. (2003). “Estimating daily dew point temperature for the Northern Great Plains using maximum and minimum temperature.” Agronomy Journal, Vol. 95, No. 2, pp. 323–328, DOI: 10.2134/agronj2003.3230.
    • (2003) Agronomy Journal , vol.95 , Issue.2 , pp. 323-328
    • Hubbard, K.G.1    Mahmood, R.2    Carlson, C.3
  • 10
    • 46449089657 scopus 로고    scopus 로고
    • Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation
    • Jain S. K., Nayak P. C., Sudheer K. P. (2008). “Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation.” Hydrological Processes, Vol. 22, No. 13, pp. 2225–2234, DOI: 10.1002/hyp.6819.
    • (2008) Hydrological Processes , vol.22 , Issue.13 , pp. 2225-2234
    • Jain, S.K.1    Nayak, P.C.2    Sudheer, K.P.3
  • 11
    • 85018090113 scopus 로고    scopus 로고
    • The climatology of Missouri region dew points and the relationship to ENSO
    • Lupo A. R., Smith N. B., Guinan P. E., Chesser M. D. (2012). “The climatology of Missouri region dew points and the relationship to ENSO.” National Weather Digest, Vol. 36, No. 2, pp. 81–91.
    • (2012) National Weather Digest , vol.36 , Issue.2 , pp. 81-91
    • Lupo, A.R.1    Smith, N.B.2    Guinan, P.E.3    Chesser, M.D.4
  • 12
    • 39849084753 scopus 로고    scopus 로고
    • Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
    • Kim S. Kim H. S. (2008). “Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling.” Journal of Hydrology, Vol. 351, Issues 3–4, pp. 299–317, DOI: 10.1016/j.jhydrol.2007.12.014.
    • (2008) Journal of Hydrology , vol.351 , Issue.3-4 , pp. 299-317
    • Kim, S.1    Kim, H.S.2
  • 13
    • 85018109599 scopus 로고    scopus 로고
    • Nonlinear evapotranspiration modeling using MLP-NNM and SVM-NNM
    • Kim S. Kim H. S. (2011). “Nonlinear evapotranspiration modeling using MLP-NNM and SVM-NNM.” Evapotranspiration, INTECH, pp. 123–147.
    • (2011) Evapotranspiration, INTECH , pp. 123-147
    • Kim, S.1    Kim, H.S.2
  • 14
    • 84865479667 scopus 로고    scopus 로고
    • Pan evaporation modeling using neural computing approach for different climatic zones
    • Kim S., Shiri J., Kisi O. (2012). “Pan evaporation modeling using neural computing approach for different climatic zones.” Water Resources Management, Vol. 26, No. 11, pp. 3231–3249, DOI: 10.1007/s11269-012-0069-2.
    • (2012) Water Resources Management , vol.26 , Issue.11 , pp. 3231-3249
    • Kim, S.1    Shiri, J.2    Kisi, O.3
  • 15
    • 84876427289 scopus 로고    scopus 로고
    • Estimating daily pan evaporation using different data-driven methods and lag-time patterns
    • Kim S., Shiri J., Kisi O., Singh, V. P. (2013). “Estimating daily pan evaporation using different data-driven methods and lag-time patterns.” Water Resources Management, Vol. 27, No. 7, pp. 22672286, DOI: 10.1007/s11269-013-0287-2.
    • (2013) Water Resources Management , vol.27 , Issue.7 , pp. 22672286
    • Kim, S.1    Shiri, J.2    Kisi, O.3    Singh, V.P.4
  • 16
    • 84890866839 scopus 로고    scopus 로고
    • Modeling nonlinear monthly evapotranspiration using soft computing and data reconstruction techniques
    • Kim S., Singh V. P., Seo Y., Kim, H. S. (2014). “Modeling nonlinear monthly evapotranspiration using soft computing and data reconstruction techniques.” Water Resources Management, Vol. 28, No. 1, pp. 185–206, DOI: 10.1007/s11269-013-0479-9.
    • (2014) Water Resources Management , vol.28 , Issue.1 , pp. 185-206
    • Kim, S.1    Singh, V.P.2    Seo, Y.3    Kim, H.S.4
  • 17
    • 0030812880 scopus 로고    scopus 로고
    • An improved method for estimating surface humidity from daily minimum temperature
    • Kimball J. S., Running S. W., Nemani, R. (1997). “An improved method for estimating surface humidity from daily minimum temperature.” Agricultural and Forest Meteorology, Vol. 85, Issues 1–2, pp. 87–98, DOI: 10.1016/S0168-1923(96)02366-0.
    • (1997) Agricultural and Forest Meteorology , vol.85 , Issue.1-2 , pp. 87-98
    • Kimball, J.S.1    Running, S.W.2    Nemani, R.3
  • 18
    • 84887318010 scopus 로고    scopus 로고
    • Estimation of dew point temperature using neuro-fuzzy and neural network techniques
    • Kisi O., Kim S., Shiri J. (2013). “Estimation of dew point temperature using neuro-fuzzy and neural network techniques.” Theoretical and Applied Climatology, Vol. 114, Issues 3–4, pp. 365–373, DOI: 10.1007/s00704-013-0845-9.
    • (2013) Theoretical and Applied Climatology , vol.114 , Issue.3-4 , pp. 365-373
    • Kisi, O.1    Kim, S.2    Shiri, J.3
  • 20
    • 79952994073 scopus 로고    scopus 로고
    • Dynamic characteristics of monthly rainfall in the Korean Peninsula under climate change
    • Kyoung M. S., Kim H. S., Sivakumar B., Singh V. P., Ahn K. S. (2011). “Dynamic characteristics of monthly rainfall in the Korean Peninsula under climate change.” Stochastic Environmental Research and Risk Assessment, Vol. 25, No. 4, pp. 613–625, DOI: 10.1007/s00477-010-0425-9.
    • (2011) Stochastic Environmental Research and Risk Assessment , vol.25 , Issue.4 , pp. 613-625
    • Kyoung, M.S.1    Kim, H.S.2    Sivakumar, B.3    Singh, V.P.4    Ahn, K.S.5
  • 21
    • 20444401963 scopus 로고    scopus 로고
    • Assessing bias in evapotranspiration and soil moisture estimates due to the use of modeled solar radiation and dew point temperature data
    • Mahmood R., Hubbard K. G. (2005). “Assessing bias in evapotranspiration and soil moisture estimates due to the use of modeled solar radiation and dew point temperature data.” Agricultural and Forest Meteorology, Vol. 130, Issues 1–2, pp. 71–84, DOI: 10.1016/j.agrformet.2005.02.004.
    • (2005) Agricultural and Forest Meteorology , vol.130 , Issue.1-2 , pp. 71-84
    • Mahmood, R.1    Hubbard, K.G.2
  • 24
    • 0038122835 scopus 로고    scopus 로고
    • Artificial neural network-based psychrometric predictor
    • Mittal G. S. Zhang J. (2003). “Artificial neural network-based psychrometric predictor.” BiosystemsEngineering, Vol. 85, No. 3, pp. 283–289, DOI: 10.1016/S1537-5110(03)00071-0.
    • (2003) BiosystemsEngineering , vol.85 , Issue.3 , pp. 283-289
    • Mittal, G.S.1    Zhang, J.2
  • 25
    • 84882829483 scopus 로고    scopus 로고
    • Comparison of individual and combined ANN models for prediction of air and dew point temperature
    • Nadig K., Potter W., Hoogenboom G., McClendon R. W. (2013). “Comparison of individual and combined ANN models for prediction of air and dew point temperature.” Applied Intelligence, Vol. 39, No. 2, pp. 354–366, DOI: 10.1007/s10489-012-0417-1.
    • (2013) Applied Intelligence , vol.39 , Issue.2 , pp. 354-366
    • Nadig, K.1    Potter, W.2    Hoogenboom, G.3    McClendon, R.W.4
  • 26
    • 84912121877 scopus 로고    scopus 로고
    • Searching most efficient neural network architecture using Akaike’s Information Criterion (AIC)
    • Panchal G., Ganatra A., Kosta Y. P., Panchal D. (2010). “Searching most efficient neural network architecture using Akaike’s Information Criterion (AIC).” International Journal of Computer Applications, Vol. 1, No. 5, pp. 41–44, DOI: 10.5120/126-242.
    • (2010) International Journal of Computer Applications , vol.1 , Issue.5 , pp. 41-44
    • Panchal, G.1    Ganatra, A.2    Kosta, Y.P.3    Panchal, D.4
  • 27
    • 0033942969 scopus 로고    scopus 로고
    • An extended version of the Richardson model for simulating daily weather variables
    • Parlange M. B. Katz R. W. (2000). “An extended version of the Richardson model for simulating daily weather variables.” Journal of Applied Meteorology, Vol. 39, No. 5, pp. 610–622, DOI: 10.1175/1520-0450-39.5.610.
    • (2000) Journal of Applied Meteorology , vol.39 , Issue.5 , pp. 610-622
    • Parlange, M.B.1    Katz, R.W.2
  • 28
    • 0032583317 scopus 로고    scopus 로고
    • Monthly variations of dew point temperature in the coterminous united states
    • Robinson P. J. (1998). “Monthly variations of dew point temperature in the coterminous united states.” International Journal of Climatology, Vol. 18, No. 14, pp. 1539–1556, DOI: 10.1002/(SICI)1097-0088(19981130)18:14<1539::AID-JOC326>3.0.CO;2-L.
    • (1998) International Journal of Climatology , vol.18 , Issue.14 , pp. 1539-1556
    • Robinson, P.J.1
  • 29
    • 0033884085 scopus 로고    scopus 로고
    • Temporal trends in United States dew point temperatures
    • Robinson P. J. (2000). “Temporal trends in United States dew point temperatures.” International Journal of Climatology, Vol. 20, No. 9, pp. 985–1002, DOI: 10.1002/1097-0088(200007)20:9<985::AID-JOC513>3.0.CO;2-W.
    • (2000) International Journal of Climatology , vol.20 , Issue.9 , pp. 985-1002
    • Robinson, P.J.1
  • 30
    • 12444337588 scopus 로고    scopus 로고
    • A central-U.S. summer extreme dew-point climatology (1949–2000)
    • Sandstrom M. A., Lauritsen R. G., Changnon D. (2004). “A central-U.S. summer extreme dew-point climatology (1949–2000).” Physical Geography, Vol. 25, No. 3, pp. 191–207, DOI: 10.2747/0272-3646.25.3.191.
    • (2004) Physical Geography , vol.25 , Issue.3 , pp. 191-207
    • Sandstrom, M.A.1    Lauritsen, R.G.2    Changnon, D.3
  • 31
    • 48849113389 scopus 로고    scopus 로고
    • Dew point temperature prediction using artificial neural networks
    • Shank D. B., Hoogenboom G., McClendon R. W. (2008a). “Dew point temperature prediction using artificial neural networks.” Journal of Applied Meteorology and Climatology, Vol. 47, No. 6, pp. 1757–1769, DOI: 10.1175/2007JAMC1693.1.
    • (2008) Journal of Applied Meteorology and Climatology , vol.47 , Issue.6 , pp. 1757-1769
    • Shank, D.B.1    Hoogenboom, G.2    McClendon, R.W.3
  • 32
    • 48849095634 scopus 로고    scopus 로고
    • Ensemble artificial neural networks for prediction of dew point temperature
    • Shank D. B., McClendon R. W., Paz J., Hoogenboom G. (2008b). “Ensemble artificial neural networks for prediction of dew point temperature.” Applied Artificial Intelligence, Vol. 22, No. 6, pp. 523–542, DOI: 10.1080/08839510802226785.
    • (2008) Applied Artificial Intelligence , vol.22 , Issue.6 , pp. 523-542
    • Shank, D.B.1    McClendon, R.W.2    Paz, J.3    Hoogenboom, G.4
  • 33
    • 84899493198 scopus 로고    scopus 로고
    • Estimation of daily dew point temperature using genetic programming and neural networks approaches
    • Shiri J., Kim S., Kisi O. (2014). “Estimation of daily dew point temperature using genetic programming and neural networks approaches.” Hydrology Research, Vol. 45, No. 2, pp. 165–181, DOI: 10.2166/nh.2013.229.
    • (2014) Hydrology Research , vol.45 , Issue.2 , pp. 165-181
    • Shiri, J.1    Kim, S.2    Kisi, O.3
  • 36
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar B., Jayawardena A. W., Fernando T. M. K. G. (2002). “River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches.” Journal of Hydrology, Vol. 265, pp. 225–245, DOI: 10.1016/S0022-1694(02)00112-9.
    • (2002) Journal of Hydrology , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 37
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht D. F. (1991). “A general regression neural network.” IEEE Transactions on Neural Networks, Vol. 2, No. 6, pp. 568–576, DOI: 10.1109/72.97934.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 38
    • 0036843660 scopus 로고    scopus 로고
    • Modeling evaporation using an artificial neural network algorithm
    • Sudheer K. P., Gosain A. K., Rangan D. M., Saheb S. M. (2002). “Modeling evaporation using an artificial neural network algorithm.” Hydrological Processes, Vol. 16, No. 16, pp. 3189–3202, DOI: 10.1002/hyp.1096.
    • (2002) Hydrological Processes , vol.16 , Issue.16 , pp. 3189-3202
    • Sudheer, K.P.1    Gosain, A.K.2    Rangan, D.M.3    Saheb, S.M.4
  • 39
    • 0038546820 scopus 로고    scopus 로고
    • Estimating actual evapotranspiration from limited climatic data using neural computing technique
    • Sudheer K. P., Gosain A. K., Ramasastri K. S. (2003). “Estimating actual evapotranspiration from limited climatic data using neural computing technique.” ASCE Journal of Irrigation and Drainage Engineering, Vol. 129, Issue 3, pp. 214–218, DOI: 10.1061/(ASCE)0733-9437(2003)129:3(214).
    • (2003) ASCE Journal of Irrigation and Drainage Engineering , vol.129 , Issue.3 , pp. 214-218
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 40
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar A. S. Johnson P. A. (1999). “Rainfall-runoff modeling using artificial neural networks.” ASCE Journal of Hydrologic Engineering, Vol. 4, Issue 3, pp. 232–239, DOI: 10.1061/(ASCE)1084-0699(1999)4:3(232).
    • (1999) ASCE Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.