메뉴 건너뛰기




Volumn 6, Issue 3, 2015, Pages 281-302

Computer-aided diagnosis of Parkinson's disease using complex-valued neural networks and mRMR feature selection algorithm

Author keywords

Classification; Complex valued neural network; Computer aided diagnosis; Mrmr feature selection method; Parkinson's disease

Indexed keywords

ALGORITHMS; ARCHITECTURAL ACOUSTICS; CLASSIFICATION (OF INFORMATION); COMPLEX NETWORKS; COMPUTER NETWORKS; DIAGNOSIS; FEATURE EXTRACTION; NEURAL NETWORKS; NEURODEGENERATIVE DISEASES;

EID: 84958643361     PISSN: 20402295     EISSN: 20402309     Source Type: Journal    
DOI: 10.1260/2040-2295.6.3.281     Document Type: Article
Times cited : (96)

References (68)
  • 5
    • 0036765120 scopus 로고    scopus 로고
    • Systematic evaluation of rating scales for impairment and disability in Parkinson's disease
    • Ramaker C, Marinus J, Stiggelbout AM, van Hilten BJ. Systematic evaluation of rating scales for impairment and disability in Parkinson's disease. Movement Disorders, 2002, 17(5):867-876.
    • (2002) Movement Disorders , vol.17 , Issue.5 , pp. 867-876
    • Ramaker, C.1    Marinus, J.2    Stiggelbout, A.M.3    Van Hilten, B.J.4
  • 6
    • 85026557648 scopus 로고    scopus 로고
    • Umphred DA, Lazaro RT, Roller M, Burton G (2013). Neurological rehabilitation. Elsevier Health Sciences.
  • 7
    • 77950188774 scopus 로고    scopus 로고
    • Evaluation of ensemble methods for diagnosing of valvular heart disease
    • Das R, Sengur A. Evaluation of ensemble methods for diagnosing of valvular heart disease. Expert Systems with Applications, 2010, 37(7):5110-5115.
    • (2010) Expert Systems with Applications , vol.37 , Issue.7 , pp. 5110-5115
    • Das, R.1    Sengur, A.2
  • 8
    • 60249097051 scopus 로고    scopus 로고
    • Effective diagnosis of heart disease through neural networks ensembles
    • Das R, Turkoglu I, Sengur A. Effective diagnosis of heart disease through neural networks ensembles. Expert Systems with Applications, 2009, 36(4):7675-7680.
    • (2009) Expert Systems with Applications , vol.36 , Issue.4 , pp. 7675-7680
    • Das, R.1    Turkoglu, I.2    Sengur, A.3
  • 11
    • 43549111102 scopus 로고    scopus 로고
    • For better or for worse: The effect of Levodopa on speech in Parkinson's disease
    • Ho A, Bradshaw JL, Iansek R. For better or for worse: the effect of Levodopa on speech in Parkinson's disease. Movement Disorders, 2008, 23(4):574-580.
    • (2008) Movement Disorders , vol.23 , Issue.4 , pp. 574-580
    • Ho, A.1    Bradshaw, J.L.2    Iansek, R.3
  • 12
    • 4544366790 scopus 로고    scopus 로고
    • Variability in fundamental frequency during speech in prodromal and incipient Parkinson's disease: A longitudinal case study
    • Harel B, Cannizzaro M, Snyder PJ. Variability in fundamental frequency during speech in prodromal and incipient Parkinson's disease: A longitudinal case study. Brain and Cognition, 2004, 56:24-29.
    • (2004) Brain and Cognition , vol.56 , pp. 24-29
    • Harel, B.1    Cannizzaro, M.2    Snyder, P.J.3
  • 13
    • 67651148181 scopus 로고    scopus 로고
    • Progression of dysprosody in Parkinson's disease over time - A longitudinal study
    • Skodda S, Rinsche H, Schlegel U. Progression of dysprosody in Parkinson's disease over time - A longitudinal study. Movement Disorders, 2009, 24(5):716-722.
    • (2009) Movement Disorders , vol.24 , Issue.5 , pp. 716-722
    • Skodda, S.1    Rinsche, H.2    Schlegel, U.3
  • 14
    • 77249172715 scopus 로고    scopus 로고
    • Formant centralization ratio (FCR): A proposal for a new acoustic measure of dysarthric speech
    • Sapir S, Ramig L, Spielman J, Fox C. Formant centralization ratio (FCR): A proposal for a new acoustic measure of dysarthric speech. Journal of Speech Language and Hearing Research. 2010, 53:114-125.
    • (2010) Journal of Speech Language and Hearing Research , vol.53 , pp. 114-125
    • Sapir, S.1    Ramig, L.2    Spielman, J.3    Fox, C.4
  • 17
    • 71749106281 scopus 로고    scopus 로고
    • A comparison of multiple classification methods for diagnosis of Parkinson disease
    • Das R. A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Systems with Applications, 2010, 37(2):1568-1572.
    • (2010) Expert Systems with Applications , vol.37 , Issue.2 , pp. 1568-1572
    • Das, R.1
  • 19
    • 78650710674 scopus 로고    scopus 로고
    • Feature selection using fuzzy entropy measures with similarity classifier
    • Luukka P. Feature selection using fuzzy entropy measures with similarity classifier. Expert Systems with Applications, 2011, 38(4):4600-4607.
    • (2011) Expert Systems with Applications , vol.38 , Issue.4 , pp. 4600-4607
    • Luukka, P.1
  • 20
    • 79956012303 scopus 로고    scopus 로고
    • A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets
    • Li DC, Liu CW, Hu SC. A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artificial Intelligence in Medicine, 2011, 52(1):45-52.
    • (2011) Artificial Intelligence in Medicine , vol.52 , Issue.1 , pp. 45-52
    • Li, D.C.1    Liu, C.W.2    Hu, S.C.3
  • 21
    • 79957987118 scopus 로고    scopus 로고
    • A parallel neural network approach to prediction of Parkinson's disease
    • Aström F, Koker R. A parallel neural network approach to prediction of Parkinson's disease. Expert Systems with Applications, 2011, 38(10), 12470-12474.
    • (2011) Expert Systems with Applications , vol.38 , Issue.10 , pp. 12470-12474
    • Aström, F.1    Koker, R.2
  • 23
    • 84857215855 scopus 로고    scopus 로고
    • Classification of Parkinson's disease using feature weighting method on the basis of fuzzy c-means clustering
    • Polat K. Classification of Parkinson's disease using feature weighting method on the basis of fuzzy c-means clustering. International Journal of Systems Science, 2012, 43(4):597-609.
    • (2012) International Journal of Systems Science , vol.43 , Issue.4 , pp. 597-609
    • Polat, K.1
  • 24
    • 84870438745 scopus 로고    scopus 로고
    • Chi-square distance kernel of the gaits for the diagnosis of Parkinson's disease
    • Daliri MR. Chi-square distance kernel of the gaits for the diagnosis of Parkinson's disease. Biomedical Signal Processing and Control, 2013, 8(1):66-70.
    • (2013) Biomedical Signal Processing and Control , vol.8 , Issue.1 , pp. 66-70
    • Daliri, M.R.1
  • 25
    • 85027954695 scopus 로고    scopus 로고
    • Effective detection of Parkinson's disease using an adaptive fuzzy k-nearest neighbor approach
    • Zuo WL, Wang ZY, Liu T, Chen HL. Effective detection of Parkinson's disease using an adaptive fuzzy k-nearest neighbor approach. Biomedical Signal Processing and Control, 2013, 8(4):364-373.
    • (2013) Biomedical Signal Processing and Control , vol.8 , Issue.4 , pp. 364-373
    • Zuo, W.L.1    Wang, Z.Y.2    Liu, T.3    Chen, H.L.4
  • 26
    • 77956061076 scopus 로고    scopus 로고
    • Telediagnosis of Parkinson's disease using measurements of dysphonia
    • Sakar CO, Kursun O. Telediagnosis of Parkinson's disease using measurements of dysphonia. Journal of Medical Systems, 2010, 34(4):591-599.
    • (2010) Journal of Medical Systems , vol.34 , Issue.4 , pp. 591-599
    • Sakar, C.O.1    Kursun, O.2
  • 27
    • 80655127861 scopus 로고    scopus 로고
    • Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms
    • Ozcift A, Gulten A. Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms. Computer Methods and Programs in Biomedicine, 2011, 104(3):443-451.
    • (2011) Computer Methods and Programs in Biomedicine , vol.104 , Issue.3 , pp. 443-451
    • Ozcift, A.1    Gulten, A.2
  • 28
    • 84866123932 scopus 로고    scopus 로고
    • An efficient diagnosis system for detection of Parkinson's disease using fuzzy k-nearest neighbor approach
    • Chen HL, Huang CC, Yu XG, Xu X, Sun X, Wang G, Wang SJ. An efficient diagnosis system for detection of Parkinson's disease using fuzzy k-nearest neighbor approach. Expert Systems with Applications, 2013, 40(1):263-271.
    • (2013) Expert Systems with Applications , vol.40 , Issue.1 , pp. 263-271
    • Chen, H.L.1    Huang, C.C.2    Yu, X.G.3    Xu, X.4    Sun, X.5    Wang, G.6    Wang, S.J.7
  • 29
    • 84859781754 scopus 로고    scopus 로고
    • Diagnosis of Parkinson's disease in human using voice signals
    • Rouzbahani HK, Daliri MR. Diagnosis of Parkinson's disease in human using voice signals. Basic and Clinical Neuroscience, 2011, 2(3):12-20.
    • (2011) Basic and Clinical Neuroscience , vol.2 , Issue.3 , pp. 12-20
    • Rouzbahani, H.K.1    Daliri, M.R.2
  • 30
    • 84914689062 scopus 로고    scopus 로고
    • Ma C, Ouyang J, Chen HL, Zhao XH. An efficient diagnosis system for Parkinson's disease using kernel-based extreme learning machine with subtractive clustering features weighting approach. Computational and Mathematical Methods in Medicine, 2014, doi:10.1155/2014/985789.
  • 31
    • 84931411042 scopus 로고    scopus 로고
    • HMM for Classification of Parkinson’s Disease Based on the Raw Gait Data
    • Khorasani A, Daliri MR. HMM for classification of Parkinson's disease based on the raw gait data. Journal of Medical Systems, 2014, 38(12):1-6.
    • (2014) Journal of Medical Systems , vol.38 , Issue.12 , pp. 1-6
    • Khorasani, A.1    Daliri, M.R.2
  • 32
    • 84861827844 scopus 로고    scopus 로고
    • Automatic diagnosis of neuro-degenerative diseases using gait dynamics
    • Daliri MR. Automatic diagnosis of neuro-degenerative diseases using gait dynamics. Measurement, 2012, 45(7):1729-1734.
    • (2012) Measurement , vol.45 , Issue.7 , pp. 1729-1734
    • Daliri, M.R.1
  • 34
    • 84881234696 scopus 로고    scopus 로고
    • A classification framework applied to cancer gene expression profiles
    • Hijazi H, Christina C. A classification framework applied to cancer gene expression profiles. Journal of healthcare engineering, 2013, 4(2):255-284.
    • (2013) Journal of Healthcare Engineering , vol.4 , Issue.2 , pp. 255-284
    • Hijazi, H.1    Christina, C.2
  • 35
    • 84867760662 scopus 로고    scopus 로고
    • Feature selection using binary particle swarm optimization and support vector machines for medical diagnosis
    • Daliri MR. Feature selection using binary particle swarm optimization and support vector machines for medical diagnosis. Biomedizinische Technik/Biomedical Engineering, 2012, 57(5):395-402.
    • (2012) Biomedizinische Technik/Biomedical Engineering , vol.57 , Issue.5 , pp. 395-402
    • Daliri, M.R.1
  • 37
    • 84895092631 scopus 로고    scopus 로고
    • A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms
    • Sen B, Peker M, Celebi FV, Cavusoglu A. A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. Journal of Medical Systems, 2014, 38(3):1-21.
    • (2014) Journal of Medical Systems , vol.38 , Issue.3 , pp. 1-21
    • Sen, B.1    Peker, M.2    Celebi, F.V.3    Cavusoglu, A.4
  • 38
    • 84891373440 scopus 로고    scopus 로고
    • Fast relational learning using bottom clause propositionalization with artificial neural networks
    • França MV, Zaverucha G, Garcez ASDA. Fast relational learning using bottom clause propositionalization with artificial neural networks. Machine learning, 2014, 94(1):81-104.
    • (2014) Machine Learning , vol.94 , Issue.1 , pp. 81-104
    • França, M.V.1    Zaverucha, G.2    Garcez, A.S.D.A.3
  • 39
    • 85026536353 scopus 로고    scopus 로고
    • Duda RO, Hart PE, Stork DG. Pattern classification, 2nd ed., John Wiley & Sons, 2012.
  • 40
    • 33745771538 scopus 로고    scopus 로고
    • Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles
    • Jin X, Xu A, Bie R, Guo P. Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles. Lecture Notes in Computer Science, 2006, 3916:106-115.
    • (2006) Lecture Notes in Computer Science , vol.3916 , pp. 106-115
    • Jin, X.1    Xu, A.2    Bie, R.3    Guo, P.4
  • 41
    • 0015125457 scopus 로고
    • A direct method of nonparametric measurement selection
    • Whitney AW. A direct method of nonparametric measurement selection. IEEE Transactions on Computers, 1971, 20(9):1100-1103.
    • (1971) IEEE Transactions on Computers , vol.20 , Issue.9 , pp. 1100-1103
    • Whitney, A.W.1
  • 43
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • Robnik-Sikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning, 2003, 53(1-2):23-69.
    • (2003) Machine Learning , vol.53 , Issue.1-2 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 44
    • 50049115236 scopus 로고    scopus 로고
    • Application of complex discrete wavelet transform in classification of Doppler signals using complex-valued artificial neural network
    • Ceylan M, Ceylan R, Ozbay Y, Kara S. Application of complex discrete wavelet transform in classification of Doppler signals using complex-valued artificial neural network. Artificial Intelligence in Medicine. 2008, 44(1), 65-76.
    • (2008) Artificial Intelligence in Medicine , vol.44 , Issue.1 , pp. 65-76
    • Ceylan, M.1    Ceylan, R.2    Ozbay, Y.3    Kara, S.4
  • 45
    • 84939178143 scopus 로고    scopus 로고
    • A new complex-valued intelligent system for automated epilepsy diagnosis using EEG signals
    • Peker M, Sen B. A new complex-valued intelligent system for automated epilepsy diagnosis using EEG signals. AWERProcedia Information Technology & Computer Science. 2013, 1121-1128.
    • (2013) AWERProcedia Information Technology & Computer Science , pp. 1121-1128
    • Peker, M.1    Sen, B.2
  • 46
    • 79953692078 scopus 로고    scopus 로고
    • Fuzzy clustering complex-valued neural network to diagnose cirrhosis disease
    • Ceylan R, Ceylan M, Ozbay Y, Kara S. Fuzzy clustering complex-valued neural network to diagnose cirrhosis disease. Expert Systems with Applications. 2011, 38(8):9744-9751.
    • (2011) Expert Systems with Applications , vol.38 , Issue.8 , pp. 9744-9751
    • Ceylan, R.1    Ceylan, M.2    Ozbay, Y.3    Kara, S.4
  • 47
    • 84938482937 scopus 로고    scopus 로고
    • A fully complex-valued fast learning classifier (FC-FLC) for real-valued classification problems
    • Sivachitra M, et al. A fully complex-valued fast learning classifier (FC-FLC) for real-valued classification problems. Neurocomputing. 2015, 149:198-206.
    • (2015) Neurocomputing , vol.149 , pp. 198-206
    • Sivachitra, M.1
  • 48
    • 84896543706 scopus 로고    scopus 로고
    • Millimeter-wave security imaging using complex-valued self-organizing map for visualization of moving targets
    • Shogo O, Arima Y, Hirose A. Millimeter-wave security imaging using complex-valued self-organizing map for visualization of moving targets. Neurocomputing. 2014, 134:247-253.
    • (2014) Neurocomputing , vol.134 , pp. 247-253
    • Shogo, O.1    Arima, Y.2    Hirose, A.3
  • 49
    • 25844513261 scopus 로고    scopus 로고
    • Conception of complex probabilistic neural network system for classification of partial discharge patterns using multifarious inputs
    • Karthikeyan B, Gopal S, Vimala M. Conception of complex probabilistic neural network system for classification of partial discharge patterns using multifarious inputs. Expert Systems with Applications, 2005, 29(4):953-963.
    • (2005) Expert Systems with Applications , vol.29 , Issue.4 , pp. 953-963
    • Karthikeyan, B.1    Gopal, S.2    Vimala, M.3
  • 50
    • 84971371361 scopus 로고    scopus 로고
    • Peker M, Sen B, Delen D. A novel method for automated diagnosis of epilepsy using complex-valued classifiers. IEEE Journal of Biomedical and Health Informatics, 2015, doi: 10.1109/JBHI.2014.23877952015.
  • 53
    • 0348156824 scopus 로고    scopus 로고
    • Orthogonality of decision boundaries in complex-valued neural networks
    • Nitta T. Orthogonality of decision boundaries in complex-valued neural networks. Neural Computation, 2004, 16(1):73-97.
    • (2004) Neural Computation , vol.16 , Issue.1 , pp. 73-97
    • Nitta, T.1
  • 56
    • 0031277466 scopus 로고    scopus 로고
    • An extension of the back-propagation algorithm to complex numbers
    • Nitta T. An extension of the back-propagation algorithm to complex numbers. Neural Network, 1997, 10:1391-1415.
    • (1997) Neural Network , vol.10 , pp. 1391-1415
    • Nitta, T.1
  • 59
    • 85026512197 scopus 로고    scopus 로고
    • Parkinsons Data Set, https://archive.ics.uci.edu/ml/datasets/Parkinsons. Accessed September 5, 2014.
  • 60
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • Cohen J, A coefficient of agreement for nominal scales. Educational and Psychological Measurement. 1960, 20(1):37-46.
    • (1960) Educational and Psychological Measurement , vol.20 , Issue.1 , pp. 37-46
    • Cohen, J.1
  • 61
    • 84925228155 scopus 로고    scopus 로고
    • Automatic sleep staging using multidimensional feature extraction and multi-kernel fuzzy support vector machine
    • Zhang Y, Zhang X, Liu W, Luo Y, Yu E, Zou K, Liu X. Automatic sleep staging using multidimensional feature extraction and multi-kernel fuzzy support vector machine. Journal of Healthcare Engineering, 2014, 5(4):505-520.
    • (2014) Journal of Healthcare Engineering , vol.5 , Issue.4 , pp. 505-520
    • Zhang, Y.1    Zhang, X.2    Liu, W.3    Luo, Y.4    Yu, E.5    Zou, K.6    Liu, X.7
  • 63
    • 77957925386 scopus 로고    scopus 로고
    • Chaotic maps based on binary particle swarm optimization for feature selection
    • Chuang LY, Yang CH, Li JC. Chaotic maps based on binary particle swarm optimization for feature selection. Applied Soft Computing, 2011, 11(1):239-248.
    • (2011) Applied Soft Computing , vol.11 , Issue.1 , pp. 239-248
    • Chuang, L.Y.1    Yang, C.H.2    Li, J.C.3
  • 64
    • 84925609243 scopus 로고    scopus 로고
    • An evidential classifier based on feature selection and two-step classification strategy
    • Lian C, Ruan S, Denoeux T. An evidential classifier based on feature selection and two-step classification strategy. Pattern Recognition, 2015, 48(7):2318-2327.
    • (2015) Pattern Recognition , vol.48 , Issue.7 , pp. 2318-2327
    • Lian, C.1    Ruan, S.2    Denoeux, T.3
  • 65
    • 78049340183 scopus 로고    scopus 로고
    • SVM-FuzCoC: A novel SVM-based feature selection method using a fuzzy complementary criterion
    • Moustakidis SP, Theocharis JB. SVM-FuzCoC: A novel SVM-based feature selection method using a fuzzy complementary criterion. Pattern Recognition, 2010, 43(11):3712-3729.
    • (2010) Pattern Recognition , vol.43 , Issue.11 , pp. 3712-3729
    • Moustakidis, S.P.1    Theocharis, J.B.2
  • 68
    • 67349143661 scopus 로고    scopus 로고
    • Ensemble of single-layered complex-valued neural networks for classification tasks
    • Amin MF, Islam MM, Murase K. Ensemble of single-layered complex-valued neural networks for classification tasks. Neurocomputing, 2009, 72(10):2227-2234.
    • (2009) Neurocomputing , vol.72 , Issue.10 , pp. 2227-2234
    • Amin, M.F.1    Islam, M.M.2    Murase, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.